
Web Information Retrieval

Lecture 2
Tokenization, Normalization, Speedup,

Phrase Queries

Recap of the previous lecture

 Basic inverted indexes:
 Structure: Dictionary and Postings
 Key step in construction: Sorting

 Boolean query processing
 Simple optimization
 Linear time merging

 Overview of course topics

Plan for this lecture

 Finish basic indexing
 Tokenization
 What terms do we put in the index?

 Query processing – speedups
 Proximity/phrase queries

Recall basic indexing pipeline

Tokenizer

Token stream. Friends Romans Countrymen

Linguistic modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

Documents to
be indexed.

Friends, Romans, countrymen.

Parsing a document

 What format is it in?
 pdf/word/excel/html?

 What language is it in?
 What character set is in use?

Each of these is a classification problem.

But there are complications …

Format/language stripping

 Documents being indexed can include docs from
many different languages
 A single index may have to contain terms of

several languages.
 Sometimes a document or its components can

contain multiple languages/formats
 French email with a Portuguese pdf attachment.

 What is a unit document?
 An email?
 With attachments?
 An email with a zip containing documents?

Tokenization

Tokenization

 Input: “Friends, Romans and Countrymen”
 Output: Tokens

 Friends
 Romans
 Countrymen

 Each such token is now a candidate for an index
entry, after further processing
 Described below

 But what are valid tokens to emit?

Tokenization

 Issues in tokenization:
 Finland’s capital 

Finland? Finlands? Finland’s?
 Hewlett-Packard  Hewlett and Packard

as two tokens?
 State-of-the-art: break up hyphenated sequence.

 co-education ?
 the hold-him-back-and-drag-him-away-maneuver ?

 San Francisco: one token or two? How
do you decide it is one token?

Numbers

 3/12/91
 Mar. 12, 1991
 55 B.C.
 B-52
 My PGP key is 324a3df234cb23e
 100.2.86.144

 Generally, don’t index as text.
 Will often index “meta-data” separately

 Creation date, format, etc.

Tokenization: Language issues

 L'ensemble  one token or two?
 L ? L’ ? Le ?
 Want ensemble to match with un ensemble

 German noun compounds are not segmented
 Lebensversicherungsgesellschaftsangestellter
 ‘life insurance company employee’

Tokenization: language issues

 Arabic (or Hebrew) is basically written right to
left, but with certain items like numbers written
left to right

 Words are separated, but letter forms within a
word form complex ligatures

 عاما من الاحتلال 132 بعد 1962استقلت الجزائر في سنة
. الفرنسي

 ‘Algeria achieved its independence in 1962 after
132 years of French occupation.’

 With Unicode, the surface presentation is
complex, but the stored form is straightforward

Normalization

 Need to “normalize” terms in indexed text as well
as query terms into the same form
 We want to match U.S.A. and USA

 We most commonly implicitly define equivalence
classes of terms
 e.g., by deleting periods in a term

Stop words

 With a stop list, you exclude from the dictionary
entirely the commonest words. Intuition:
 They have little semantic content: the, a, and, to, be
 There are a lot of them: ~30% of postings for top 30 words

 But the trend is away from doing this:
 Good compression techniques means the space for including

stopwords in a system is very small
 Good query optimization techniques mean you pay little at

query time for including stop words.
 You need them for:

 Phrase queries: “King of Denmark”
 Various song titles, etc.: “Let it be”, “To be or not to be”
 “Relational” queries: “flights to London”

Sec. 2.2.2

14

Case folding

 Reduce all letters to lower case
 exception: upper case (in mid-sentence?)

 e.g., General Motors
 Fed vs. fed
 SAIL vs. sail

 Often best to lower case everything, since users
will use lowercase regardless of ‘correct’
capitalization

Lemmatization

 Reduce inflectional/variant forms to base form
 E.g.,

 am, are, is  be
 car, cars, car's, cars'  car

 the boy's cars are different colors  the boy car
be different color

 Lemmatization implies doing “proper” reduction
to dictionary headword form

Stemming

 Reduce terms to their “roots” before indexing
 “Stemming” suggest crude affix chopping

 language dependent
 e.g., automate(s), automatic, automation all

reduced to automat.

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compress and
compress ar both accept
as equival to compress

Porter’s algorithm

 Commonest algorithm for stemming English
 Results suggest at least as good as other

stemming options
 Conventions + 5 phases of reductions

 phases applied sequentially
 each phase consists of a set of commands
 sample convention: Of the rules in a compound

command, select the one that applies to the
longest suffix.

Typical rules in Porter

 sses  ss
 ies  i
 ational  ate
 tional  tion

 Weight of word sensitive rules
 (m>1) EMENT →

 replacement → replac
 cement → cement

Other stemmers

 Other stemmers exist, e.g., Lovins stemmer
http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

 Single-pass, longest suffix removal (about 250
rules)

 Motivated by Linguistics as well as IR

 Full morphological analysis – at most modest
benefits for retrieval

 Do stemming and other normalizations help?
 Often very mixed results: really help recall for

some queries but harm precision on others

Language-specificity

 Many of the above features embody
transformations that are
 Language-specific and
 Often, application-specific

 These are “plug-in” addenda to the indexing
process

 Both open source and commercial plug-ins
available for handling these

Normalization: other languages

 Accents: résumé vs. resume.
 Most important criterion:

 How are your users like to write their queries for
these words?

