Web Information Retrieval

Lecture 5 Field Search, Weighting

Plan

- Last lecture
 - Dictionary
 - Index construction
- This lecture
 - Parametric and field searches
 - Zones in documents
 - Scoring documents: zone weighting
 - Index support for scoring
 - Term weighting

Parametric search

- Most documents have, in addition to text, some "meta-data" in <u>fields</u> e.g.,
 - Language = French

- Subject = Physics etc.
- Date = Feb 2000
- A parametric search interface allows the user to combine a full-text query with selections on these field values e.g.,
 - language, date range, etc.

Parametric search example

CarFinder.com 🚒

Over one million fictional vehicles to choose from:									
Choose yo	Choose your search criteria from the drop down menus: Number of results to display: 50 💌								
Make City Sa	Make BMW Model 5-Series Category Any May City San Francisco Color Any Price From \$10,100 to \$15,000								
Reset F	SearchNotice that the output is a (large) table. Various parameters in the table (column headings) may be clicked on to effect a sort.								
Make	Model	Year	City	Mileage	TTICe 💠	Category	Description	Color	
BMW	5-Series	1995	San Francisco	16100	11100	Luxury	Never driven in winter conditions. Body work makes it look like new. Keyless entry and security features. This is a bargain.	Silver	
BMW	5-Series	1995	San Francisco	16600	11100	Luxury	Great first car for your teen-aged kid. Solid, dependable, affordable with 0% down and owner financing.	Blue	
BMW	5-Series	1995	San Francisco	16800	11200	Luxury	Upgraded sound system really rocks. Customized interior features wood grain dash and beige leather seats. Power locks, windows, steering. Price firm.	White	
BMW	5-Series	1995	San Francisco	16100	11300	Luxury	Safe choice for a young family: ABS, driver and passenger air bags. Roomy interior with power everything. Low mileage driving kids back and forth to soccer.	Maroon	
BMW	5-Series	1995	San Francisco	16300	11400	Luxury	This baby's got it all: power steering, cruise, power locks, power windows, remote entry, leather interior, security alarm, AM/FM/CD/Cassette. Priced to sell!	Brown	

Parametric search example

CarFinder.com as a choose from!								
Choose	vour search cri	iteria from the	e drop down n	nenus:	We can	add te	ext search.	olav: 50 💌
	,		F					
Mal	ke BMW	Mod	el 5-Series		 Categor 	y Any	Yea	ar 1997 💌
City	San Francisco	•	Color	Any	Price	From \$10,10	0 to \$15,000 💌 Description	
		Search	D				Clear Form	
Rese	Reset Filters Reset Sorts							
				1				
Make	Model	Year	City	Mileage	Price 🕈	Category	Description	Color
BMW	5-Series	1997	San Francisco	14300	13100	Luxury	5-speed, heavy-duty suspension, extra wide tires. Well-maintained by mechanic-owner. Cloth seats and upgraded stereo system.	White
BMW	5-Series	1997	San Francisco	14600	13100	Luxury	Is that price for real? You bet it is. Fully loaded with all factory options. Former floor model.	Beige
BMW	5-Series	1997	San Francisco	14900	13100	Luxury	Fun to drive. Manual 5-speed transmission, turbo charger. Garaged all winter and pampered the rest of the year. This is a steal!	Orange
BMW	5-Series	1997	San Francisco	14800	13200	Luxury	Fully loaded, automatic transmission. Power everything. Anti-lock brakes and full safety features. Must test drive. Price firm.	Green
BMW	5-Series	1997	San Francisco	14300	13200	Luxury	Formerly an executive's vehicle. Interior has been professionally maintained, engine factory serviced every 3000 miles. Great gas mileage. Price negotiable.	Maroon
BMW	5-Series	1997	San Francisco	15000	13200	Luxury	Sun roof, air, CD player, driver side air bag. 10% deposit required. Owner financing available. Best	Red

