Web Information Retrieval

Lecture 2

Tokenization, Normalization, Speedup,
Phrase Queries

Recap of the previous lecture

= Basic inverted indexes:
» Structure: Dictionary and Postings
» Key step in construction: Sorting
= Boolean query processing
= Simple optimization
» Linear time merging
= Overview of course topics

Plan for this lecture

= Finish basic indexing

= [okenization

= What terms do we put in the index?
= Query processing — speedups
= Proximity/phrase queries

Recall basic indexing pipeline

Documents to =il

be indexed.

Friends, Romans, countrymen.

|

4
{ Tokenizer
|

Token stream. Friends || Romans | | Countrymen
{ Linguistic modules W
Modified tokens. 1 friend| |[roman| |countryman
{ Indexer } friend m—— > |24 —
> 2 >
Inverted index. Jj’ roman - > |1
countrymaniit——>|13 116

Parsing a document

= What format is it in?
= pdf/iword/excel/html?
= WWhat language is it in?
= \What character set is in use?

Each of these is a classification problem.

But there are complications ...

Format/language stripping

= Documents being indexed can include docs from
many different languages

= A single index may have to contain terms of
several languages.

= Sometimes a document or its components can
contain multiple languages/formats

» French email with a Portuguese pdf attachment.
= What is a unit document?

= An email?

« With attachments?

= An email with a zip containing documents?

Tokenization

Tokenization
]
= |nput: “Friends, Romans and Countrymen”
= Qutput: Tokens
= Friends
= Romans
= Countrymen

= Each such token is now a candidate for an index
entry, after further processing

s Described below
s But what are valid tokens to emit?

Tokenization

s ISssues In tokenization:
» Finland’s capital —»

Finland
s Hewlett-

? Finlands? Finland’s?
Packard —» Hewlett and Packard

as two to

Kens?

« State-of-the-art: break up hyphenated sequence.
= CO-education ?
= the hold-him-back-and-drag-him-away-maneuver ?
» San Francisco: one token or two? How
do you decide it is one token?

Numbers

= 3/12/91

= Mar. 12, 1991

= 55 B.C.

H B'52

= My PGP key is 324a3df234ch23e

= 100.2.86.144
= Generally, don’t index as text.

= Will often index “meta-data” separately
= Creation date, format, etc.

Tokenization: Language issues

s L'ensemble — one token or two?
s L?2L ?Le?
= Want ensemble to match with un ensemble

= German noun compounds are not segmented
= Lebensversicherungsgesellschaftsangestellter
= ‘life insurance company employee’

Tokenization: language issues

= Arabic (or Hebrew) is basically written right to
left, but with certain items like numbers written
left to right

= Words are separated, but letter forms within a
word form complex ligatures

m JEY) e lde 132 2 1962 4w (A)) calail
(il

= ‘Algeria achieved its independence in 1962 after
132 years of French occupation.’

= With Unicode, the surface presentation is
complex, but the stored form is straightforward

Normalization
- .

= Need to "normalize” terms in indexed text as well
as query terms into the same form

= We want to match U.S.A. and USA
= We most commonly implicitly define equivalence
classes of terms
= €.9., by deleting periods in a term

Stop words

= With a stop list, you exclude from the dictionary
entirely the commonest words. Intuition:

= They have little semantic content: the, a, and, to, be
= There are a lot of them: ~30% of postings for top 30 words

= But the trend is away from doing this:
= Good compression techniques means the space for including
stopwords in a system is very small
= Good query optimization techniques mean you pay little at
query time for including stop words.
= You need them for:
=« Phrase queries: “King of Denmark”
= Various song titles, etc.: “Let it be”, “To be or not to be”
= “Relational” queries: “flights to London”

Case folding

s Reduce all letters to lower case

= exception: upper case (in mid-sentence?)
= e.g., General Motors
« Fed vs. fed
= SAIL vs. sall

= Often best to lower case everything, since users
will use lowercase regardless of ‘correct’
capitalization

Lemmatization

= Reduce inflectional/variant forms to base form
L Eg,

= am, are, IS — be

= Ccar, cars, car's, cars' — car

= the boy's cars are different colors — the boy car
be different color

= Lemmatization implies doing “proper” reduction
to dictionary headword form

Stemming

e
= Reduce terms to their “roots™ before indexing
s "Stemming” suggest crude affix chopping

= language dependent

= €.g., automate(s), automatic, automation all
reduced to automat.

for example compressed for exampl compress and
and compression are both j compress ar both accept
accepted as equivalent to as equival to compress

compress.

Porter’'s algorithm

= Commonest algorithm for stemming English
= Results suggest at least as good as other
stemming options
= Conventions + 5 phases of reductions
= phases applied sequentially
= each phase consists of a set of commands

= sample convention: Of the rules in a compound
command, select the one that applies to the
longest suffix.

Typical rules in Porter

m SSES — SS
= eSS — |

= ational — ate
= tional — tion

= Weight of word sensitive rules
o (m>1) EMENT —

= replacement — replac
= cement — cement

Other stemmers

= Other stemmers exist, e.g., Lovins stemmer

http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

= Single-pass, longest suffix removal (about 250
rules)

= Motivated by Linguistics as well as IR

= Full morphological analysis — at most modest
benefits for retrieval

= Do stemming and other normalizations help?

= Often very mixed results: really help recall for
some queries but harm precision on others

Language-specificity

= Many of the above features embody
transformations that are

» Language-specific and
= Often, application-specific

= These are “plug-in” addenda to the indexing
process

= Both open source and commercial plug-ins
available for handling these

Normalization: other languages

s Accents: résume vs. resume.