 Even in languages that standardly have accents,
users often may not type them

 German: Tuebingen vs. Tübingen
 Should be equivalent

Normalization: other languages

 Need to “normalize” indexed text as well as query
terms into the same form

 Character-level alphabet detection and
conversion
 Tokenization not separable from this.
 Sometimes ambiguous:

7-30 vs. 7/30

Morgen will ich in MIT …
Is this

German “mit”?

Faster postings merges:
Skip pointers

Recall basic merge

 Walk through the two postings simultaneously, in
time linear in the total number of postings entries

128

31

2 4 8 16 32 64

1 2 3 5 8 17 21

Brutus
Caesar2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better?
Yes, if index isn’t changing too fast.

Augment postings with skip
pointers (at indexing time)

 Why?
 To skip postings that will not figure in the search

results.
 How?
 Where do we place skip pointers?

1282 4 8 16 32 64

311 2 3 5 8 17 21
318

16 128

Query processing with skip
pointers

1282 4 8 16 32 64

311 2 3 5 8 17 21
318

16 128

Suppose we’ve stepped through the lists until we process 8
on each list.

When we get to 16 on the top list, we see that its
successor is 32.
But the skip successor of 8 on the lower list is 31, so
we can skip ahead past the intervening postings.

Where do we place skips?

 Tradeoff:
 More skips  shorter skip spans  more likely to

skip. But lots of comparisons to skip pointers.
 Fewer skips  few pointer comparison, but then

long skip spans  few successful skips.

Placing skips

 Simple heuristic: for postings of length L, use L
evenly-spaced skip pointers.

 This ignores the distribution of query terms.
 Easy if the index is relatively static; harder if L

keeps changing because of updates.

 This definitely used to help; with modern
hardware it may not (Bahle et al. 2002)
 The cost of loading a bigger postings list

outweights the gain from quicker in memory
merging

Phrase queries

Phrase queries

 Want to answer queries such as “villa adriana”
– as a phrase

 Thus the sentence “adriana went to villa
celimontana” is not a match.
 The concept of phrase queries has proven easily

understood by users; about 10% of web queries
are phrase queries

 No longer suffices to store only
<term : docs> entries

A first attempt: Biword indexes

 Index every consecutive pair of terms in the text
as a phrase

 For example the text “Friends, Romans,
Countrymen” would generate the biwords
 friends romans
 romans countrymen

 Each of these biwords is now a dictionary term
 Two-word phrase query-processing is now

immediate.

Longer phrase queries

 Longer phrases are processed as set of biwords:
 stanford university palo alto can be broken into

the Boolean query on biwords:
stanford university AND university palo AND

palo alto

Without the docs, we cannot verify that the docs
matching the above Boolean query do contain
the phrase.

Can have false positives!

Issues for biword indexes

 False positives, as noted before
 Index blowup due to bigger dictionary

Solution 2: Positional indexes

 Store, for each term, entries of the form:
<number of docs containing term;
doc1: position1, position2 … ;
doc2: position1, position2 … ;
etc.>

Positional index example

 Can compress position values/offsets
 Nevertheless, this expands postings storage

substantially

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Which of docs 1,2,4,5
could contain “to be

or not to be”?

Processing a phrase query

 Extract inverted index entries for each distinct
term: to, be, or, not.

 Merge their doc:position lists to enumerate all
positions with “to be or not to be”.

Processing a phrase query

to, 993427

2: 1,17,74,222,551;

4: 8,16,190,429,433;

7:13,23,191; ...

 be, 178239

1: 17,19;

4: 17,191,291,430,434;

5: 14,19,101; ...

 Same general method for proximity searches

Processing a phrase query

to, 993427

2: 1,17,74,222,551;

4: 8,16,190,429,433;

7:13,23,191; ...

 be, 178239

1: 17,19;

4: 17,191,291,430,434;

5: 14,19,101; ...

 Same general method for proximity searches

Proximity queries

 LIMIT! /3 STATUTE /3 FEDERAL /2 TORT
Here, /k means “within k words of”.

 Clearly, positional indexes can be used for
such queries; biword indexes cannot.

 Exercise: Adapt the linear merge of postings
to handle proximity queries. Can you make it
work for any value of k?

Positional index size

 Can compress position values/offsets.

 Nevertheless, this expands postings storage
substantially

Positional index size

 Need an entry for each occurrence, not just once
per document

 Index size depends on average document size
 Average web page has <1000 terms
 SEC filings, books, even some epic poems …

easily 100,000 terms
 Consider a term with frequency 0.1%

Why?

1001100,000

111000

Positional postingsPostingsDocument size

Rules of thumb

 A positional index is 2-4 as large as a non-
positional index

 Positional index size 35-50% of volume of
original text

 Caveat: all of this holds for “English-like”
languages

Combination schemes

 These two approaches can be profitably
combined
 For particular phrases (“Michael Jackson”,

“Britney Spears”) it is inefficient to keep on
merging positional postings lists
 Even more so for phrases like “The Who”

 Williams et al. (2004) evaluate a more
sophisticated mixed indexing scheme
 A typical web query mixture was executed in ¼ of

the time of using just a positional index
 It required 26% more space than having a

positional index alone

Resources for today’s lecture

 IIR Chapters 2.3, 2.4
 Porter’s stemmer:

http://www.tartarus.org/~martin/PorterStemmer/