Parametric/field search

- In these examples, we select field values
 - Values can be hierarchical, e.g.,
 - <u>Geography</u>: Continent \rightarrow Country \rightarrow State \rightarrow City
- A paradigm for navigating through the document collection, e.g.,
 - "Aerospace companies in Brazil" can be arrived at first by selecting <u>Geography</u> then <u>Line of</u> <u>Business</u>, or vice versa
 - Filter docs in contention and run text searches scoped to subset

Index support for parametric search

- Must be able to support queries of the form
 - Find pdf documents that contain "stanford university"
 - A field selection (on doc format) and a phrase query
- Field selection use inverted index of field values → docids
 - Organized by field name
 - Use compression etc. as before

Zones

- A zone is an identified region within a doc
 - E.g., <u>Title</u>, <u>Abstract</u>, <u>Bibliography</u>
 - Generally culled from marked-up input or document metadata (e.g., powerpoint)
- Contents of a zone are free text
 - Not a "finite" vocabulary
- Indexes for each zone allow queries like
 - sorting in <u>Title</u> AND smith in <u>Bibliography</u> AND recurence in <u>Body</u>

Zone indexes – simple view

So we have a database now?

- Not really.
- Databases do lots of things we don't need
 - Transactions
 - Recovery (our index is not the system of record; if it breaks, simply reconstruct from the original source)
 - Indeed, we never have to store text in a search engine – only indexes
- We're focusing on optimized indexes for textoriented queries, not an SQL engine.

Document Ranking

Scoring

- Thus far, our queries have all been Boolean
 - Docs either match or not
- Good for expert users with precise understanding of their needs and the corpus
- Applications can consume 1000's of results
- Not good for (the majority of) users with poor Boolean formulation of their needs
- Most users don't want to wade through 1000's of results – cf. use of web search engines

Scoring

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank order the docs in the corpus with respect to a query?
- Assign a score say in [0,1]
 - for each doc on each query
- Begin with a perfect world no spammers
 - Nobody stuffing keywords into a doc to make it match queries
 - More on "adversarial IR" under web search

Linear zone combinations

- First generation of scoring methods: use a linear combination of Booleans:
 - E.g.,

Score = 0.6*<*sorting* in <u>Title></u> + 0.2*<*sorting* in <u>Abstract</u>> + 0.1*<*sorting* in <u>Body</u>> + 0.1*<*sorting* in Boldface>

- Each expression such as <*sorting* in <u>Title</u>> takes on a value in {0,1}.
- Then the overall score is in [0,1].

For this example the scores can only take on a finite set of values – what are they?

Linear zone combinations

- In fact, the expressions between <> on the last slide could be any Boolean query
- Who generates the Score expression (with weights such as 0.6 etc.)?
 - In uncommon cases the user through the UI
 - Most commonly, a <u>query parser</u> that takes the user's Boolean query and runs it on the indexes for each zone
 - Weights determined from user studies and hardcoded into the query parser.

Exercise

On the query *bill* OR *rights* suppose that we retrieve the following docs from the various zone indexes:

Autnor	bill	1→2	Compute
	rights		the score
Title			for each doc
<u></u>	bill		based on
	rights	$ 3 \rightarrow 5 \rightarrow 9 $	the
	_		weightings
<u>Body</u>	bill	$1 \rightarrow 2 \rightarrow 5 \rightarrow 9$	0.6,0.3,0.1
	rights	$3 \rightarrow 5 \rightarrow 8 \rightarrow 9$	

General idea

- We are given a <u>weight vector</u> whose components sum up to 1.
 - There is a weight for each zone/field.
- Given a Boolean query, we assign a score to each doc by adding up the weighted contributions of the zones/fields.
- Typically users want to see the K highestscoring docs.

Index support for zone combinations

- In the simplest version we have a separate inverted index for each zone
- Variant: have a single index with a separate dictionary entry for each term and zone

Zone combinations index

- The above scheme is still wasteful: each term is potentially replicated for each zone
- In a slightly better scheme, we encode the zone in the postings:

bill 1.author, 1.body
$$\rightarrow$$
 2.author, 2.body \rightarrow 3.title As before, the zone names get compressed.