= Most important criterion:

= How are your users like to write their queries for
these words?

= Even in languages that standardly have accents,
users often may not type them

= German: Tuebingen vs. Tubingen
= Should be equivalent

Normalization: other languages

= Need to “normalize” indexed text as well as query
terms into the same form
/7-30 vs. 7/30

s Character-level alphabet detection and
conversion

= Tokenization not separable from this.

= Sometimes ambiguous: / s this
Morgen will ich inf MIT [.. German “mit™?

Faster postings merges:
SKip pointers

Recall basic merge

= Walk through the two postings simultaneously, in
time linear in the total number of postings entries

24181632164 — 128 | Brutus

3
h1 {21358 5017 b 21 b 31 | Caesar

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better?
Yes, if index isn’t changing too fast.

Augment postings with skip
pointers (at indexing time)

Je———— 28— ——
24— 816132 —64—128

e ——
1235817 121 1 31

] Why’?

= [0 skip postings that will not figure in the search
results.

s How?
= Where do we place skip pointers?

Query processing with skip
pointers

> Q 16 1, > >
L (D) £E & 7 > > >
L& i W

)

A =7
1 1 1 RN @ | H7 § v P i8N
e | . Moo B

Suppose we've stepped through the lists until we process 8
on each list.

When we get to 16 on the top list, we see that its
successor is 32.

But the skip successor of 8 on the lower list is 31, so
we can skip ahead past the intervening postings.

Where do we place skips?

s | radeoff:

= More skips — shorter skip spans = more likely to
skip. But lots of comparisons to skip pointers.

= Fewer skips — few pointer comparison, but then
long skip spans = few successful skips.

Placing skips

= Simple heuristic: for postings of length L, use VL
evenly-spaced skip pointers.

= This ignores the distribution of query terms.

= Easy if the index is relatively static; harder if L
keeps changing because of updates.

= This definitely used to help; with modern
hardware it may not (Bahle et al. 2002)
= The cost of loading a bigger postings list

outweights the gain from quicker in memory
merging

Phrase queries

Phrase queries

= Want to answer queries such as “villa adriana”
— as a phrase

s | hus the sentence “adriana went to villa
celimontana” is not a match.

= The concept of phrase queries has proven easily
understood by users; about 10% of web queries
are phrase queries

= No longer suffices to store only
<term : docs> entries

A first attempt: Biword indexes

= Index every consecutive pair of terms in the text
as a phrase

s For example the text “Friends, Romans,
Countrymen” would generate the biwords

» friends romans
= romans countrymen
= Each of these biwords is now a dictionary term

= [wo-word phrase query-processing is how
Immediate.

Longer phrase queries

= Longer phrases are processed as set of biwords:

= Stanford university palo alto can be broken into
the Boolean query on biwords:

stanford university AND university palo AND
palo alto

Without the docs, we cannot verify that the docs
matching the above Boolean query do contain
the phrase.

A
Can have false positives!

Issues for biword indexes

= False positives, as noted before
= Index blowup due to bigger dictionary

Solution 2: Positional indexes

= Store, for each term, entries of the form:
<number of docs containing term;
docl: position1, position2 ... ;
doc2: position1, position2 ... ;
etc.>

Positional index example

<be: 993427;
1:7,18, 33, 72, 86, 231;
2. 3, 149;

4: 17,191, 291, 430, 434;
5: 363, 367, ...>

<=

Which of docs 1,2,4,5
could contain “to be
or not to be”?

s Can compress position values/offsets
= Nevertheless, this expands postings storage

substantially

Processing a phrase query

s Extract inverted index entries for each distinct
term: to, be, or, not.

= Merge their doc:position lists to enumerate all
positions with “to be or not to be”.

Processing a phrase query

to, 993427
2:1,17,74,222,551;
4: 8,16,190,429,433;
7:13,23,191; ...

= be, 178239
1:17,19;
4:17,191,291,430,434;
5:14,19,101; ...

= Same general method for proximity searches

Processing a phrase query

to, 993427
2:1,17,74,222,551;
4: 8,16,190,429,433;
7:13,23,191; ...

= be, 178239
1: 17,19;
4:17,191,291,430,434;
5:14,19,101; ...

= Same general method for proximity searches

Proximity queries

s LIMIT! /3 STATUTE /3 FEDERAL /2 TORT
Here, /k means “within k words of”.

= Clearly, positional indexes can be used for
such queries; biword indexes cannot.

= Exercise: Adapt the linear merge of postings
to handle proximity queries. Can you make it
work for any value of k?

Positional index size

s Can compress position values/offsets.

= Nevertheless, this expands postings storage
substantially

Positional index size

= Need an entry for each occurrence, not just once

per document

= Index size depends on average document size {Why?
= Average web page has <1000 terms

= SEC filings, books, even some epic poems ...
easily 100,000 terms

= Consider a term with frequency 0.1%

Document size

Postings

Positional postings

1000

1

100,000

100

Rules of thumb

= A positional index is 2-4 as large as a non-
positional index

s Positional index size 35-50% of volume of
original text

= Caveat: all of this holds for “English-like”
languages

Combination schemes

= These two approaches can be profitably
combined
= For particular phrases (“Michael Jackson”,
“Britney Spears”) it is inefficient to keep on
merging positional postings lists
= Even more so for phrases like “The Who”
= Williams et al. (2004) evaluate a more
sophisticated mixed indexing scheme

= A typical web query mixture was executed in 74 of
the time of using just a positional index

= It required 26% more space than having a
positional index alone

Resources for today's lecture

= |IR Chapters 2.3, 2.4

s Porter's stemmer:
http://www.tartarus.org/~martin/PorterStemmer/

