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Federated Learning (FL) is an emerging distributed machine learning paradigm enabling multiple clients to train a
global model collaboratively without sharing their raw data. While FL enhances data privacy by design, it remains
vulnerable to various security and privacy threats. This survey provides a comprehensive overview of 203 papers
regarding the state-of-the-art attacks and defense mechanisms developed to address these challenges, categorizing
them into security-enhancing and privacy-preserving techniques. Security-enhancing methods aim to improve FL
robustness against malicious behaviors such as byzantine attacks, poisoning, and Sybil attacks. At the same time,
privacy-preserving techniques focus on protecting sensitive data through cryptographic approaches, differential
privacy, and secure aggregation. We critically analyze the strengths and limitations of existing methods, highlight
the trade-offs between privacy, security, and model performance, and discuss the implications of non-IID data
distributions on the effectiveness of these defenses. Furthermore, we identify open research challenges and future
directions, including the need for scalable, adaptive, and energy-efficient solutions operating in dynamic and
heterogeneous FL environments. Our survey aims to guide researchers and practitioners in developing robust and
privacy-preserving FL systems, fostering advancements safeguarding collaborative learning frameworks’ integrity

Robustness
Defense mechanisms

and confidentiality.

1. Introduction

Machine Learning (ML) has revolutionized numerous fields [1] by
enabling computers to learn from data and make informed decisions
without being explicitly programmed for every scenario. This capability
has become increasingly crucial in today’s data-driven world, where the
volume, velocity, and variety of information far exceed human capacity
for manual analysis. ML applications span a wide range of industries,
including healthcare [2], finance [3], manufacturing [4], and enter-
tainment [5]. It offers solutions to previously intractable problems and
opens new frontiers for innovation. As organizations and researchers
seek to leverage the power of ML, they often face challenges related to
data accessibility and privacy concerns.

Federated Learning (FL) [6] has emerged as a powerful paradigm
enabling multiple clients (local nodes, parties, participants) to train ML
models collaboratively without sharing raw data. While FL enhances
data privacy, it also introduces unique security and privacy challenges
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that do not exist in traditional centralized learning settings, including
vulnerabilities exacerbated by non-IID (non-Independent and Identically
Distributed) data, where client datasets exhibit statistical heterogeneity
in label, feature, or quantity distributions. Non-IID data amplifies secu-
rity risks such as poisoning attacks, as adversaries can exploit skewed
local updates to manipulate the global model, and privacy risks like
membership inference, where attackers infer participation of specific
data points by exploiting distributional disparities [7].

The distributed nature of FL exposes it to various attacks, as dis-
cussed in the following subsection, while non-IID conditions further
weaken conventional defenses. Addressing these challenges is crucial to
ensure the robustness, reliability, and trustworthiness of FL systems, es-
pecially as they become increasingly adopted in sensitive domains such
as healthcare [8], finance [3], and telecommunications [9], among oth-
ers.

How attacks and defenses operate in an FL environment. In a typi-
cal FL round [6], the coordinator broadcasts the current global model to
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Table 1
Summary of previous Surveys related to privacy and security in FL ¢: Included, ¢: Partially included, X: Not included).
Publication Security Privacy Security Privacy Top-tier Fields of Future

Survey Year Taxonomy  Taxonomy  Attacks/Defenses  Attacks/Defenses venues Frameworks  Application  Directions
[23] 2024 X v X X X 4
[24] 2024 v v X v v
[25] 2024 X X 4 v X X X v
[26] 2023 X X X v
[27] 2023 X X (4 X X X v X
[28] 2023 X X v X X v
[29] 2023 v v v x x X v
[12] 2022 X (4 X X X
[30] 2022 v X
[31] 2022 v v X X
[32] 2021 (4 v X X b 4 v
[33] 2021 X v X v X X X v
[34] 2021 v v 4 v X v 4
[35] 2021 X X X v
[36] 2021 X X X v X X
[37] 2020 X X v X v X X
Ours 2025 (4 v v v v v v v

a subset of clients. Each client then performs local training on their pri-
vate data, and the server aggregates the returned updates (e.g., FedAvg)
to obtain the next global model. Although raw data remain on-device,
the learning pipeline introduces two broad threat surfaces: (i) security
attacks that compromise the integrity or availability of training, and
(i) privacy attacks that infer sensitive information from communicated
signals.

Security attacks primarily target the update generation and aggrega-
tion steps. In data poisoning [10], an adversary manipulates the local
training set; in model poisoning [11], it directly crafts malicious gradi-
ents/weights to steer the global model. A common targeted variant is the
backdoor attack [12], where the global model behaves normally on clean
inputs but produces attacker-chosen outputs when a trigger pattern is
present. Attackers may also mount Sybil [13] strategies by contribut-
ing multiple identities to increase their aggregation weight, or degrade
availability by causing disruption (e.g., jamming, straggling, or coordi-
nated dropouts) [14]. These threats are particularly challenging under
non-IID client data, where benign updates can appear as outliers.

Defenses for security typically intervene at the aggregation and partic-
ipation control levels. Robust aggregation [15] and update filtering aim
to downweight or remove anomalous client updates, while authentica-
tion [16], rate limiting, reputation [17], and contribution auditing [18]
help mitigate Sybil and free-riding behaviors. In parallel, privacy attacks
exploit information encoded in gradients/updates, including reconstruc-
tion (gradient inversion) [19] and membership/property inference [7]. Cor-
respondingly, privacy defenses include secure aggregation [20] and cryp-
tographic protocols [21] that prevent the server from observing individ-
ual client updates, as well as differential privacy (DP) [22] mechanisms
(e.g., clipping and adding noise) that bound leakage. Overall, effective
FL deployments must strike a balance between privacy, robustness, and
efficiency, which motivates the unified view of attacks and defenses pre-
sented in this survey.

1.1. Motivation

Our survey seeks to present a comprehensive and interconnected
overview of security and privacy in FL. We provide a cohesive perspec-
tive on FL’s security and privacy landscape by thoroughly examining
various factors such as attacks, privacy issues, and defense strategies.
This integrated approach enables a deeper comprehension of how FL
security and privacy components are interrelated and influence each
other. Through synthesizing insights from the field, our work aims to
offer a complete understanding of the current state of FL security and
privacy, helping foster a more detailed and nuanced awareness of the
challenges and possibilities in this area.

Table 1 shows a detailed examination of existing surveys (found fol-
lowing our literature review process explained in Section 1), revealing
significant gaps in integrating these topics. Despite the growing volume
of literature, we observe a fragmented landscape: most prior surveys
treat either privacy or security in isolation, often listing threats or de-
fenses without organizing them under a shared conceptual framework.
Others omit practical concerns like system frameworks, application do-
mains, or scalability trade-offs. For example, Hu et al. [24] and Hal-
laji et al. [25] primarily address security and privacy attacks/defenses,
but lack coverage of frameworks and application fields. In addition,
Rafi et al. [23] survey privacy-preserving and fairness-aware FL, but
do not cover security threat/defense taxonomies; our survey comple-
ments this line of work by providing a unified treatment of both se-
curity and privacy attacks/defenses together with system-level aspects
(venues, frameworks, and applications). Similarly, Nair et al. [26], and
Neto et al. [27] offer insights into specific areas like security defenses
or privacy concerns, without integrating these aspects into a broader
taxonomy or discussing future directions. Surveys by Liu et al. [31] and
Gong et al. [12] heavily focus on security attacks but do not compre-
hensively address privacy or the application of frameworks.