 At query time, accumulate contributions to the total score of a document from the various postings, e.g.,

Score accumulation

- As we walk the postings for the query *bill OR rights*, we accumulate scores for each doc in a linear merge as before.
- Note: we get <u>both</u> bill and rights in the <u>Title</u> field of doc 3, but score it no higher.
- Should we give more weight to more hits?

Free text queries

- Before we raise the score for more hits:
- We just scored the Boolean query bill OR rights
- Most users more likely to type bill rights or bill of rights
 - How do we interpret these "free text" queries?
 - No Boolean connectives
 - Of several query terms some may be missing in a doc
 - Only some query terms may occur in the title, etc.

Free text queries

- To use zone combinations for free text queries, we need
 - A way of assigning a score to a pair <free text query, zone>
 - Zero query terms in the zone should mean a zero score
 - More query terms in the zone should mean a higher score
 - Scores don't have to be Boolean
- Will look at some alternatives now

Incidence matrices

- Recall: Document (or a zone in it) is binary vector X in {0,1}^M
 - Query is a vector
- Score: Overlap measure:

 $|X \cap Y|$

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Example

- On the query *ides of march*, Shakespeare's Julius Caesar has a score of 3
- All other Shakespeare plays have a score of 2 (because they contain *march*) or 1
- Thus in a rank order, Julius Caesar would come out tops

Overlap matching

What's wrong with the overlap measure?

- It doesn't consider:
 - Term frequency in document
 - Term scarcity in collection (document mention frequency)
 - of is more common than ides or march
 - Length of documents

Overlap matching

- One can normalize in various ways:
 - Jaccard coefficient:

$$|X \cap Y| / |X \cup Y|$$

Cosine measure:

$$|X \cap Y| / \sqrt{|X| imes |Y|}$$

- What documents would score best using Jaccard against a typical query?
 - Does the cosine measure fix this problem?

Scoring: density-based

- Thus far: <u>position</u> and <u>overlap</u> of terms in a doc title, author etc.
- Obvious next: idea if a document talks about a topic *more*, then it is a better match
- This applies even when we only have a single query term.
- Document relevant if it has a lot of the terms
- This leads to the idea of <u>term weighting</u>.

Term weighting

Term-document count matrices

- Consider the number of occurrences of a term in a document:
 - <u>Bag of words</u> model
 - Document is a vector in N^M: a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Bag of words view of a doc

- Thus the doc
 - John is quicker than Mary.
- is indistinguishable from the doc
 - Mary is quicker than John.

Which of the indexes discussed so far distinguish these two docs?

Counts vs. frequencies

- Consider again the *ides of march* query.
 - Julius Caesar has 5 occurrences of ides
 - No other play has *ides*
 - march occurs in over a dozen
 - All the plays contain of
- By this scoring measure, the top-scoring play is likely to be the one with the most of

Digression: terminology

- <u>WARNING</u>: In a lot of IR literature, "frequency" is used to mean "count"
 - Thus term frequency in IR literature is used to mean number of occurrences in a doc
 - <u>Not</u> divided by document length (which would actually make it a frequency)
- We will conform to this misnomer
 - In saying term frequency we mean the <u>number of occurrences</u> of a term in a document.

Term frequency tf

- Long docs are favored because they're more likely to contain query terms
- Can fix this to some extent by normalizing for document length
- But is raw *tf* the right measure?

Weighting term frequency: tf

- What is the relative importance of
 - 0 vs. 1 occurrence of a term in a doc
 - 1 vs. 2 occurrences
 - 2 vs. 3 occurrences ...
- Unclear: while it seems that more is better, a lot isn't proportionally better than a few
 - Can just use raw tf
 - Another option commonly used in practice:

 $wf_{t,d} = 0$ if $tf_{t,d} = 0$, $1 + \log tf_{t,d}$ otherwise

Score computation

- Score for a query q = sum over terms t in q: = $\sum_{t \in q} t f_{t,d}$
- [Note: 0 if no query terms in document]
- This score can be zone-combined
- Can use *wf* instead of *tf* in the above
- Still doesn't consider term scarcity in collection (*ides* is rarer than *of*)

