Web Information Retrieval

Lecture 12
Link analysis for ranking
Today’s lecture

- Link analysis for ranking
 - Pagerank and variants
 - HITS
Why Link Analysis?

- First generation search engines
 - view documents as flat text files
 - could not cope with size, spamming, user needs
- Second generation search engines
 - Ranking becomes critical
 - use of Web specific data: Link Analysis
 - shift from relevance to authoritativeness
 - a success story for the network analysis
Link Analysis for ranking: Intuition

- A link from page p to page q denotes endorsement
 - page p considers page q an authority on a subject
 - mine the web graph of recommendations
 - assign an authority value to every page
Link Analysis Ranking Algorithms

- Start with a collection of web pages
- Extract the underlying hyperlink graph
- Run the LAR algorithm on the graph
- Output: an authority weight for each node
Algorithm input

- Query independent: rank the whole Web
 - PageRank (Brin and Page 98) was proposed as query independent
- Query dependent: rank a small subset of pages related to a specific query
 - HITS (Kleinberg 98) was proposed as query dependent
Query dependent analysis

- First retrieve all pages meeting the text query (say *venture capital*).
- Order these by their link popularity
Query dependent input

Root Set
Query dependent input
Query dependent input
Query dependent input

Base Set

IN

Root Set

OUT
Previous work

- The problem of identifying the most important nodes in a network has been studied before in social networks and bibliometrics.
- The idea is similar:
 - A link from node p to node q denotes endorsement.
 - Mine the network at hand.
 - Assign an *centrality/importance/standing value* to every node.
Citation Analysis

- Citation frequency
- Co-citation coupling frequency
 - Cocitations with a given author measures “impact”
 - Cocitation analysis [Mcca90]
 - Convert frequencies to correlation coefficients, do multivariate
 analysis/clustering, validate conclusions
 - E.g., cocitation in the “Geography and GIS” web shows communities [Lars96]
- Bibliographic coupling frequency
 - Articles that co-cite the same articles are related
- Citation indexing
 - Who is a given author cited by? (Garfield [Garf72])
 - E.g., Science Citation Index (http://www.isinet.com/)
 - CiteSeer (http://citeseer.ist.psu.edu) [Lawr99a]
 - Pagerank preview: Pinsker and Narin ‘60s
Undirected popularity

- Rank pages according to degree
 - \(w_i = |\text{degree}(i)| \)

1. Red Page
2. Yellow Page
3. Blue Page
4. Purple Page
5. Green Page
Spamming undirected popularity

- *Exercise*: How do you spam the undirected popularity heuristic
Spamming undirected popularity

- *Exercise*: How do you spam the undirected popularity heuristic
 - Add a lot of outlinks
Directed popularity

- Rank pages according to in-degree
 - $w_i = |\text{indegree}(i)|$

1. Red Page
2. Yellow Page
3. Blue Page
4. Purple Page
5. Green Page
Spamming directed popularity

- *Exercise*: How do you spam the directed popularity heuristic
Spamming directed popularity

Exercise: How do you spam the directed popularity heuristic

- Create a lot of web pages
- Add links to the page of interest
PageRank algorithm

High-level idea:

- A good page has a lot of endorsements by important (authoritative) pages
- **Good** authorities should be pointed by **good** authorities
- Count number of votes, but votes have different weights that depends on who votes for them, and so on
- Motivated also by the **random-surfer** model

1. Red Page
2. Purple Page
3. Yellow Page
4. Blue Page
5. Green Page
Imagine a browser doing a random walk on web pages:

- Start at a random page

At each step, go out of the current page along one of the links on that page, equiprobably

“In the steady state” each page has a long-term visit rate - use this as the page’s score.
Not quite enough

- The web is full of dead-ends.
 - Random walk can get stuck in dead-ends.
 - Makes no sense to talk about long-term visit rates.
Teleporting

- At a dead end, jump to a random web page.
- At any non-dead end, with probability $\alpha = 10\%$, jump to a random web page.
 - With remaining probability (90%), go out on a random link.
 - $\alpha = 10\%$ – a parameter
Result of teleporting

- Now cannot get stuck locally.
- There is a long-term rate at which any page is visited (not obvious, will show this).
- How do we compute this visit rate?
PageRank algorithm

- Good authorities should be pointed by good authorities
- Random walk on the web graph
 - pick a page at random
 - Repeat
 - If dead end jump to a random page
 - with probability α jump to a random page
 - with probability $1-\alpha$ follow a random outgoing link
- Pagerank weight of page $p = \text{Probability to be at page } p$
A Markov chain consists of \(n \) states, plus an \(n \times n \) transition probability matrix \(P \).