We find that:

¢ Only 1 out of 16 surveys attempt to cover both privacy and security
perspectives.

e Fewer than half provide any structured taxonomy of attacks or de-
fenses.

e Practical dimensions — such as frameworks and real-world FL appli-
cations — are omitted in 12 out of 16 surveys.

* None of the existing surveys unify attacks, defenses, and system-level
concerns into a single integrated view.

Comparison with the closest prior survey. Among the prior works sum-
marized in Table 1 , Mothukuri et al. [34] is the closest to our scope,
as it is the only survey in our review that explicitly discusses both se-
curity and privacy in FL within a single paper. However, its coverage
is necessarily limited in breadth and practical scope, as it does not in-
clude a discussion of top-tier venues and offers only partial coverage of
practical dimensions, such as frameworks and application fields. In con-
trast, our survey (i) updates the landscape with a substantially larger
and more recent body of work and explicitly analyzes publication in
top-tier venues (ii) provides unified taxonomies covering security and
privacy attacks/defenses, and (iii) complements algorithmic methods
with system-level aspects, including frameworks, application domains,
and the privacy-robustness—efficiency trade-offs that arise in realistic
FL deployments.

This work aims to build upon and extend the valuable research
done in previous studies by offering a comprehensive and systematized
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Fig. 1. PRISMA flow for gathering relevant references.

approach to threats, defenses, and frameworks in FL. We present an
extensive catalog that consolidates and expands upon the diverse sets
of threats and defenses discussed in the existing literature, providing
a multifaceted categorization of attacks and their corresponding solu-
tions. Additionally, we examine relevant frameworks, including those
related to privacy and security considerations for FL systems, to provide
a holistic view of the FL landscape.

1.2. Contribution

Our survey addresses this gap by thoroughly reviewing FL’s security
and privacy landscape. Table 1 compares our work with previous sur-
veys, highlighting our study’s unique coverage and depth. Our survey
distinguishes itself by providing a holistic approach integrating a broad
spectrum of critical areas. We cover security and privacy taxonomies, se-
curity and privacy attacks/defenses, and include discussions on top-tier
venues, frameworks, and fields of application. By offering this compre-
hensive coverage and systematically describing attacks from different
perspectives, our survey provides a deeper understanding of the various
facets of security and privacy in FL. Notably, our work is among the few
that addresses all these aspects in a unified framework, thereby offering
a complete and cohesive overview for researchers and practitioners.

Specifically, our contributions are as follows:

1. Comprehensive Taxonomies: We provide detailed taxonomies of secu-
rity and privacy threats and the corresponding defense mechanisms
in FL. These taxonomies serve as a structured framework for under-
standing the diverse challenges and solutions in the field.

2. Inclusion of Frameworks and Applications: Our survey is among the few
to cover FL frameworks and real-world fields of application for FL.
This inclusion offers practical insights into how security and privacy
measures are implemented and tested in real-world scenarios.

3. Future Directions and Open Challenges: We identify vital open chal-
lenges and outline promising future directions, offering valuable
guidance for researchers looking to address the existing gaps in the
literature.

Overall, our survey is distinguished by its broad scope and integrated
approach, making it a valuable resource for researchers and practition-
ers seeking a comprehensive understanding of security and privacy in
FL.

1.3. Relevant papers retrieval

This work conducted a literature review following the PRISMA
methodology [38] to retrieve and comprehensively analyze FL security
and privacy literature. Fig. 1 depicts each stage of the methodology to
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Table 2
Example search queries by topic.

Topic Example search queries

“federated learning attacks”
“federated learning data poisoning”
“federated learning backdoor attacks”

Attacks

“federated learning differential privacy”
“Federated learning secure multiparty computation”
“federated learning homomorphic encryption”

Defenses

“federated learning frameworks”
“Federated learning flower”
“real-world applications of federated learning”

Frameworks

Section 1:
Introduction

L]

Section 2:

FL Background

Section 3:

Section 4:
Security Attacks & Defenses | | Privacy Attacks & Defenses

~ 7

Section 5:
FL Frameworks
¥
Section 6:
Applications
¥
Section 7:
Future Directions
¥
Section 8:
Conclusion

Fig. 2. Overview of the paper structure. Each section builds on previous con-
tent, progressing from foundational concepts to attack and defense taxonomies,
frameworks, applications, and future directions.

retrieve the most relevant papers. The literature review addressed three
key research questions: identifying recent attacks and threats, explor-
ing countermeasures, and evaluating FL frameworks for real-world ap-
plications. Using six reputable databases (Google Scholar, IEEE Xplore,
PubMed, Scopus, Web of Science), 59 search queries were employed
across three themes: attacks, defenses, and frameworks (see Table 2). Af-
ter removing duplicates, 2002 papers were screened based on keywords,
titles, abstracts, and impact scores, ultimately narrowing the selection
to 203 high-quality papers with an impact score above 5.

1.4. Road map

Fig. 2 outlines the structure of this survey. In the Section 2, we pro-
vide the FL background. Section 3 defines the taxonomy of attacks and
defenses for security in FL. Next, in Section 4, we provide the same for
privacy in FL. Section 5 lists the standardized frameworks for FL. Sec-
tion 6 showcases the most relevant applications of FL. Then, in Section 7,
we provide exciting future directions. Finally, we conclude in Section 8.

For the reader’s convenience, the acronyms used in this work are
listed in Table 3.

2. FL background

FL [6] is an ML technique for cooperatively training models on sev-
eral clients in a decentralized way, preserving data privacy and owner-
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Table 3

Acronyms employed in this paper.
Acronym Description
ADIs Adversarial dominating inputs
AFR Anonymous Free-Rider
ALIE A Little Is Enough attack
AutoGM Auto-Weighted GeoMed
BFT Byzantine Fault Tolerance
C-GANs Cross-Client GANs
CPA Cocktail Party Attack
DDP Dynamic Differential privacy
DFL Decentralized federated learning
DLG Deep leakage from gradients
DP Differential Privacy
E2EGI End-to-End Gradient Inversion Attack
FC Fully connected
FL Federated learning
FOLTR Federated online learning to rank
FR Free-Rider
GAN Generative Adversarial Network
GDPR Data Protection Regulation
GeoMed Geometric Median
GenAl Generative Artificial Intelligence
GS Gradient stalking
HIPAA Health Insurance Portability and Accountability Act
HE Homomorphic Encryption
IPM Inner Product Manipulation
IoT Internet of Things
LDP Local differential privacy
LLMs Large language models
MAB Adversarial Multi-Armed Bandit
MarMed Marginal Median
MCS Mobile crowdsensing
MeaMed Mean Around Median
MitM Man-in-the-Middle
ML Machine learning
MPC Secure Multiparty Computation
oT Oblivious Transfer
PASS Parameter Audit-based Secure and Fair FL Scheme
PEFT Parameter-Efficient Fine-Tuning
PID Privacy-aware and incremental defense
PMIAs Poisoning membership inference attacks
RoFL Robustness of secure FL
SCA Sybil-Based Collusion Attacks
SFL Split Federated Learning
SFR Selfish Free-Rider
SR Systematic review
SS Secret sharing
TFF Tensorflow Federated
VLMs Vision-language models
VQA Visual question-answering
ZKP-FL Zero-knowledge proof-based FL
ZKPs Zero-knowledge proofs

ship for the client/server owner. FL is hugely advantageous for highly
decentralized data, especially with the growing prevalence of IoT de-
vices for continuously capturing data and monitoring users’ patterns.

