
Web Information Retrieval

Lecture 5
Field Search, Weighting

Plan

 Last lecture
 Dictionary
 Index construction

 This lecture
 Parametric and field searches

 Zones in documents

 Scoring documents: zone weighting
 Index support for scoring

 Term weighting

Parametric search

 Most documents have, in addition to text, some
“meta-data” in fields e.g.,
 Language = French
 Format = pdf
 Subject = Physics etc.
 Date = Feb 2000

 A parametric search interface allows the user to
combine a full-text query with selections on these
field values e.g.,
 language, date range, etc.

Fields Values

Notice that the output is a (large) table.
Various parameters in the table (column
headings) may be clicked on to effect a sort.

Parametric search example

Parametric search example

We can add text search.

Parametric/field search

 In these examples, we select field values
 Values can be hierarchical, e.g.,
 Geography: Continent Country State City

 A paradigm for navigating through the document
collection, e.g.,
 “Aerospace companies in Brazil” can be arrived at

first by selecting Geography then Line of
Business, or vice versa

 Filter docs in contention and run text searches
scoped to subset

Index support for parametric
search

 Must be able to support queries of the form
 Find pdf documents that contain “stanford

university”
 A field selection (on doc format) and a phrase

query
 Field selection – use inverted index of field

values docids
 Organized by field name
 Use compression etc. as before

Zones

 A zone is an identified region within a doc
 E.g., Title, Abstract, Bibliography
 Generally culled from marked-up input or

document metadata (e.g., powerpoint)
 Contents of a zone are free text

 Not a “finite” vocabulary
 Indexes for each zone - allow queries like

 sorting in Title AND smith in Bibliography AND
recurence in Body

Zone indexes – simple view
Doc # Freq

2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Tot Freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Tot Freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Tot Freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Title Author Body etc.

So we have a database now?

 Not really.
 Databases do lots of things we don’t need

 Transactions
 Recovery (our index is not the system of record; if

it breaks, simply reconstruct from the original
source)

 Indeed, we never have to store text in a search
engine – only indexes

 We’re focusing on optimized indexes for text-
oriented queries, not an SQL engine.

Document Ranking

Scoring

 Thus far, our queries have all been Boolean
 Docs either match or not

 Good for expert users with precise understanding
of their needs and the corpus

 Applications can consume 1000’s of results
 Not good for (the majority of) users with poor

Boolean formulation of their needs
 Most users don’t want to wade through 1000’s of

results – cf. use of web search engines

Scoring

 We wish to return in order the documents most
likely to be useful to the searcher

 How can we rank order the docs in the corpus
with respect to a query?

 Assign a score – say in [0,1]
 for each doc on each query

 Begin with a perfect world – no spammers
 Nobody stuffing keywords into a doc to make it

match queries
 More on “adversarial IR” under web search

Linear zone combinations

 First generation of scoring methods: use a linear
combination of Booleans:
 E.g.,
Score = 0.6*<sorting in Title> + 0.2*<sorting in

Abstract> + 0.1*<sorting in Body> + 0.1*<sorting
in Boldface>

 Each expression such as <sorting in Title> takes
on a value in {0,1}.

 Then the overall score is in [0,1].

For this example the scores can only take
on a finite set of values – what are they?

Linear zone combinations

 In fact, the expressions between <> on the last
slide could be any Boolean query

 Who generates the Score expression (with
weights such as 0.6 etc.)?
 In uncommon cases – the user through the UI
 Most commonly, a query parser that takes the

user’s Boolean query and runs it on the indexes
for each zone

 Weights determined from user studies and hard-
coded into the query parser.

Exercise

 On the query bill OR rights suppose that we
retrieve the following docs from the various zone
indexes:

bill
rights

bill
rights

bill
rights

Author

Title

Body

1

5

2

83

3 5 9

2 51

5 83

9

9

Compute
the score

for each doc
based on
the
weightings
0.6,0.3,0.1

General idea

 We are given a weight vector whose components
sum up to 1.
 There is a weight for each zone/field.