At each step, we are in exactly one of the states.

For \(1 \leq i, j \leq n \), the matrix entry \(P_{ij} \) tells us the probability of \(j \) being the next state, given we are currently in state \(i \).
A Markov chain describes a **discrete time stochastic process** over a set of **states**

\[S = \{s_1, s_2, \ldots, s_n\} \]

according to a **transition probability** matrix

\[P = \{P_{ij}\} \]

- \(P_{ij} \) = probability of moving to state \(s_j \) when at state \(s_i \)
 - \(\sum_j P_{ij} = 1 \) (**stochastic matrix**)

Memorylessness property: The next state of the chain depends only at the current state and not on the past of the process

Markov chains are abstractions and generalizations of **random walks**.
Markov chain graph

- Often we represent a Markov chain as a graph
- Nodes = states
- Edge weights = transition probabilities

\[
P = \begin{bmatrix}
0 & \frac{1}{3} & \frac{2}{3} \\
0.9 & 0 & 0.1 \\
0.2 & 0 & 0.8 \\
\end{bmatrix}
\]
Random walks

- Random walks on graphs are examples of Markov chains
 - The set of states is the set of nodes of the graph G
 - The *transition probability matrix* is the probability that we follow an edge from one node to another

- Pagerank is **NOT** a random walk (but similar)
 - Why?
An example

\[
A = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
P_{RW} = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1/3 & 1/3 & 1/3 & 0 & 0 \\
1/2 & 0 & 0 & 1/2 & 0
\end{bmatrix}
\]
Markov chains

- Clearly, for all i, \[\sum_{j=1}^{n} P_{ij} = 1. \]

- Markov chains are abstractions and generalizations of random walks.

- Exercise: represent the teleporting random walk from 3 slides ago as a Markov chain, for this case:
The PageRank Markov chain

- Previous graph:

\[A = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{bmatrix} \]
The PageRank Markov chain

- Let’s consider a different example (assume that page 2 has no outlinks)

\[
A = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{bmatrix}
\]
The PageRank Markov chain

- What about sink nodes?
 - what happens when the random walk moves to a node without any outgoing links?

\[
P_{RW} = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1/3 & 1/3 & 1/3 \\
1/2 & 0 & 0 & 0 & 1/2 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]
The PageRank Markov chain

- Replace these row vectors with a vector v
 - typically, the uniform vector

$$P_{RW} = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 & 0 \\
1/5 & 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1/3 & 1/3 & 1/3 & 0 & 0 & 0 \\
1/2 & 0 & 0 & 1/2 & 0 & 0
\end{bmatrix}$$
The PageRank Markov chain

- How do we guarantee irreducibility?
 - add a random jump to vector \(v \) with prob \(\alpha \)
 - typically, to a uniform vector

\[
\mathbf{P}_{\text{PR}} = (1-\alpha)\mathbf{P}_{\text{RW}} + \alpha \mathbf{U}, \quad \text{where } \mathbf{U} \text{ is the uniform matrix with rows summing to } 1
\]
Transition matrix for pagerank

- Take the adjacency matrix A
- If a line i has no 1s set $P_{ij} = 1/N$
- For the rest of the rows:
 - Set:
 $$P_{ij} = (1-\alpha)P_{RW} + \frac{\alpha}{N} = (1-\alpha) \frac{A_{ij}}{\# \text{ 1s in line } i} + \frac{\alpha}{N}$$

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \quad P_{RW} = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} \frac{\alpha}{3} & \frac{1}{2} - \frac{\alpha}{6} & \frac{1}{2} - \frac{\alpha}{6} \\ \frac{1}{2} - \frac{\alpha}{6} & \frac{\alpha}{3} & \frac{1}{2} - \frac{\alpha}{6} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$
Probability vectors

- A probability (row) vector $q = (q_1, \ldots q_n)$ tells us where the walk is at any point.
- E.g., (000…1…000) means we’re in state i.

More generally, the vector $q = (q_1, \ldots q_n)$ means the walk is in state i with probability q_i.

$$\sum_{i=1}^{n} q_i = 1.$$
If the probability vector is \(\mathbf{q} = (q_1, \ldots, q_n) \) at this step, what is it at the next step?

Recall that row \(i \) of the transition probability matrix \(\mathbf{P} \) tells us where we go next from state \(i \).

So from \(\mathbf{q} \), our next state is distributed as \(\mathbf{qP} \).