Fig. 3 depicts a high-level view of the framework and how the clients
interact with the central server. IoT devices, institutions (i.e., hospitals,
companies, etc.), documents, or vehicles will collect user data and train
a local deep-learning model that mirrors a previously received global
model [39]. Following the completion of the local training phase, the
models collaborate to train a global model utilizing their updates rather
than the raw data provided by the users. These model updates indicate
changes in the models’ weights during training and do not reflect private
or personal information about the users.

All clients will send updates to a central server, compiling and us-
ing them to aggregate the global model weights [40]. Once the global
model training procedure finishes, each client will receive a new copy
of the updated global model. As a result, the models will be trained
and updated regularly without sharing personal information. Thus, the
framework will enable a decentralized architecture in which models
get distributed among clients without requiring a centralized server to
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Fig. 3. FL framework overview.

operate the model and serve users. It will also protect users’ privacy by
processing and analyzing their data on clients without disclosing it.

The collaborative model training process in FL involves aggregating
model updates from multiple decentralized clients while preserving data
privacy. Aggregation algorithms are pivotal in this context, serving as
the cornerstone for combining these distributed updates into a global
model. These algorithms are essential to ensure that the federated model
achieves the desired convergence and accuracy while safeguarding the
privacy and security of the individual clients’ data.

FedAvg [6] is the most employed aggregation algorithm that operates
within a client-server architecture, where the server orchestrates the
training process, and the clients conduct local training on their data.
Each client independently trains the model using its local data and trans-
mits model updates to the server. The server aggregates these updates
to construct a global model. FedAvg’s advantages include scalability
to accommodate a large user base through decentralized training and
improved efficiency through the ease of computation in a centralized
server. However, in FL settings, one should consider challenges such as
client heterogeneity, communication overhead during update aggrega-
tion, and potential network connectivity limitations.

From a mathematical point of view [6], FL is defined by a set of
K clients, denoted as C,,C,,...,Ck. Each client C; has its dataset D,
containing features (x) and labels (y) for certain examples (individuals,
samples). FL aims to train a global model 0 in a decentralized manner,
where the model parameters are updated by aggregating the local up-
dates from each client while keeping the data on the clients. The loss
minimized during the FL process is L(6) = lei ((1/K) % L(6;) where L(6)
is the global loss function to be minimized and L(0,) is the local loss
function for client C,. This function quantifies the discrepancy between
the predictions of the global model ¢ and the ground truth labels for the
samples in client C,’s dataset D;,.

2.1. Types of FL

FL is currently in an active development phase and employs diverse
techniques and methodologies to bring its core technology into practical
implementation. When dealing with a nascent technology like FL, ini-
tially categorizing these techniques and approaches is a pivotal starting
point, enabling a more profound comprehension and exploration be-
yond the broader conceptual framework. Depending on data partition
and scalability, FL gets divided into different categories [30].

2.1.1. Data partition

FL systems are commonly categorized based on the data distribution
across the sample and feature spaces. This categorization typically di-
vides FL systems into three main types: horizontal FL, vertical FL, and
hybrid FL. Each category represents distinct approaches to handling data
distribution in FL scenarios.

Horizontal FL: In horizontal FL, clients share a common feature
space but have limited overlap in the sample space, making it suitable
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for cross-device settings where users collaborate on a shared task. Local
models are trained independently with consistent architectures, and the
global model is updated by averaging local weight updates.

Mathematically, horizontal FL is represented by contemplating the
same features across clients but with different examples. For exam-
ple, suppose clients C; and C, have data on different users for a rec-
ommendation system. In that case, Dy = {(xy, ), (X3, ¥2), -+ s (%5 ¥, )}
with feature space X and n; the number of examples of C;, and D, =
{EAANC AN S s (X, ¥u,)} with feature space X and n, the number
of examples of C,. Here, x; and x represent the same features for dif-
ferent examples [41].

Vertical FL: In vertical FL, datasets from different nodes share the
same or similar sample space but differ in the feature space. Entity
alignment techniques identify overlapping samples by matching entity
descriptions, enabling collaborative training of models like gradient-
boosting decision trees. Privacy-preserving methods align entities across
clients, facilitating joint gradient training. This approach is often seen
in collaborations between different companies.

Mathematically, vertical FL is represented by considering the
same set of examples across clients but with different features. For
example, if clients C; and C, have data on patients where C,
has medical records, and C, has genetic information, then D, =
{Gep, ¥, Gegs ¥2)s ey (5 D with feature space X, and n; the number
of examples of C;, and D, = {(x’l, y’l), (x’z, y;), cees (X5 Vi) with feature
space X, and n; the number of examples of C,. Here, x; and x] represent
different feature sets for the same examples [33].

Hybrid FL: In numerous other use cases, while conventional FL sys-
tems predominantly concentrate on a single type of data partition, the
data distribution among the clients often exhibits a hybrid combination
of horizontal and vertical divisions. One specific example of this type of
FL is Transfer FL [42], which involves horizontal and vertical data parti-
tioning, making it a hybrid approach. The latter allows models to learn
from shared features (vertical) and data from different clients (horizon-
tal) to improve performance and generalization.

Let clients C; and C, possess datasets D; and D, such that:

1 (D7
Dy ={(x;".y, )}iil’

— 2) 2\
Dy = {7 y; )}j=l’

Q)]
X; € X,
e,

where X1 and X2 are the feature spaces of C| and C,, respectively. In
Hybrid FL, there exist subsets Sshared C S| n.S, (shared samples) and
Xshared C X, N X, (shared features).

2.1.2. Scale of federation

FL fashion can be classified into two types based on the extent of
federation: cross-silo FL and cross-device FL. The distinctions between
these types revolve around the number of clients and the volume of data
stored within each client.

Cross-silo: The clients are typically organizations or data centers. A
limited number of clients are generally involved, each with a substantial
volume of data and computational resources. For instance, Amazon aims
to offer user-item recommendations by leveraging shopping data from
many data centers worldwide [43].

Cross-device: There is typically a more significant number of clients,
each with a comparatively modest amount of data and computational
capacity, often consisting of mobile devices. Google Keyboard exempli-
fies a cross-device FL, where the enhancement of query suggestions in
Google Keyboard can benefit from the application of FL [44].

2.2. Split FL

Split FL (SFL) is a distributed machine learning approach that uti-
lizes a split model architecture, dividing the model between clients and
a central server. This design enhances privacy by avoiding raw data
sharing and is suitable for resource-constrained environments due to
its distributed computations, which reduce the burden on individual
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clients [45]. SFL offers high scalability and efficiency in large-scale dis-
tributed setups, but comes with limitations, including slower perfor-
mance compared to traditional FL due to its relay-based training process
and increased communication overhead.

