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Tagging systems

Tagging systems allow users to annotate Internet resources (images,
pages, videos) with keywords (tags) without relying on a controlled
vocabulary.

Tagging systems have the potential to improve search, spam
detection, reputation systems, and personal organization.

At the same time, they introduce new modalities of social interactions
and opportunities for data mining. This potential is due to the social
structure that underlies many of these systems.
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Web-based tagging systems: Del.icio.us
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Web-based tagging systems: Technorati
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Web-based tagging systems: FlickR
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What are social tagging systems useful for?

Personal bookmarking. Tags allow users to collect, store and retrieve
resources using the tags applied.

Social-interaction features allow to connect individual bookmarking
activities to a rich network of tags, resources, and users.

Social tagging systems allow users to share their tags for particular
resources. Each tag serves a link to additional resources tagged the
same way by other users.
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Folksonomies

No predefined taxonomy structure

Social tagging systems rely on:

emergent social structures and behaviors;
related conceptual and linguistic structures of the user community;

The popular tags form a folksonomy, a folk taxonomy of important
and emerging concepts within the user group.

Benefits: enhance the metadata for all users, and distribute the
workload for creating such data.
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Users, tags and resources
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Possible uses

search and information retrieval;

information discovery, organization and communication;

spam filtering, reducing effects of link spam, and improving on spam
metrics;

identifying trends and emerging topics globally and within
communities;

locating experts and opinion leaders in specific domains.
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Two taxonomies for social tagging systems

1 System design and attributes

2 User incentives
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System design and attributes
Tagging rights: the restrictions imposed on group tagging.

1 Self-tagging: the user can only tag the resources they created (e.g.,
Technorati);

2 Free-for-all tagging: any user can tag any resource, like Yahoo!
Podcasts.

Systems allow various levels of compromise:

systems can choose the resources that users are allowed to tag;

they can specify different level of permissions to tag (flickr)

they can specify who can remove a tag;

Free-for-all tagging systems are broad, both in the magnitude of the group
of tags assigned to a resource, and in the nature of the tags generated.
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System design and attributes
Tagging support:

1 blind tagging: a tagging user cannot view the tags assigned to the
same resource by other users while tagging (e.g. del.icio.us);

2 viewable tagging: the user can see the tags already assigned to a
resource (e.g., Yahoo! podcasts);

3 suggestive tagging: the system suggests possible tags to the users,
based on

tags used by the same user

tags assigned to the same resource by other users

automatically gathered contextual metadata

machine-suggested tag synonyms.

Suggestive tagging may lead to a quicker convergence to a folksonomy.
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System design and attributes
Aggregation of tags around resources

1 Bag model: the system allows a multiplicity of tags, and repetitions
of tags from different users.

2 Set model: tag repetitions are not allowed. A group is asked to
collectively tag a given resource.

3 In the first case the systems may maintain a richer information, and
compute aggregate statistics to provide users with the breadth of
opinions of the taggers.
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System design and attributes

Type of object

Source of materials: resources can be provided by

the users

by the system

a system can be open to the tagging of any web resource.
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System and design attributes

Resource connectivity: linked, grouped, or none. Web pages are
connected by direct links; Flickr photos can be assigned to groups;
events may have connections based on time, city and venue of the
event.

Social connectivity: some systems allow users to be connected with
each other. User connectivity can be linked, grouped, or none.

Several dimensions to consider: typed/directed links.

Implication: adoption of localized folksonomy based on the underlying
social structure of the system.
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User incentive and behavior

Users are motivated both by personal needs and by sociable interests.

A large part of the motivations and influences of users is determined
by the system designed and the way they are exposed to tagging
practices.

Users may also be persuaded by the norms of their friends and how
they think that a system fits into their use.

Tagging can be a public and sociable activity, but not all the tags do
emerge with an intended audience.

Why do people contribute and what are the results on the output and
performance of the system?

At a very high level, the motivation to tag can be categorized into
organizational or social.
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Motivations for tagging behavior

1 Future retrieval

2 Contribution and share

3 Attract attention

4 Play and competition

5 Personal presentation

6 Opinion expression
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Challenges in Searching Online Communities

Online content sites are characterized by an effective integration of
the user’s social network into the experience of exploring and tagging
content.

Online communities have a rich body of data comprised of
user-distributed content, user relationships, and user ratings.

Ranking of search results needs to take into account social activity.

The results must be personalized based on the user’s context.

Recency is an important factor that requires dynamic incorporation
of new content in a manner similar to news search.
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Relevance factors for social content search

Target resources: Content, hot keywords and people.
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Relevance factors for social content search

Text features

Timeliness and freshness

Incoming links and tags

Popularity

Social distance

Relevance for people
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Examples of social search
Keyword search

I. Bordino (SUDR&UPF) Tagging systems April 7th, 2010 21 / 62



Examples of social search
Browsing content resouces
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Examples of social search
Content recommendation
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Ranking search results in a social content graph.
The social content graph

To capture the interactions between content linking and
endorsements from friends, it is natural to treat resource
endorsements, friendships links and people endorsements of content
uniformly as edges in a social content graph.
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An integrated approach to relevance computation

How do we model a random surf on the social content graph?