After \(t \) steps: \(\mathbf{qP}^t \)
An example

\[
P = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1/3 & 1/3 & 1/3 & 0 & 0 \\
1/2 & 0 & 0 & 1/2 & 0
\end{bmatrix}
\]

\[
q_{t+1}^1 = \frac{1}{3} q_t^4 + \frac{1}{2} q_t^5
\]
\[
q_{t+1}^2 = \frac{1}{2} q_t^1 + q_t^3 + \frac{1}{3} q_t^4
\]
\[
q_{t+1}^3 = \frac{1}{2} q_t^1 + \frac{1}{3} q_t^4
\]
\[
q_{t+1}^4 = \frac{1}{2} q_t^5
\]
\[
q_{t+1}^5 = q_t^2
\]
Questions:

- What page should we start at?
- How does the probability depend on the starting page?
- How can we compute the probabilities?
Stationary distribution

- A **stationary distribution** or **steady-state distribution** for a MC with transition matrix P, is a probability distribution π, such that $\pi = \pi P$

- If we start or arrive at the stationary distribution then we remain there
Stationary distribution

- A MC has a unique stationary distribution if
 - it is irreducible
 - From each state we can arrive to every other state
 - the underlying graph is strongly connected
 - it is aperiodic
 - After a number of steps, you can be in any state at every time step, with non-zero probability.

- Such a MC is called **ergodic**
- Over a long time-period, we visit each state in proportion to this rate.
- **It doesn’t matter where we start.**
- The probability π_i is the fraction of times that we visited state i as $t \rightarrow \infty$
The steady state looks like a vector of probabilities \(\pi = (\pi_1, \ldots, \pi_n) \):
- \(\pi_i \) is the probability that we are in state \(i \).

For this example, \(\pi_1 = 1/4 \) and \(\pi_2 = 3/4 \).
How do we compute this vector?

- Let $\pi = (\pi_1, \ldots, \pi_n)$ denote the row vector of steady-state probabilities.
- If we our current position is described by π, then the next step is distributed as πP.
- But π is the steady state, so $\pi = \pi P$.
- Solving this matrix equation gives us π (So π is the (left) eigenvector for P)
One way of computing π

- Recall, regardless of where we start, we eventually reach the steady state π
- Start with any distribution (say $q^0=(10\ldots0)$)
- After one step, we’re at q^0P
- After two steps at q^0P^2, then π^TP^3 and so on
- “Eventually” means for “large” t, $\pi P^t = \pi$
- Algorithm: multiply q^0 by increasing powers of P until the product looks stable
Pagerank summary

- **Preprocessing:**
 - Given graph of links, build matrix \mathbf{P}.
 - From it compute $\mathbf{\pi}$.
 - The entry π_i is a number between 0 and 1: the pagerank of page i.

- **Query processing:**
 - Retrieve pages meeting query.
 - Rank them by their pagerank.
 - Order is query-independent.
 - Combine pagerank with other scores (e.g., IR based)
Effects of random jump

- Guarantees irreducibility
- Motivated by the concept of random surfer
- Offers additional flexibility
 - personalization
 - anti-spam
- Controls the rate of convergence
 - the second eigenvalue of matrix \(P \) is \(\alpha \)
Pagerank: Issues and Variants

- How realistic is the random surfer model?
 - What if we modeled the back button? [Fagi00]
 - Surfer behavior sharply skewed towards short paths
 - Search engines, bookmarks & directories make jumps non-random.

- Biased Surfer Models
 - Weight edge traversal probabilities based on match with topic/query (non-uniform edge selection)
 - Bias jumps to pages on topic (e.g., based on personal bookmarks & categories of interest)
Research on PageRank

- Specialized PageRank
 - personalization [BP98]
 - instead of picking a node uniformly at random favor specific nodes that are related to the user
 - topic sensitive PageRank [H02]
 - compute many PageRank vectors, one for each topic
 - estimate relevance of query with each topic
 - produce final PageRank as a weighted combination

- Updating PageRank [Chien et al 2002]

- Fast computation of PageRank
 - numerical analysis tricks
 - node aggregation techniques
 - dealing with the “Web frontier”
Topic Specific Pagerank

- Assume that I am interested in a topic:
 - Sports, Art, etc.