In SFL, for a client C;, the training process proceeds as follows:

1. Forward Pass: The client computes activations up to the cut layer
a; = fy,(x;) and sends g; to the server.

2. Server Computation: The server completes the forward pass J; =
So,(a).

3. Backward Pass: The server computes the gradient V, £ and sends it
to the client, which then computes Vy L =V, L -V, fy (x)).

The overall optimization objective is:
| X
516119[: X ; [E(x,y)~D, [L:(fex(fec(x))sY)] (€]

2.3. Non-IID data impact on FL

In FL, non-IID [46] data refers to data that is not uniformly dis-
tributed across clients, meaning that different clients may have signif-
icantly different data distributions due to factors like user preferences,
geographical location, or client usage patterns. Those disparities arise
across three dimensions:

o Label Distribution Skew: Differences in P(y|x) (the conditional prob-
ability distribution of labels y given features x) between clients. For
instance, hospitals specializing in different diseases with imbalanced
diagnostic labels.

e Feature Distribution Skew: Variation in P(x) (the marginal probability
distribution of features x) across clients. For example, smartphones
in different regions capture distinct visual patterns (e.g., urban vs.
rural environments).

¢ Quantity Skew: Disparities in dataset sizes n; (where n_k = |D;| de-
notes the number of samples at client k) among clients. For exam-
ple, IoT devices with varying storage capacities collect unequal data
points.

Non-IID data poses serious privacy and security challenges as it can
make models more vulnerable to inference attacks (e.g., membership
and property inference) [47] since adversaries can exploit statistical
discrepancies to extract sensitive information about client data. Addi-
tionally, non-IID data exacerbates the impact of poisoning attacks [48],
where adversarial clients can more effectively manipulate global model
updates by injecting biased gradients. On the defense side, traditional
DP and robust aggregation methods, such as median or trimmed mean-
based aggregation, often lose effectiveness in non-IID settings, as the
variability in data distributions can lead to excessive noise or biased up-
dates. Furthermore, anomaly detection methods [49] that rely on outlier
detection may struggle to distinguish between natural variations due to
non-IID data and actual adversarial behavior.

2.4. Security and privacy objectives in FL

To better ground the attack/defense taxonomies, we briefly formal-
ize the core security and privacy tasks in FL.
FL notation. Let K be the total number of clients and S, C {1,..., K} the
set of participating clients at round 7. The server holds the global model
parameters ¢’ and broadcasts them to .S,. Each client i € S, performs
local training on D; and returns an update u} (e.g., u} = 9/?“ -0, A
generic aggregation step can be written as

o'+! =9t+'l'Agg({”;}ieS,)’ (2)

where 7 is a server step size and Agg(-) is typically the weighted average
in FedAvg [6].
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Fig. 4. Security and privacy taxonomy for attacks and defenses in FL.

Security task (integrity/availability). Assume S, is partitioned into
honest clients H, and adversarial clients A, (with |A,| < f), where adver-
saries may send arbitrary updates . Untargeted poisoning can be viewed
from the attacker perspective as maximizing the global loss on clean
data, while targeted/backdoor poisoning aims to induce malicious behav-
ior on triggered inputs while maintaining acceptable performance on
clean data:

Max Lpg(0:7) = 4 LoteanO). 3)

where r denotes a trigger specification and A controls the trade-off
between backdoor effectiveness and clean-model utility from the at-
tacker’s perspective. From the defender perspective, a central goal of
robust aggregation is to compute 4' = Agg({u!}) that remains close to the
mean (or another robust estimator) of honest updates despite Byzantine
behavior, i.e., ||2" — ﬁ ZIGH, ut|| is bounded when |4,| < f [50]. Avail-
ability threats (e.g., stragglers/dropouts) can be modeled as reducing the
effective |.S,| or delaying updates in (2), which impacts convergence and
reliability.
Privacy task (confidentiality). Even when raw data is not shared with
clients, communicated updates can still leak information. A common ab-
straction of reconstruction/gradient inversion is that an attacker observing
a gradient-like signal g’ solves

Sy R §

to recover training examples or attributes. In membership inference, the
attacker decides whether a record z belonged to a client dataset (a bi-
nary hypothesis test) given access to the trained model or intermediate
signals [51]. Two standard defense families formalize privacy protection
as follows: (i) DP requires that a randomized training mechanism M is
(g, 6)-DP if for any neighboring datasets D, D’ differing in one record
and any event S,

Pr[M(D) € S] < ¢* Pr[M(D’) € S]+ 6, 5)

often instantiated in FL via update clipping and additive noise; and (ii)
secure aggregation ensures the server learns only an aggregate (e.g.,
Yies, u;) rather than individual updates, limiting what can be inferred
about any single client [52,53]. These formal views will be referenced
when discussing how attacks exploit (2)-(4) and how defenses provide
robustness or privacy guarantees.

3. Security in FL

Based on the papers assessed, we propose a taxonomy of FL secu-
rity and privacy attacks and defenses (see Fig. 4), providing a struc-

tured framework for understanding this evolving field. Following such
a taxonomy, we describe the main attacks and defenses for secure FL in
this section. For the attacks, we outline specific mechanisms, degrees of
harm, and specific examples of manifestations in the real world. At the
end of each subsection, we provide some lessons learned after analyzing
the papers regarding attacks and defenses for secure FL.

3.1. Security attacks/threats

In FL, security attacks and threats involve adversarial strategies to
compromise models’ integrity, availability, confidentiality, and under-
lying data. These attacks can be categorized based on several criteria.
In particular, to enhance clarity and reduce overlaps, we define five key
dimensions for categorizing security attacks and threats in FL: target
specificity, phase affected, intent, nature of the adversary, and execu-
tion style. For target specificity, targeted attacks aim to disrupt specific
system elements, while untargeted attacks seek to cause general disrup-
tion or degrade overall performance. Phase affected clarifies whether the
disruption happens mainly during model training (such as poisoning or
Sybil attacks) or only becomes relevant at inference time (like evasion).
Furthermore, attacks are categorized by intent; malicious attacks aim to
cause harm, whereas exploitative attacks seek personal gain without di-
rect harm. Additionally, the nature of the adversary plays a crucial role:
insider attacks come from within the system, while outsider attacks orig-
inate from outside [26]. Finally, execution style clarifies whether the
attacker must engage in multiple rounds or continuous participation to
achieve success or can accomplish the attack in a single, one-shot in-
stance.