First, the system assigns node and edge weights to be used for
random surfing to nodes and edges in the social content graph.

Second, the stationary distribution that a surfer arrives at each node
is computed.

Third, the k nodes with the highest such probability are returned to
the user.
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Integrated approach to relevance computation
From relevance factors to transition probabilities

How do we adjust the parameters of the computation to handle the
relevance factors?

Text features: set the node weights proportional to the query
relevance of the text associated with a resource to the query terms.

Timeliness, freshness and popularity: adjust edges and node weights
by their recency.

Incoming links and tags: set the edge weights proportional to
relevance of the query to the tag or other text associated with the
edge in the social-content graph;

Social distance: apply a significant fraction of the total node weight
to the querier’s node and adjust Person-to-Person edge weights
according to the strength of the connection.
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Integrated approach to relevance computation
Feasibility and performance

The stationary probability can e calculated using a fix-point algorithm.

The probabilities are only known at query-time: off-line computation
is not possible.

Possible solution: use random surfing for only a subset of the
features, and rely on existing Web techniques for the remainder.
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Modular approach to relevance computation

The integrated approach accounts for social distance in a very
fine-grained way.

However, it lacks modularity, because it cannot exploit the
components already developed for Web search.

Modular approach: consider each factor (or a subset of the factors) in
isolation, producing separate rankings that are averaged to get one
final score.

Example: compute query relevance by traditional TF-IDF scoring of
the content, and rank resource endorsements via link analysis.
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Modular approach to relevance computation
Computing Social Endorsement

Example: the query is a keyword search and the social endorsement
score of a resource is computed as the number of times friends of the
querier have tagged the resource with query-matching tags.

What sort of indexing structure is available for tagging information?

Which algorithm do we use for query evaluation?

The most natural approach is to organize data in inverted lists by tag;

Each entry in the list records a resource identifier and also its list of
taggers.
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Computing social endorsement

The score of a resource can be computed as the number of its taggers
who are friends of the querier, or as the sum of all the people in its
connected component. weighted by social distance.

Social endorsement score: combining the rankings of different lists;

The difference from standard rank combination problems is that
exactly which users in the list contribute to the score is dependent on
the querier.

Standard algorithms for combining scores rely on the sorting of the
inverted lists by static upper-bound scores.
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Modular approach to relevance computation
Refining scores by clustering

The integrated approach is based on the notion of community given
by explicit friendship information.

We may want to use derived notion of affinity between users, creating
either links between users or clusters of users based on common
behavior.
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Network aware search

How do we incorporate social behavior into processing search queries?

How do we rank an answer according to its popularity among
members of a seeker’s networks?
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Network-aware search

We model collaborative systems as follows:

Users can be either taggers or seekers.

Taggers annotate items with one or more tags.

A query is composed by a set of tags and is asked by a seeker;

A linking relation connects seekers and taggers, forming the network
associated with each seeker;

Seekers and taggers can be the same.

Given a seeker, a networks of taggers, and a query in the form of a
set of tags, we wish to return the most relevant items.
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Network-aware search
Data model

We model the social network underlying a collaborative tagging system as a
directed graph G = (V,E)

Items(v): set of items tagged by user v with any tag;

Tagged(v,i,t): tagger v tags item i with tag t.

Link(u,v):

A large fraction of the items tagged by u, are also tagged by v :

Link(u, v) : |Items(u) ∪ Items(v)|/|Items(u)| > th

Alternative definition: v tags a sufficient fraction of the items tagged
by u with the same tag as u, i.e.,

|{i |∃t : Tagged(u, i, t)∪Tagged(v, i, t)}|/|{i |∃t : Tagged(u, i, t)}| > th
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Data model

The projection on the first component of Link is the Seekers set;

The projection on the first component of Tagged represents theTaggers set.

For a seeker u ∈ Seekers, Network(u) is the set of neighbors of u, i.e.,
Network(u) = {v|Link(u, v)}

Items(v , t) = {i |Tagged(v , i , t)} set of items tagged with t by tagger v ∈ Taggers;

We define the score of an item i for user u w.r.t. a tag tj as a monotone function
of the number of taggers in u’s network who tagged i with tag tj , i.e.,

scoretj(i, u) = f (|Network(u) ∪ {v |Tagged(v , i , tj)}|)

We define the overall query score for a seeker u ∈ Seekers as a monotone
aggregation of the scores for the individual keywords of the query, i.e.,

score(i , u) = g(scoret1 (i , u), . . . , scoretn (i , u)

In the following, f = count and g = sum.
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Network-aware search

Figure: Network-aware-search: seekers, networks, and tagging actions
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Network-aware search

Problem statement: Given a query Q = t1, . . . , tn issued by user u,
and a number k, we want to efficiently determine the top k items,
i.e., the k items with the highest overall score.