- Can I bias Pagerank towards this topic?
Non-uniform Teleportation

Teleport with 10% probability to a Sports page
Finding pages

- How do I know what pages are about Sports?
 - Use classification (Machine learning) – later
 - Use preclassified pages
 - Open Directory Project (ODP)

- Let $PR(p, \text{"sports")} = \text{Pagerank with teleport towards sports pages}$
Non-uniform Teleportation

Teleport with 10% probability to a Sports page
Non-uniform Teleportation

10% Health teleportation
General framework

- We have a set of categories C_j
 - $C_1 = \text{Sports}$, $C_2 = \text{health}$, $C_3 = \text{art}$, $C_4 = \text{politics}$, …

- A user is characterized by a distribution over categories
 - E.g.: 90% sports, 10% health
 - Profile: $u = (0.9, 0.1, 0, 0, 0, …)$

- We want for each page p: $\text{PR}(p, u)$

- We can compute the Pagerank as before but with different probabilities
Interpretation

If teleport probability $\alpha = 10\%$
We can have teleport: 9% to sport, 1% health
Problem

- We want:
 \[PR(p, u) = \text{Pagerank with respect to user profile } u \]

- **Problem**: If every user has different profiles we need a pagerank for every user
Solution

- We can precompute offline for each category (sports, health, art, …)

\[\text{PR}(p, C_j) \]

- Then, because of linearity, we have:

\[\text{PR}(p, u) = \text{PR}(p, \sum_j u_j C_j) \]

\[= \sum_j u_j \cdot \text{PR}(p, C_j) \]

(Handwaving notation)

- When a user \(u \) comes, we only sum the precomputed pagerank scores
In response to a query, instead of an ordered list of pages each meeting the query, find **two** sets of interrelated pages:

- *Hub pages* are good lists of links on a subject.
 - e.g., “Bob’s list of cancer-related links.”
- *Authority pages* occur recurrently on good hubs for the subject.

Best suited for “broad topic” queries rather than for page-finding queries (navigational queries).

Gets at a broader slice of common opinion.
Hubs and Authorities

- Thus, a good hub page for a topic *points* to many authoritative pages for that topic.
- A good authority page for a topic is *pointed* to by many good hubs for that topic.
- Circular definition - will turn this into an iterative computation.
The hope

- Alice
- Bob
- Hubs
- TIM
- WIND
- Vodafone
- Authorities

Cell phone providers
High-level scheme

- Extract from the web a base set of pages that could be good hubs or authorities
- From these, identify a small set of top hub and authority pages
 - iterative algorithm
Base set

- Given text query (say *browser*), use a text index to get all pages containing *browser*.
 - Call this the **root set** of pages.
- Add in any page that either
 - points to a page in the root set, or
 - is pointed to by a page in the root set.
- Call this the **base set**.
Query dependent input

Root Set
Query dependent input
Query dependent input

IN Root Set OUT
Query dependent input

IN

Root Set

OUT
Assembling the base set [Klei98]

- Root set typically 200-1000 nodes.
- Base set may have up to 5000 nodes.
- How do you find the base set nodes?
 - Follow out-links by parsing root set pages.
 - Get in-links (and out-links) from a connectivity server.
 - (Actually, suffices to text-index strings of the form \texttt{href=“URL”} to get in-links to \texttt{URL}.)
Distilling hubs and authorities

- Compute, for each page x in the base set, a **hub score** $h(x)$ and an **authority score** $a(x)$.
- Initialize: for all x, $h(x) \leftarrow 1$; $a(x) \leftarrow 1$.
- Iteratively update all $h(x)$, $a(x)$;
- After iterations
 - output pages with highest $h()$ scores as top hubs
 - highest $a()$ scores as top authorities.
Iterative update

- Repeat the following updates, for all x:

$$h(x) \leftarrow \sum_{x \rightarrow y} a(y)$$

$$a(x) \leftarrow \sum_{y \rightarrow x} h(y)$$
Scaling

- To prevent the $h()$ and $a()$ values from getting too big, can scale down after each iteration.
 - E.g.: $h(x) \leftarrow h(x) / \max_x h(x)$
 $a(y) \leftarrow a(y) / \max_y a(y)$

- Scaling factor doesn’t really matter:
 - we only care about the relative values of the scores.
How many iterations?