This survey categorizes attacks based on their specific nature and
tactics, offering a detailed taxonomy and examining their impacts on FL
systems. To provide a structured overview, we present a comprehensive
overview in Table 4 summarizing various attack types and categoriz-
ing them based on the mentioned dimensions. Although we define five
primary dimensions-target specificity, phase affected, intent, nature of
the adversary, and execution style-real-world attacks can exhibit traits
spanning more than one category. For instance, a poisoning attack might
initially appear untargeted but also target a specific class or region of the
data. Likewise, an insider adversary could collaborate with outsider enti-
ties or extend the attack from training into inference phases. In Table 4,
we classify each attack according to its most typical or principal form
while recognizing that adversaries can mix methods or adopt hybrid
strategies. The following sections will discuss critical security threats in
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Table 4

Categorization of security attacks in FL.
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Attack Type Target Specificity Phase Affected Intent Nature of Adversary ~ Execution Style
Data Poisoning Targeted/Untargeted Training Malicious Insider/Outsider Continuous
Model Poisoning ~ Targeted/Untargeted  Training Malicious Insider Continuous
GAN-based Targeted/Untargeted  Training Malicious Outsider Continuous
Sybil Targeted/Untargeted  Training/Inference ~ Malicious Insider/Outsider Continuous
Backdoor Targeted Training Malicious Insider Continuous
Free Riding Untargeted Training Exploitative  Insider Continuous
Jamming Untargeted Training/Inference  Disruptive Outsider One-Shot
Evasion Targeted/Untargeted Inference Disruptive Outsider One-Shot
Straggling Untargeted Training/Inference  Disruptive Insider Continuous
Dropout Untargeted Training/Inference  Disruptive Insider Continuous
40 updates and introducing arbitrary deviations before sending them to the
Backdoor server. Minimal Python scripts can scale or randomize these updates, al-
H Dropout lowing the attacker to bypass naive filters. Some open-source prototypes
[ | E;I:es-lﬁging demonstrate how two or three malicious clients can systematically skew
301 GAN-based e the global model. Moreover, robust aggregation methods (e.g., Bulyan,
* - %%2’;’3‘,2?#9 — Krum) typically detect large outliers but may fail against subtle manip-
ag_ ggt?i?glmg — I ulations. Integrating cryptographic checks (e.g., commitments) or ana-
K 20 lyzing multi-round consistency across updates can significantly reduce
. — the success rate of Byzantine exploits. The following paragraphs explore
these attack mechanisms and their consequences in detail.
10-
Poisoning attacks. Poisoning attacks in FL involve injecting malicious
data or manipulating model updates to compromise the integrity of the
0- learning process. Such attacks can decrease overall model performance
2019 2020 2021 2022 2023 2024 and allow the attacker to introduce biases, insert backdoors, or create

Publication Year

Fig. 5. Papers related to security attacks over time.

FL, detailing their nature, objectives, and potential impacts and provid-
ing examples from the literature.

Fig. 5 shows a clear upward trend in the number of papers pub-
lished on various security attacks over time. In 2019 and 2020, very
few papers focused on Sybil and GAN-based attacks, respectively. From
2021 onwards, there’s a noticeable diversification in the types of attacks
studied, with a significant increase in overall research output. Poisoning
attacks have become increasingly prominent, dominating the research
landscape, especially in 2023 and 2024. Other attack types like back-
door, dropout, evasion, and free-riding have emerged in the later years,
indicating an expansion in the scope of security research. 2024 shows
the highest number of papers across multiple attack categories, suggest-
ing a growing interest and concern in security attacks.

3.1.1. Byzantine attacks

A Byzantine attack refers to a broad category of malicious or faulty
behaviors within distributed and FL systems. The term originates from
the Byzantine Generals Problem [50], which highlights the challenge
of achieving consensus in a distributed network when some clients act
unpredictably due to malice or faults. In FL, these attacks disrupt the
learning process, degrade model performance, or compromise system
integrity. For instance, model and data poisoning attacks involve adver-
saries injecting harmful updates to skew the global model, as shown
in empirical studies where such attacks significantly increase error
rates [54]. Similarly, Sybil attacks manipulate aggregation by introduc-
ing multiple fake identities, amplifying the attacker’s influence [55].
Backdoor attacks, on the other hand, secretly alter model behavior for
specific inputs, such as embedding triggers that activate malicious out-
comes. Real-world examples include tampering with IoT device models
to misclassify security threats or injecting biased data in healthcare ap-
plications to compromise diagnostic accuracy. In practical terms, adver-
saries can perform Byzantine behaviors by intercepting local gradient

specific targeted vulnerabilities.

Data poisoning refers to attacks where malicious clients alter their
data or model’s parameters sent to the global model to degrade its per-
formance. Untargeted data poisoning involves general disruptions, such
as adding random noise, random label flipping, and random input data
poisoning, which can cause a significant drop in model accuracy and
robustness. For instance, an attacker injecting noisy data into medical
diagnosis models can lead to incorrect patient assessments. Targeted data
poisoning, on the other hand, seeks to cause specific errors or misclassi-
fications, such as targeted label flipping in autonomous driving systems,
where stop signs are misclassified as speed limits, posing safety risks. An-
other way to categorize data poisoning attacks is based on whether the
attacker can modify the labels of the poisoned data. Clean-label poisoning
assumes that attackers cannot change data labels due to integrity con-
straints but instead subtly manipulate features, such as modifying image
pixels to induce incorrect classifications. These attacks are especially
dangerous in security-sensitive domains like biometric authentication,
where small perturbations in face recognition models can allow unau-
thorized access while remaining undetectable by traditional defenses.

In contrast, dirty-label poisoning involves directly manipulating the
data labels. In this scenario, the attacker introduces samples into the
training dataset with incorrect labels, misleading the model during train-
ing. Dirty-label poisoning is generally easier to detect than clean-label
poisoning because the data and its labels’ inconsistencies are more ap-
parent [56]. Table 5 provides an overview of data poisoning attacks,
categorized by their targeted or untargeted nature and whether they in-
volve clean or dirty labels. The table includes relevant papers for each
category illustrating key research and findings.

Model poisoning involves the deliberate manipulation of model pa-
rameters or updates sent to a central server, targeting the integrity of
the model itself rather than the training data. This type of attack is
particularly effective, often surpassing data poisoning in impact, espe-
cially against systems employing Byzantine-robust defense mechanisms.
Fang et al. [54] demonstrated that non-directional attacks, which craft
local model parameters to deviate significantly from expected values,
can lead to aggregated updates that degrade global model performance.
For example, their experiments showed that introducing perturbations
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Table 5
Classification of data poisoning attacks.
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Clean-label

Dirty-label

Targeted
Untargeted

Targeted data manipulation [56-58]

Random data manipulation [58], Adversarial samples [61]

Targeted label flipping [10,58-60]
Random label-flipping [58,62]

maximized deviation from the typical update path, resulting in sub-
stantial global model errors. Baruch et al. [63] highlighted that even
minimal poisoning-where only a small fraction of malicious updates is
introduced—can bypass robust defenses by exploiting gradient variance.
This approach requires limited knowledge of client data and subtly shifts
the mean of aggregated gradients to evade detection. Real-world impli-
cations include attacks on recommendation systems, where subtle ma-
nipulations degrade ranking accuracy without triggering alarms. Wang
et al. [64] extended these findings to federated online learning to rank
(FOLTR) systems, showing that sophisticated poisoning strategies out-
perform data poisoning even under robust defenses. They also noted
that deploying such defenses without active attacks can degrade system
performance, underscoring the need for adaptive defenses that balance
security and functionality.

Implementation-wise, data-poisoning attacks often involve straight-
forward label manipulation or pixel-level perturbations in the local
dataset. Publicly available code, such as in [54], shows how a simple
gradient-scaling procedure can overpower benign updates in an aggre-
gation function like FedAvg. Model poisoning goes a step further, di-
rectly adjusting weight tensors to embed "invisible triggers". Defenders
typically integrate robust aggregator pipelines (e.g., Krum or Trimmed
Mean, see Section 3.2) and anomaly monitors that track suspicious gra-
dient magnitudes or label discrepancies across rounds. Additionally, par-
tial local data checks (for example, removing highly implausible labels)
can disrupt stealthy poisoning attempts before they aggregate into a
global parameter shift.