 Given a Boolean query, we assign a score to
each doc by adding up the weighted
contributions of the zones/fields.

 Typically – users want to see the K highest-
scoring docs.

Index support for zone
combinations

 In the simplest version we have a separate
inverted index for each zone

 Variant: have a single index with a separate
dictionary entry for each term and zone

 E.g., bill.author

bill.title

bill.body

1 2

5 83

2 51 9

Of course, compress zone names
like author/title/body.

Zone combinations index

 The above scheme is still wasteful: each term is
potentially replicated for each zone

 In a slightly better scheme, we encode the zone
in the postings:

 At query time, accumulate contributions to the
total score of a document from the various
postings, e.g.,

bill 1.author, 1.body 2.author, 2.body 3.title

As before, the zone names get compressed.

bill 1.author, 1.body 2.author, 2.body 3.title

rights 3.title, 3.body 5.title, 5.body

Score accumulation

 As we walk the postings for the query bill OR
rights, we accumulate scores for each doc in a
linear merge as before.

 Note: we get both bill and rights in the Title field
of doc 3, but score it no higher.

 Should we give more weight to more hits?

1
2
3
5

0.7
0.7
0.4
0.4

Free text queries

 Before we raise the score for more hits:
 We just scored the Boolean query bill OR rights
 Most users more likely to type bill rights or bill

of rights
 How do we interpret these “free text” queries?
 No Boolean connectives
 Of several query terms some may be missing in a

doc
 Only some query terms may occur in the title, etc.

Free text queries

 To use zone combinations for free text queries,
we need
 A way of assigning a score to a pair <free text

query, zone>
 Zero query terms in the zone should mean a zero

score
 More query terms in the zone should mean a

higher score
 Scores don’t have to be Boolean

 Will look at some alternatives now

Incidence matrices

 Recall: Document (or a zone in it) is binary vector
X in {0,1}M
 Query is a vector

 Score: Overlap measure:

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

YX

Example

 On the query ides of march, Shakespeare’s
Julius Caesar has a score of 3

 All other Shakespeare plays have a score of 2
(because they contain march) or 1

 Thus in a rank order, Julius Caesar would come
out tops

Overlap matching

 What’s wrong with the overlap measure?
 It doesn’t consider:

 Term frequency in document
 Term scarcity in collection (document

mention frequency)
 of is more common than ides or march

 Length of documents

Overlap matching

 One can normalize in various ways:
 Jaccard coefficient:

 Cosine measure:

 What documents would score best using Jaccard
against a typical query?
 Does the cosine measure fix this problem?

YXYX /

YXYX /

Scoring: density-based

 Thus far: position and overlap of terms in a doc –
title, author etc.

 Obvious next: idea if a document talks about a
topic more, then it is a better match

 This applies even when we only have a single
query term.

 Document relevant if it has a lot of the terms
 This leads to the idea of term weighting.

Term weighting

Term-document count matrices

 Consider the number of occurrences of a term in
a document:
 Bag of words model
 Document is a vector in ℕM: a column below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Bag of words view of a doc

 Thus the doc
 John is quicker than Mary.

is indistinguishable from the doc
 Mary is quicker than John.

Which of the indexes discussed
so far distinguish these two docs?

Counts vs. frequencies

 Consider again the ides of march query.
 Julius Caesar has 5 occurrences of ides
 No other play has ides
 march occurs in over a dozen
 All the plays contain of

 By this scoring measure, the top-scoring play is
likely to be the one with the most ofs

Digression: terminology

 WARNING: In a lot of IR literature,
“frequency” is used to mean “count”
 Thus term frequency in IR literature is used

to mean number of occurrences in a doc
 Not divided by document length (which

would actually make it a frequency)
 We will conform to this misnomer

 In saying term frequency we mean the
number of occurrences of a term in a
document.

Term frequency tf

 Long docs are favored because they’re
more likely to contain query terms

 Can fix this to some extent by normalizing
for document length

 But is raw tf the right measure?