What kind of information should we precompute in order that
well-known top-k algorithms can be leveraged, and how should we
adapt these algorithms to work correctly and efficiently in our setting?

We organize items in inverted lists and study the applicability of
typical top-k processing algorithms to our set-up.
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Computing exact scores: Exact method

Typical IR approach: create one inverted list for each keyword;

Each entry in the list contains a doc-id together with its score for that
keyword;

Storing scores allows to sort entries in the inverted list, therefore
enabling top-k pruning;

In our problem, the score of an item for a tag depends on who is
asking the query, i.e., the seeker’s network.

Simple adaptation: maintain one inverted list per tag,seeker pair and
sort the items in each list according to their score for tag and seeker.

Major drawback: prohibitive storage requirements.
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Computing exact scores: Example

Each item is replicated along with its exact score in each (tag,seeker)
network.

For each tag, the exact method stores as many inverted lists as there
are networks, and there could be one per seeker in the worst case.

Consider a collaborative tagging system with 100K users, 1M items,
and 1K distinct tags.

Suppose that on average each item receives 20 tags that are given by
5% of the users.

Index size: 100K seekers × 1M items × 20 tags × 5% × size of each
entry.

Assuming 10 bytes per entry, the size of the index is 1TB.

Actual numbers in real systems may be much higher.

I. Bordino (SUDR&UPF) Tagging systems April 7th, 2010 39 / 62



Top-K processing with exact scores: NRA (No Random
Access)

The inverted list for each query keyword is assumed to be sorted on
the exact score of items.

The algorithm maintains a heap containing the current candidates for
top k.

The inverted lists are scanned sequentially in parallel;

When a new item is found, it is added to the heap along with its
partial exact score;

If the item was seen before, its score in the heap entry is updated;

For every heap entry, maintain a worst-case score and a best-case
score.
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Top-K processing with exact scores: NRA (No Random
Access)

The worst-case score is based on the assumption that the item does
not appear in the lists where it is so far unseen;

The best-case score is based on the assumption that the score for an
item in a list where it is unseen is equal to the bottom score of the
heap;

Items in the heap are sorted according to the worst-case score;

The algorithm stops when none of the items outside the top k items
found so far has a best score higher than the worst score of the k-th
item in the buffer.

In our problem, the algorithm can be adapted by picking the lists that
correspond to the current seeker and query keywords and aggregating
them as described above.
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Top-K processing with exact scores: TA (Threshold
algorithm)

The inverted lists are sorted on score, but random access is assumed
in addition to sequential access.

The algorithm accesses items in the various lists sequentially and in
parallel.

It maintains a heap, where items are kept sorted on their complete
score.

When a new item is seen in a list under sequential access, its scores
from other lists are obtained by random access.
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Top-K processing with exact scores: TA (Threshold
algorithm)

If the overall score is higher than the k-th entry in the heap, they are
swapped, otherwise the new item is discarded.

The bottom score is maintained for every list and used to compute a
threshold;

The algorithm stops when the k-th highest heap entry is greater or
equal than the threshold.

Output: top-k lists in the buffer, including items and their scores.
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Computing score upper bounds

Maintain entries of the form (item, itemTaggers), where itemTaggers
are all the taggers who tagged the item with the tag.

each item is stored at most once in the inverted list for a given tag.

Which score do we store with each entry?

The maximum score that an item could have for a tag across all the
possible seekers.

Global upper bound strategy: the upper bound score is the max score
that an item could have for a tag.
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Score upper bounds: example

Figure: Inverted lists organization for the tag music
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Top-k processing with score upper bounds
Basic assumptions

Assume a function that takes a seeker and a pair (item,itemTaggers)
and compute from the inverted list the number of item taggers who
are friends of the seeker.

Assume a function that retrieves the taggers of item i for tag tj and
computes the number of friends of user u who tagged with tj .
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Top-k processing with score upper bounds
NRA generalization
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Top-k processing with score upper bounds
NRA generalization

Access sequentially the inverted lists of each query keyword;

When a query term is encountered in a list:

record the upper bound of the item
compute the exact score of the item for that tag

Scores of items in the heap are partial exact scores (worst case NRA);

The set of bottom bounds of the list is used to compute best-case
scores of the items.

The heap is kept sorted on worst-case scores, with ties broken on the
best-case score.