Generative Adversarial Network-based (GAN) attacks. GANs have been
employed to execute both model and data poisoning attacks in FL. In
such scenarios, an adversary masquerades as a benign client and trains
a GAN to replicate prototypical samples from other clients’ datasets.
The global model parameters serve as the discriminator’s parameters,
enabling the GAN to produce realistic yet manipulated samples. These
samples are then used to generate poisoning updates, which are scaled
and submitted to the central server [65]. According to Zhang et al. [66],
any internal client can initiate GAN-based poisoning attacks. For in-
stance, their PoisonGAN model demonstrated that even under attack,
the global model retained over 80% accuracy on both poisoning and
primary tasks [58]. This highlights the dual threat of maintaining task
performance while embedding malicious objectives. Real-world impli-
cations include adversaries exploiting GANs to bypass detection mecha-
nisms, as seen in cases where vague or noisy poisoned data undermines
anomaly detection systems [67]. These examples underline the signifi-
cant harm GAN-based attacks pose, which compromise FL systems’ in-
tegrity and privacy without easily detectable anomalies. From the im-
plementation perspective, a GAN-based attack typically involves pair-
ing the server’s global model (as a discriminator) with a locally trained
generator that refines malicious updates to appear “benign.” Minimal
modifications to PyTorch or TensorFlow scripts let attackers pass gen-
erator outputs as legitimate gradients. Potential defenses could include
incremental offset detection that flags suspiciously consistent gradient
distortions and clustering techniques for client updates with significant
divergences.

Sybil attacks. The Sybil attack involves a malicious client creating mul-
tiple fake identities to gain disproportionate influence or control over
the system. While not specifically a poisoning attack, it can facilitate or
amplify poisoning attacks by increasing the number of fake clients that

submit malicious or biased updates [27]. For example, model poison-
ing attacks using fake clients can significantly reduce the test accuracy
of the global model, even against classical defenses. Fung et al. [68]
demonstrated this in their experiment where two Sybil nodes inserted a
backdoor, causing 96.2% of digit 1s in the MNIST dataset to be misclas-
sified as 7s in the final model. This highlights the severe impact even a
few Sybils can have on model integrity. In real-world scenarios, such at-
tacks are particularly concerning due to their ability to bypass detection
mechanisms by preserving overall model utility. Furthermore, another
study [69] revealed how Sybil nodes could inject backdoor triggers into
data, disrupting training processes in FL systems.

Employing Sybil clients can be as simple as registering multiple
“fake” clients that communicate identical or slightly modified updates,
all controlled by one adversary. Code examples illustrates that only
two Sybils can drastically corrupt a federated model. FoolsGold [68],
or other similarity-based approaches track the cosine distance among
client updates, penalizing suspicious clusters. Some frameworks incor-
porate blockchain-based identity management or limit how many new
clients can join per round, raising barriers for mass Sybil infiltration.
These countermeasures reduce the effectiveness and stealth of Sybil-
based manipulations.

Backdoor attacks. Backdoor attacks are a form of targeted poisoning at-
tack in which an adversary deliberately corrupts the global model, mak-
ing it perform well on the main task while exhibiting malicious behavior
when triggered by specific conditions, such as a particular label, image
modification, or feature [34]. These attacks are particularly concern-
ing in FL due to the decentralized nature of training, where malicious
updates can propagate vulnerabilities across the entire system. For ex-
ample, in real-world scenarios like next-word prediction models used
in mobile applications, backdoor triggers could manipulate outputs for
sensitive contexts, such as political events. Liu et al. [70] demonstrated
that backdoor attacks could accelerate FL convergence by crafting lo-
cal updates that mimic global data distributions and injecting back-
doors during later stages when benign updates have minimal impact.
However, these attacks face challenges such as detection risks and lim-
ited persistence. Dai et al. [71] addressed these issues by proposing the
Chameleon attack, which uses poisoned datasets and contrastive learn-
ing to enhance backdoor durability. This method ensures the backdoor
remains effective even after attackers stop participating, as seen in appli-
cations like IoT devices with weak security measures. Similarly, Zhang et
al. [72] highlighted that fixed backdoor triggers often fail under global
training dynamics. Their A3FL approach adapts triggers adversarially to
maintain effectiveness in evolving models. These examples underscore
the significant harm of backdoor attacks, which can compromise model
integrity and user trust in critical applications like autonomous vehi-
cles or healthcare systems. Implementing a backdoor often involves a
"trigger pattern" integrated into a small fraction of the local training set
(e.g., a tiny corner pixel pattern in image classification). Attack scripts
typically swap labels for these trigger-laden inputs and train locally to
ensure the global model learns to misclassify only when the pattern ap-
pears. FLAME [73] and other advanced defenses add mild noise or rely
on "clean validation" to detect unexpected performance spikes on spe-
cific triggers. Another method is partial neuron pruning, removing neu-
rons that show abnormally high activation for certain triggers. Adopting
these defenses usually increases training overhead but significantly re-
duces successful backdoor injection rates.
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3.1.2. Free-riding

Free-riding occurs when a client benefits from the final aggregated
model without contributing to its training due to reasons such as lack of
data, privacy concerns, or insufficient computational resources. In the
context of Free-Rider (FR) attacks, these can be categorized into Anony-
mous Free-Rider (AFR) and Selfish Free-Rider (SFR) attacks based on the
adversary’s control over private data and computing resources [74]. AFR
attackers, lacking private datasets or computational resources, typically
contribute stochastic Gaussian noise to the central server, resembling a
generic Gaussian attack [75]. This behavior undermines model accuracy
by introducing noise into the aggregation process. In contrast, SFR at-
tackers possess private data and computational abilities but choose not
to contribute these resources. For instance, SFR attackers may employ
advanced strategies like delta weights attacks, generating gradient up-
dates by subtracting two global models from previous rounds [76], or
submit systematically crafted fake parameters [77]. While delta weights
attacks ensure convergence of the aggregated model, they maintain
stealth by mimicking benign updates. Even simpler methods, such as
consistently returning the same global model parameters, can degrade
model performance and reduce fairness in FL [34]. These attacks pose
significant threats in real-world scenarios, especially in sensitive do-
mains like healthcare or finance, where FL’s integrity is crucial [75].
From an implementation perspective, a free-rider can bypass local train-
ing entirely by returning either unchanged or random parameters while
continuing to download global updates. These minimal modifications
exploit the aggregator’s inherent trust in each client. PASS [74] and
similar auditing approaches evaluate each client’s historical gradient
contributions against their impact on model improvements. Clients that
fail to provide meaningful updates risk detection or a reduced aggrega-
tion weight. These scoring mechanisms discourage free-riders by linking
model benefits to local effort.