- Claim: relative values of scores will converge after a few iterations:
 - suitably scaled, $h()$ and $a()$ scores settle into a steady state!
 - proof of this comes later.
- We only require the relative orders of the $h()$ and $a()$ scores - not their absolute values.
- In practice, ~5 iterations get you close to stability.
HITS Algorithms

- Input: Graph $G = (V,E)$
- Output: $h(v), a(v)$ for each $v \in V$

- For all $(v \in V)$ set $h^0(v) \leftarrow 1$, $a^0(v) \leftarrow 1$
- Repeat until convergence

\[
\max_{v \in V}\{|h^t(v) - h^{t-1}(v)|\} < \epsilon, \quad \max_{v \in V}\{|a^t(v) - a^{t-1}(v)|\} < \epsilon
\]

- Authorities collect the weight of the hubs

\[
\forall u \in V : \quad a^t(u) \leftarrow \sum_{(v,u) \in E} h^{t-1}(v)
\]

- Hubs collect the weight of the authorities

\[
\forall v \in V : \quad h^t(v) \leftarrow \sum_{(v,u) \in E} a^t(u)
\]

- Normalize weights:

\[
\forall v \in V : \quad h^t(v) \leftarrow \frac{h^t(v)}{\max_v h^t(v)}, \quad a^t(v) \leftarrow \frac{a^t(v)}{\max_v a^t(v)}
\]
Japan Elementary Schools

Hubs

- schools
- LINK Page-13
- "ú—{]Šw Z
- a‰„ ¬Šw Zfz [f fy [fW
- 100 Schools Home Pages (English)
- K-12 from Japan 10/...rnet and Education)
- http://www...iglobe.ne.jp/~IKESAN
- ,l,fj ¬Šw Z,U"N,P'g•Œê
- ÔŠ—¬—§ OŠ—¬Œ ¬Šw Z
- Koulutus ja oppilaitokset
- TOYODA HOMEPAGE
- Education
- Cay's Homepage(Japanese)
- ¬y'i ¬Šw Z,îfz [f fy [fW
- UNIVERSITY
- %J—³ ¬Šw Z DRAGON97-TOP
- À‰ª ¬Šw Z,T"N,P'gfz [f fy [fW
- ¶µ¢é¼Ã© ¥a¥É¥a½ ¥a¥É¥a½

Authorities

- The American School in Japan
- The Link Page
- %oë è s—§•ä« ¬Šw Zfz [f fy [fW
- Kids’ Space
- „Å é s—§¬Å é ¼” ¬Šw Z
- ç{ é•¬‘ǎŠw ‘® ¬Šw Z
- KEIMEI GAKUEN Home Page (Japanese)
- Shiranuma Home Page
- fuzoku-es.fukui-u.ac.jp
- welcome to Miasa E&J school
- _“…® ïŒ§ E‰¶l s—§‘† i ¼ ¬Šw Z,îfy
- http://www...p/~m_maru/index.html
- fukui haruyama-es HomePage
- Torisu primary school
- goo
- Yakumo Elementary,Hokkaido,Japan
- FUZOKU Home Page
- Kamishibun Elementary School...
Things to note

- Pulled together good pages regardless of language of page content.
- Use **only** link analysis **after** base set assembled
 - iterative scoring is query-dependent.
- Iterative computation **after** text index retrieval - significant overhead.
Proof of convergence

- \(n \times n \) adjacency matrix \(A \):
 - each of the \(n \) pages in the base set has a row and column in the matrix.
 - Entry \(A_{ij} = 1 \) if page \(i \) links to page \(j \), else = 0.
Hub/authority vectors

- View the hub scores $h()$ and the authority scores $a()$ as vectors with n components.
- Recall the iterative updates

\[h(x) \leftarrow \sum_{y \leftarrow x} a(y) \]
\[a(x) \leftarrow \sum_{y \leftarrow x} h(y) \]
HITS and eigenvectors

- We can write the HITS algorithm in vector terms:
 \[a^t = A^T h^{t-1} / c_a \] and \[h^t = A a^t / c_h \] (where \(c_a \) and \(c_h \) are the normalization constants)

- So:
 \[a^t = A^T h^{t-1} / c_a = A^T (A a^{t-1}) / c_a c_h = A^T A a^{t-1} / c_a c_h \]
 \[h^t = A a^t / c_h = A (A^T h^{t-1}) / c_a c_h = A A^T h^{t-1} / c_a c_h \]

- After convergence to values \(a \) and \(h \) we have
 \[a = (1/\lambda_a) A^T A a \] for a constant \(\lambda_a \)
 \[h = (1/\lambda_h) A A^T h \] for a constant \(\lambda_h \)

- The authority weight vector \(a \) is the eigenvector of \(A^T A \) and the hub weight vector \(h \) is the eigenvector of \(A A^T \)

- The HITS algorithm is a power-method eigenvector computation

Guaranteed to converge.
Resources

- IIR Chapters 21.2, 21.3