Stopping condition: none of the items outside the top-k in the heap
has a best-case score that is more than the worst-case score of the
k-th item in the heap
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Top-k processing with score upper bounds
NRA generalization

Several optimizations are possible:

No need to update scores of items in the heap whose best score is
below the worst score of the k-th highest heap item;

No need to reorder when the lower bounds are updated;

Check top-k candidates by comparing their new upper bounds against
the worst-case score of the current k-th item;
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Top-K processing with score upper bounds
TA generalization
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Top-K processing with score upper bounds
TA generalization

Given a query from a seeker, all the relevant inverted lists are
identified and accessed sequentially.

When an entry is seen for the first time under sequential access in a
list, we compute its exact score in that list and in the other lists as
well.

Remember the bottom bound seen for each list.

The threshold is the sum of the bottom bounds over all lists

The algorithm stops whenever the score of the k-th item in the heap
is no less than the threshold.
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Top-K processing with score upper bounds
TA generalization: Possibile optimizations

Both variants of Global Upper Bound differ from exact in that the
former needs to compute upper-bound scores for a seeker and tag at
query time.

Both variants are instance-optimal over all the algorithms that use the
same upper-bound based storage.

The accuracy of upper bounds in the inverted lists is clearly the key
factor in the efficiency of the top-k pruning.

The finer the upper bound, the faster an item can be pruned.

Further optimizations are needed
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Clustering-based approach

Goal: reduce the distance between exact scores and upper bounds.

Core idea: cluster users into groups and compute score upper bounds
within each group.

Intuition: if a cluster contains users whose behavior is similar, then
the exact scores of users in the clusters would be very similar to their
upper bounds.

Which users should the algorithm cluster to achieve this goal?
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Clustering seekers

Given any clustering of seekers, we form an inverted list for every tag
and for every cluster;

The score of an item is the maximum score over all the seekers in the
cluster;

Query processing: find the cluster containing the user and then
perform aggregation over the inverted lists to be considered;

Global-Upper-Bound is a special case of Clustering seekers where all
the seekers fall into the same cluster and the same cluster is used for
all tags.
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Clustering seekers
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Clustering seekers

Single-keyword queries: Exact is optimal over all algorithms that use
Cluster-Seekers, for any clustering;

Multi-keyword queries:

An ideal clustering should take into account both the scores and the
ordering.
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How do we cluster seekers?

Ideally, we would find a clustering that is optimal for the running time
of one of our algorithms;

We could look at the worst-case running time of all users;

It can be shown that finding a clustering that satisfies this criterion is
NP-hard, even for the trivial cases;

Similar results are achieved when considering the average-case
computing time for a cluster;
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How do we cluster seekers?

Thus, we must rely on heuristic methods to find clusters of seekers;

Natural approach: consider the overlap of the seekers’ networks;

Intuition: given two seekers, the higher the number of common
taggers in their networks, the higher the chance of the score of an
item to be similar for those two networks;

Idea: Compute per-tag network overlap between seekers; e.g., build a
graph where the nodes are seekers and two nodes are connected by an
edge iff the sets of users in the networks of the two users who
taggeted an item with the same tag is above a given threshold; then
apply graph-clustering algorithms
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Clustering taggers

Alternative approach: organize taggers into groups which reflect
overlap in their tagging behavior;

Cluster-Taggers strategy: for each tag, partition the taggers into
clusters;

Again, form lists on a per-tag, per-cluster basis;

The score assigned to an item is the max n. of taggers in the cluster
who are linked to a seeker and tagged the item with the same tag;

Query processing: find the clusters of the taggers in the network of
the seeker, then aggregate over the inverted lists associated with the
(tag,cluster) pairs;

Members of a seeker’s network may fall into multiple clusters for the
same tag, thus requiring to process more lists for each tag;

Build a graph where the nodes are taggers and edge exists between
any two nodes iff the number of items that the two taggers tagged
with the same tag is higher than a given threshold.
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Differences between the two clustering approaches:

Cluster-Seekers: cluster seekers based on network overlap;

Cluster-Taggers: cluster taggers based on overlap in tagging behavior;

At query time, Cluster-Seekers identifies an inverted list per
(tag,seeker) pair since a seeker always falls into a single cluster for a
tag;

Cluster-Taggers may need to access multiple inverted lists per (tag,
seeker) pair, given that a seeker may have multiple taggers in her
network, and these taggers may fall into different clusters;

Cluster-Seekers replicates tagging actions over multiple inverted lists;
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Differences between the two clustering approaches:

Cluster-Taggers does not introduce a significant penalty in terms of
space.

Processing time: Cluster-Seekers benefits all seekers; Cluster-Taggers
can hinder seekers that are associated with many tagger clusters and
hence many inverted lists;

Maintenance under updates: Cluster-Seekers requires multiple exact
score computations and as new tagging events occur;

Cluster-Taggers only requires a single exact score computation and a
single update for each tag.
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