3.1.3. Jamming attacks

Jamming attacks pose a severe security threat in wireless networks,
particularly decentralized FL (DFL) environments [78]. These attacks
involve adversaries emitting interference signals to disrupt communica-
tion between legitimate nodes, hindering the exchange of critical data
such as local model parameters. For example, in real-world scenarios
like airport operations, jamming has led to significant disruptions in
communication systems, delaying processes and compromising opera-
tional efficiency [14]. In blockchain-based decentralized FL, jamming
attacks prevent normal miners from receiving necessary data, excluding
them from proof-of-work computations. This gives malicious miners an
advantage in controlling the blockchain by increasing the probability of
generating a longer malicious block stream, especially when the num-
ber of attackers surpasses normal miners [79]. Additionally, targeted
jamming in decentralized FL can isolate nodes by disrupting key com-
munication links. This isolation fragments the network, delaying learn-
ing processes and degrading model accuracy due to insufficient data
exchange [14]. For instance, simulations of such attacks on multi-hop
wireless networks have demonstrated significant reductions in DFL per-
formance by exploiting vulnerabilities in connectivity and model shar-
ing [14]. Realistic jamming can be emulated by imposing network drop
rates or forced timeouts in each training round. Indeed, attackers might
saturate specific channels, delaying or preventing the arrival of local up-
dates to the server. From the defense perspective, coded computations
(e.g., CodedPaddedFL [20]) or asynchronous protocols allow partial ag-
gregation even if a subset of updates is lost or late. Additionally, some FL
systems introduce fallback communication channels to bypass jammed
links. These solutions provide a certain level of robustness to partial
network disruption.

3.1.4. Evasion attacks

Evasion attacks exploit weaknesses in model predictions during in-
ference by introducing carefully crafted adversarial inputs, such as pixel
perturbations, without altering the training process [80]. For instance,
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unnoticeable changes to a panda image can cause GoogLeNet to misclas-
sify it as a gibbon with 99.3% confidence [81]. These attacks undermine
the reliability of FL systems by reducing model accuracy and trustwor-
thiness. In real-world scenarios, evasion attacks can deceive spam filters
or recommendation systems trained via FL, leading to financial or oper-
ational harm [82].

In VFL, Pang et al. [83] demonstrate the susceptibility of VFL sys-
tems to ADIs, which manipulate joint inference outcomes to prioritize
an attacker’s input. They employ gradient-based methods and grey-box
fuzz testing to uncover vulnerabilities in privacy-preserving features, re-
vealing that adversaries can exploit these to skew results. For example,
ADIs could be used in financial applications to favor fraudulent transac-
tions. To address these threats, Kim et al. [82] analyze internal evasion
attacks across learning methods, showing that personalized federated
adversarial training enhances robustness by 60% compared to standard
approaches. This demonstrates that tailored defenses can mitigate at-
tack impacts even under constrained resources, though challenges re-
main in balancing accuracy and security. To carry out such an attack,
malicious entities could leverage adversarial example implementations
to craft feature-level perturbations. Only minor changes to the infer-
ence pipeline could be enough to cause misclassifications in the global
model. To mitigate the impact, using personalized adversarial training
[82] allows for retraining on adversarial variants each round, though at
a higher computational cost.

3.1.5. Straggling

Sometimes, due to various factors like limited computing resources,
background processes, memory constraints, or unstable wireless com-
munication, certain edge devices, known as stragglers, might perform
significantly slower than others, thereby deteriorating the FL process.
This vulnerability can also be exploited by adversaries through free-
riding attacks, where malicious clients intentionally delay or avoid com-
putations to degrade system performance [84]. Waiting for model up-
dates from these slower clients at each learning step can slow down
model convergence and degrade accuracy. For instance, attackers may
inject noise into updates or mimic benign clients to amplify delays,
leading to inefficient resource utilization as faster clients idle [85]. Ig-
noring updates from stragglers risks model accuracy and client drift —
a phenomenon where local models diverge significantly due to non-
identically distributed data. Real-world manifestations include health-
care FL systems where malicious clients disrupt timely updates, jeopar-
dizing critical applications like disease prediction. In terms of implemen-
tation, simple modifications in local training scripts can pause or throttle
GPU usage, slowing progress. Therefore, the design of asynchronous or
coded protocols is required to reduce reliance on a strict round barrier. If
certain clients are repeatedly late or absent, they can be down-weighted
or removed from the aggregator’s pipeline. Nonetheless, balancing the
fair inclusion of actual slow clients against malicious stragglers remains
a key design challenge in practical FL settings.

3.1.6. Dropout

User dropout in FL refers to the scenario in which some clients drop
out or become inactive during training. This phenomenon can occur
due to network issues, client failures, or intentional withdrawal. Honest
clients may become demotivated to engage in the training process if the
collaborative framework does not guarantee fairness for all clients [86].
Beyond these general challenges, dropout can also manifest as an at-
tack, where malicious clients intentionally withdraw at critical training
stages to disrupt the global model’s convergence. Such targeted dropout
attacks can exacerbate biases in the model if specific clients with unique
data distributions are affected, leading to skewed performance [20].
For instance, in real-world scenarios like healthcare applications, the
dropout of clients representing minority populations could result in a
poorly performing model on underrepresented groups.In code, dropout
simulates a failure to send updates by skipping the aggregator’s com-
munication calls. Defensive solutions require tracking dropout patterns
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over time to determine if certain clients drop out from training at cru-
cial convergence stages. The integration of partial reweighting or client
selection [87] may reduce the damage, though guaranteeing fairness if
many dropouts occur remains non-trivial.

We would like to note that while straggling and dropout are not tra-
ditionally categorized as intentional attacks in FL (highlighted in gray
on the taxonomy of Fig. 4), they represent significant challenges that can
hinder the overall learning process. However, it is important to note that
these phenomena could also be exploited by adversaries in a malicious
context. An attacker could deliberately induce straggling by compromis-
ing clients or resources or cause dropout by intentionally withdrawing
specific clients to disrupt the training process.

3.2. Security defenses

This section provides an overview of security mechanisms designed
to enhance the robustness of FL systems against various adversarial
threats. It highlights key strategies, including robust aggregation op-
erators, anomaly detection techniques, and adversarial training.

3.2.1. Robust aggregation operators

FedAvg is one of the most popular algorithms used in FL to aggregate
client model updates. However, several studies have shown that this
method can be sensitive to various types of attacks, including model
poisoning attacks, where some clients might send malicious updates,
or data poisoning attacks, where the data used to train local models
is manipulated to bias the global model [88,89]. Robust aggregation
operators have been developed to enhance security and defend against
such attacks. These operators are designed to minimize the impact of
malicious or noisy updates, thereby improving the resilience of the FL
system.

e Trimmed Mean involves calculating the average of model updates
after removing a specified percentage of the highest and lowest val-
ues. This method helps mitigate the impact of outliers but can be cir-
cumvented by poisoning attacks that exploit high empirical variance
among client updates, as demonstrated by "A Little Is Enough" [90].
This solution also mitigates the reduction in performance caused by
non-IID data by removing extreme values from clients whose distri-
butions differ significantly from the rest.