Weighting term frequency: tf

 What is the relative importance of
 0 vs. 1 occurrence of a term in a doc
 1 vs. 2 occurrences
 2 vs. 3 occurrences …

 Unclear: while it seems that more is better, a lot
isn’t proportionally better than a few
 Can just use raw tf
 Another option commonly used in practice:

otherwise log1 ,0 if 0 ,,, dtdtdt tftfwf

Score computation

 Score for a query q = sum over terms t in q:

 [Note: 0 if no query terms in document]
 This score can be zone-combined
 Can use wf instead of tf in the above
 Still doesn’t consider term scarcity in collection

(ides is rarer than of)

qt dttf ,

Weighting should depend on the
term overall

 Which of these tells you more about a doc?
 10 occurrences of hernia?
 10 occurrences of the?

 Would like to value less common terms
 But what is “common”?

 Suggest looking at collection frequency (cf)
 cf = total number of occurrences of the term in the

entire collection of documents

Document frequency

 But document frequency (df) may be better:
 df = number of docs in the corpus containing the

term
Word cf df
try 10422 8760
insurance 10440 3997

 Document/collection frequency weighting is only
possible in known (static) collection.

 So how do we make use of df ?

tf x idf term weights

 tf x idf measure combines:
 term frequency (tf)

 or wf, measure of term density in a doc
 inverse document frequency (idf)

 measure of informativeness of a term: its rarity across
the whole corpus

 could just be raw count of number of documents the term
occurs in (idfi = 1/dfi)

 but by far the most commonly used version is:

 See Kishore Papineni, NAACL 2, 2002 for theoretical justification

 df

Nidf
i

i log

idf example, suppose N = 1 million
term dft idft

calpurnia 1

animal 100

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

There is one idf value for each term t in a collection.

Sec. 6.2.1

)/df(log idf 10 tt N

idf example, suppose N = 1 million
term dft idft

calpurnia 1 6

animal 100

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

There is one idf value for each term t in a collection.

Sec. 6.2.1

)/df(log idf 10 tt N

idf example, suppose N = 1 million
term dft idft

calpurnia 1 6

animal 100 4

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

There is one idf value for each term t in a collection.

Sec. 6.2.1

)/df(log idf 10 tt N

idf example, suppose N = 1 million
term dft idft

calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection.

Sec. 6.2.1

)/df(log idf 10 tt N

Effect of idf on ranking
 Does idf have an effect on ranking for one-term

queries, like
 iPhone

 idf has no effect on ranking one term queries
 Assuming that the term does not belong to all docs

(i.e., that idf is not 0)
 idf affects the ranking of documents for queries with at

least two terms
 For the query capricious person, idf weighting makes

occurrences of capricious count for much more in the
final document ranking than occurrences of person.

43

Summary: tf x idf (or tf.idf)

 Assign a tf.idf weight to each term i in each
document d

 Increases with the number of occurrences within a doc
 Increases with the rarity of the term across the whole corpus

)/log(,, ididi dfNtfw

 rmcontain te that documents ofnumber the
documents ofnumber total

document in termoffrequency ,

idf
N

jitf

i

di

What is the wt
of a term that
occurs in all
of the docs?

Real-valued term-document
matrices

 Function (scaling) of count of a word in a
document:
 Bag of words model
 Each is a vector in ℝM

 Here log-scaled tf.idf

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 13.1 11.4 0.0 0.0 0.0 0.0

Brutus 3.0 8.3 0.0 1.0 0.0 0.0

Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0

Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3

worser 1.2 0.0 0.6 0.6 0.6 0.0

Note can be >1!

Documents as vectors

 Each doc j can now be viewed as a vector of
wfidf values, one component for each term

 So we have a vector space
 terms are axes
 docs live in this space
 even with stemming, may have 20,000+

dimensions
 (The corpus of documents gives us a matrix,

which we could also view as a vector space in
which words live)

Recap

 We began by looking at zones in scoring
 Ended up viewing documents as vectors in a

vector space
 We will pursue this view next time.

Resources

 IIR Chapters 6.0, 6.1, 6.1.1, 6.2

