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Social Correlation

 How similar is the behavior of connected users.

 Previous studies:
 Offline behavior

 Fashion
 Happiness
 Publishing in conferences [Backstrom et al.]

 Online behavior
 Joining online communities [Backstrom et al ] Joining online communities [Backstrom et al.] 
 Tagging vocabulary on Flickr [Marlow et al.]
 Using a VoIP serviceg
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Happiness [Fowler and Christakis]pp [ ]
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Joining communities [Backstrom et al]J g [ ]

Aris Anagnostopoulos, Influence and Correlation in Social Networks



Publishing in conferencesg

Aris Anagnostopoulos, Influence and Correlation in Social Networks



Flickr tag vocabulary [Marlow et al.]g y [ ]
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Sources of Correlation

Social influence (induction): Social influence (induction):
One person performing an action can cause her contacts to 
do the same.
 by providing information
 by increasing the value of the action to them

 Homophily (selection): Homophily (selection):  
Similar individuals are more likely to become friends.
 Example: two mathematicians are more likely to become friends.

 Confounding factors
External influence from elements in the environment.
 Example: friends are more likely to live in the same area thus Example:  friends are more likely to live in the same area, thus 

attend and take pictures of similar events, and tag them with 
similar tags
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Social Influence

 Focus on a particular “action” A.
 E.g.: buying a product, joining a community, publishing in a 

conference using a particular tag using the VoIP serviceconference, using a particular tag, using the VoIP service, 
…

 An agent who performs A is called “active” An agent who performs A is called active .
 x has influence over y if x performing A increases 

the likelihood that y performs Athe likelihood that y performs A.

Di ti i hi f t lit l ti hi Distinguishing factor: causality relationship
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Causation vs. Correlation

 What we try to do is essentially distinguish causation from y y g
correlation.

 Common mistake, especially by journalists:
 People who drink more coffee live longer
 People who drive red cars create more accidents
 Eating pizza "cuts cancer risk“
 Black people six times more likely to be jailed than whites
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Identifying social influencey g

Wh i it i t t? Why is it important?

A l i di ti th d i f th t Analysis: predicting the dynamics of the system. 
Whether a new norm of behavior, technology, or 
idea can diffuse like an epidemicidea can diffuse like an epidemic

 Design: designing a system to induce a particular Design: designing a system to induce a particular 
behavior, e.g.:
 vaccination strategies (random, targeting a demographic g ( , g g g p

group, random acquaintances, etc.)
 viral marketing campaigns
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Approachpp

 Measure correlation
 Models for influence and correlation
 Tests for distinguishing influence from correlation
 Theoretical results
 Apply tests on synthetic data
 Apply tests on real data (Flickr) Apply tests on real data (Flickr)
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Influence Model
 Graph (static or dynamic)
 Edge (u,v): Node u can influence node v
 Discrete time: t = 0, 1, 2, …,T
 For each t, every inactive node becomes active with 

probability p(x) where x is the # active contactsprobability p(x), where x is the # active contacts

Inactive

Active contactsActive
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Model – Influence Probabilityy

 Natural choice for p(x): logistic regression function:

with x (# active contacts) is the explanatory variablewith x (# active contacts) is the explanatory variable. 
I.e.,

 Given data, can estimate α with Maximum Likelihood
 Coefficient α measures social correlation.
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Measuring social correlationg

Given data we compute the maximum likelihood estimate for Given data, we compute the maximum likelihood estimate for 
parameters α and β.

Compute values Y N Y N Y N Compute values Y0, N0, Y1, N1, Y2, N2, …

 Yx = # pairs (user u, time t) where at beginning of time step t, user u is 
not active and has x active friends and becomes active in this stepnot active and has x active friends and becomes active in this step.

 Nx = …… does not become active in this step.

 Find α, β to maximize the likelihood function:

F i l R For convenience, we cap x at a value R.
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Flickr data set

 Photo sharing website
 16 month period
 Growing # of users, 

final number ~800K
 ~340K users who have

used the tagging feature
 Social network: 

 Users can specify “contacts”.
 2.8M directed edges, 28.5% of edges not mutual.
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Flickr data set, growth, g
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Flickr tagsg

 ~10K tags  
 We focus on a set of 1700
 Different growth patterns: 

b rst (“hallo een” or “katrina”) bursty (“halloween” or “katrina”)
 smooth (“landscape” or “bw”)
 periodic (“moon”)

 For each tag, define an action corresponding g p g
to using the tag for the first time.
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Social correlation in flickr

 Distribution of α values estimated using maximum likelihood:
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Distinguishing influence Gg g

W

G

 Recall:  graph G, set W of active nodes

W

g p ,
 Influence model

First G is selected First G is selected
 Then W is picked from a distribution depending 

Gon G
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Correlation Models G

W

G

 Noninfluence models
 Homophily (Similar individuals are more likely to become

W

y
friends):

 First W is picked, then G is picked from a distribution 
that depends on W

C f di f t Confounding factors (External influence from elements 
in the environment):

Both G and W are picked from distributions that depend Both G and W are picked from distributions that depend 
on another var X
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Correlation Model G

W

G

 Generally, we consider this correlation model:

W

y,
 (G,W) are selected from a joint distribution
 Each agent in W picks an activation time i i d Each agent in W picks an activation time i.i.d. 

from a distribution on [0,T]
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Testing for Influenceg
 Shuffle Test:

 Simple Idea: In non-influence model, even though an agent’s 
probability of activation can depend on friends, her timing of 
activation is independentactivation is independent

 Compute coefficient α Compute coefficient α
 Shuffle time-stamp of all actions, and re-estimate 

coefficient α’
 If α  α’, social influence is ruled out.
 If α  α’, social influence can’t be ruled out.

 Edge-Reversal Test:
 Reverse direction of all edges, and re-estimate α.
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Testing for Influenceg
Edge-Reversal Test:g
 Simple Idea:

 Main idea: assume edge (u v), where u, v become g ( ), ,
active

 If we have influence u is expected to become active 
b fbefore v

 If there is no influence, each is equally likely to become 
active firstactive first

 Test: Test: 
 Reverse direction of all edges, and re-estimate ®.  
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Shuffle test, theoretical justification, j

 Theorem. If the graph is large enough, the 
shuffle test rules out the general model of 
correlation.
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Simulations

R th t t d l t d ti d t Run the tests on randomly generated action data on 
Flickr network.

 Baseline: no-correlation model, actions generated 
randomly to follow the pattern of one of the real 
tags b t ignoring net orktags, but ignoring network

 Influence model: same as described, with a variety 
of (α, β) values

 Correlation model: pick a # of random centers, let Correlation model: pick a # of random centers, let 
W be the union of balls of radius 2 around these 
centers.
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Simulation Results, Baseline,
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Shuffle Test, Influence Model,
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Shuffle Test, Correlation Model,
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Edge-Reversal Test, Influence Modelg ,
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Edge-Reversal Test, Correlation Modelg ,
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Shuffle Test on Flickr Data
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Edge-Reversal Test on Flickr Datag
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Conclusions

O t ib ti Our contributions
 Defined two models that exhibit correlation, one with and the 

other without social influence
 Developed statistical tests to distinguish the two
 Theoretical justification for one of the tests
 Simulations suggest that the tests “work” in practice Simulations suggest that the tests work  in practice
 On Flickr, we conclude that despite considerable correlation, no 

social influence can be detected
Di i Discussion
 cannot conclusively say there is influence without controlled 

experiments (example: flu treatment)
 still can rule out potential candidates
 Open: develop algorithms to find “influential” nodes/communities 

given a pattern of spreadgiven a pattern of spread
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