Weighting should depend on the term overall

- Which of these tells you more about a doc?
 - 10 occurrences of hernia?
 - 10 occurrences of the?
- Would like to value less common terms
 - But what is "common"?
- Suggest looking at collection frequency (cf)
 - cf = total number of occurrences of the term in the entire collection of documents

Document frequency

- But document frequency (*df*) may be better:
- *df* = number of docs in the corpus containing the term

Word	Cf	df
try	10422	8760
insurance	10440	3997

- Document/collection frequency weighting is only possible in known (static) collection.
- So how do we make use of df?

tf x idf term weights

• tf x idf measure combines:

- term frequency (tf)
 - or wf, measure of term density in a doc
- inverse document frequency (*idf*)
 - measure of informativeness of a term: its rarity across the whole corpus
 - could just be raw count of number of documents the term occurs in $(idf_i = 1/df_i)$
 - but by far the most commonly used version is:

$$idf_i = \log\left(\frac{N}{df_i}\right)$$

See Kishore Papineni, NAACL 2, 2002 for theoretical justification

term	df _t	idf _t
calpurnia	1	
animal	100	
sunday	1,000	
fly	10,000	
under	100,000	
the	1,000,000	

$$\operatorname{idf}_{t} = \log_{10} \left(\frac{N}{df_{t}} \right)$$

term	df _t	idf _t
calpurnia	1	6
animal	100	
sunday	1,000	
fly	10,000	
under	100,000	
the	1,000,000	

$$\operatorname{idf}_{t} = \log_{10} \left(\frac{N}{df_{t}} \right)$$

term	df _t	idf _t
calpurnia	1	6
animal	100	4
sunday	1,000	
fly	10,000	
under	100,000	
the	1,000,000	

$$\operatorname{idf}_{t} = \log_{10} \left(\frac{N}{df_{t}} \right)$$

term	df _t	idf _t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

$$\operatorname{idf}_{t} = \log_{10} \left(\frac{N}{df_{t}} \right)$$

Effect of idf on ranking

- Does idf have an effect on ranking for one-term queries, like
 - iPhone
- idf has no effect on ranking one term queries
 - Assuming that the term does not belong to all docs (i.e., that idf is not 0)
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

Summary: tf x idf (or tf.idf)

Assign a tf.idf weight to each term *i* in each document *d*

$$W_{i,d} = tf_{i,d} \times \log(N / df_i)$$

What is the wt of a term that occurs in all of the docs?

 $tf_{i,d}$ = frequency of term *i* in document *j*

N =total number of documents

 df_i = the number of documents that contain term *i*

- Increases with the number of occurrences *within* a doc
- Increases with the rarity of the term *across* the whole corpus

Real-valued term-document matrices

- Function (scaling) of count of a word in a document:
 - <u>Bag of words</u> model
 - Each is a vector in \mathbb{R}^{M}
 - Here log-scaled tf.idf

Note can be >1!

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	13.1	11.4	0.0	0.0	0.0	0.0
Brutus	3.0	8.3	0.0	1.0	0.0	0.0
Caesar	2.3	2.3	0.0	0.5	0.3	0.3
Calpurnia	0.0	11.2	0.0	0.0	0.0	0.0
Cleopatra	17.7	0.0	0.0	0.0	0.0	0.0
mercy	0.5	0.0	0.7	0.9	0.9	0.3
worser	1.2	0.0	0.6	0.6	0.6	0.0

Documents as vectors

- Each doc j can now be viewed as a vector of wf×idf values, one component for each term
- So we have a vector space
 - terms are axes
 - docs live in this space
 - even with stemming, may have 20,000+ dimensions
- (The corpus of documents gives us a matrix, which we could also view as a vector space in which words live)

Recap

- We began by looking at zones in scoring
- Ended up viewing documents as vectors in a vector space
- We will pursue this view next time.

Resources

IIR Chapters 6.0, 6.1, 6.1.1, 6.2