e Median-based algorithms replace the arithmetic mean with the me-
dian of model updates, choosing the value representing the distribu-
tion’s center. This approach is less sensitive to extreme values and
more resistant to adversarial attacks compared to methods like Fe-
dAvg. This approach also improves the model performance under
high non-IID data since it aims to avoid the influence of highly differ-
ent distributions (a.k.a outliers). However, it is vulnerable to attacks
such as IPM, which can negatively impact the inner product between
the true gradient and the aggregated gradients [90]. GeoMed (Ge-
ometric Median) minimizes the sum of Euclidean distances to all
points, offering a central point that is less sensitive to outliers com-
pared to the mean [91]. Its more computation-efficient version is
called Medoid [89]. GeoMed can tolerate up to half of the malicious
clients and estimate true parameters, showing convergence proper-
ties in gradient descent methods. However, GeoMed is sensitive to
model poisoning attacks and less robust with imbalanced datasets.
To address these issues, Li et al. [92] proposed Auto-Weighted Ge-
oMed (AutoGM), which automatically excludes extreme outliers
and re-weights remaining points based on a user-specified skew-
ness threshold. AutoGM maintains high performance even with up
to 30% of nodes engaging in model poisoning or 50% experiencing
data poisoning attacks. Marginal Median (MarMed) [89] focuses
on the median of marginal distributions of data points, filtering out
extreme values to provide a stable estimate of central tendency. This
approach, similar in robustness to the geometric median but with a
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distinct handling of data, helps maintain the integrity of the aggrega-
tion process against adversarial manipulations. Mean Around Me-
dian (MeaMed) [89] is a trimmed average method that centers cal-
culations around the median, effectively reducing the impact of out-
liers and adversarial data. Blending the strengths of both the mean
and median offers a balanced approach to maintaining performance
and robustness in distributed learning scenarios vulnerable to Byzan-
tine attacks.

Krum, introduced by Blanchard et al. [88], selects a model update
vector that is least affected by outliers by minimizing the sum of
squared distances to its n — f closest neighbors, where f is the max-
imum number of Byzantine workers tolerated. Multi-Krum (or m-
Krum) extends this approach by considering multiple vectors, thus
enhancing robustness by aggregating d parameter vectors instead
of just one. Despite its effectiveness in mitigating high-severity at-
tacks, Han et al. [93] found that Krum struggles with RNNs due to
variability in local models caused by sequential data and recurrent
structures. Additionally, Krum’s reliance on strong assumptions, such
as bounded absolute skewness, may not always be realistic, and it is
vulnerable to newer attacks like IPM and "A Little Is Enough" (ALIE),
which exploit empirical variances between client updates [90].
Bulyan enhances existing Byzantine-robust aggregation techniques,
such as Krum and GeoMed, by first compressing gradient updates
from each client into a more compact form. This reduces the impact
of noise and malicious data. After compression, Bulyan employs a
robust aggregation technique to combine the compressed updates,
focusing on reliable information while filtering out outliers and ad-
versarial contributions, thereby improving accuracy and resilience
against Byzantine faults [94].

Clustering aggregation calculates pairwise cosine distances between
parameter updates and groups clients based on cosine similarities
using agglomerative clustering with average linkage. While this
method shows robustness in some scenarios, it only considers the rel-
ative directions of updates, ignoring their magnitudes. Attackers can
exploit this by amplifying their updates without altering directions,
disrupting model convergence. To address this, Li et al. [90] pro-
posed ClippedClustering, which applies norm-based clipping to up-
dates. Updates are scaled if their norm exceeds a server-determined
threshold, set automatically using the median of historical up-
date norms, improving defenses under IID local datasets. However,
ClippedClustering significantly degrades performance with non-IID
datasets, highlighting the need for tailored defense strategies.

Zeno [95] scores and ranks updates based on their alignment with
a reference gradient, filtering out suspicious updates dynamically.
Zeno is particularly effective in resisting Byzantine attacks because
it relies not solely on traditional statistical measures like medians
or means. Instead, it actively evaluates the credibility of each up-
date, allowing it to reject harmful contributions dynamically. In
contrast to previous work, Zeno + + removes several unrealistic re-
strictions on worker-server communication, now allowing for fully
asynchronous updates from anonymous workers, for arbitrarily stale
worker updates, and for the possibility of an unbounded number of
Byzantine workers.

Anomaly Detection It employs various statistical and analytical
methods to identify events that deviate from expected behavior,
which is crucial for detecting Byzantine attacks. Effective anomaly
detection systems require a normal behavior profile to recognize ma-
licious activity. Techniques might include clustering to group simi-
lar updates and identify outliers, Euclidean distance metrics used in
methods like Krum for detecting deviations in input parameters, Au-
toencoders that reconstruct data to flag abnormal updates, and other
methods. For example, Jiang et al. [22] proposed monitoring the av-
erage loss reported by clients to identify and exclude potentially com-
promised updates caused by Sybil attacks. Pan et al. [96] proposed
integrating advanced anomaly detection techniques with a unique
model update aggregation strategy, enabling the identification and
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neutralization of backdoor influences in a single update cycle, avoid-
ing the need for extensive data access or communication between
clients. Since non-IID data can make normal client updates appear
like anomalies, which attackers may exploit, adaptive anomaly de-
tection methods such as the one proposed by Jiang et al. [22] and
Pan et al. [96] help to differentiate between natural variations in
data and adversarial manipulations.

3.2.2. Asynchronous schemes

To mitigate the straggler issue, various asynchronous schemes have
been proposed. These schemes update the global model based on the
time difference between the current round and the previous round when
the client first received the global model. For example, Lu et al. [97] pro-
posed FedAAM, which employs an adaptive weight allocation algorithm
that assigns dynamic weights to client updates based on their contribu-
tion, considering factors such as the timeliness and quality of the up-
dates. The framework introduces two asynchronous global update rules
based on a differentiated strategy, allowing the global model to update
with varying client contributions depending on their performance and
the frequency of their updates. Additionally, FedAAM integrates global
momentum by using the historical global update direction, which helps
smooth the global update process and manages the asynchrony among
clients, thereby improving training efficiency and convergence behav-
ior. However, Schlegel et al. [20] report that these schemes generally do
not converge to the global optimum. They further propose two schemes
to avoid this problem. CodedPaddedFL combines one-time padding with
gradient codes to ensure straggler resiliency while maintaining privacy,
achieving an 18x speed-up for 95% accuracy on the MNIST dataset. Cod-
edSecAgg, based on Shamir’s secret sharing, provides both straggler re-
siliency and robustness against model inversion attacks, outperforming
the state-of-the-art LightSecAgg by a speed-up factor of 6.6-18.7 for
similar accuracy.

3.2.3. Pruning

Pruning can serve as both an optimization strategy and a potential
security measure in FL. It is a technique used to reduce the size and com-
plexity of machine learning models by removing less important or dor-
mant neurons and connections. This process helps address the computa-
tional and communication constraints typical in FL environments, where
clients often have limited resources [34]. Additionally, selective pruning
can enhance security and mitigate backdoor attacks by removing neu-
rons that are not activated by clean data. However, this defense method
may be less effective if attackers use pruning-aware methods [70].

3.2.4. Adversarial training

Adversarial training in FL is a defense mechanism in which each
client generates adversarial examples locally during training to enhance
the robustness of their model updates against adversarial attacks. These
adversarially trained local models are then aggregated by the central
server, allowing the global model to learn to resist adversarial inputs
without directly exposing client data, thereby improving security in a
distributed and privacy-preserving manner. Li et al. [98] formulated
the training process as a min-max optimization problem, addressing the
unique challenges of decentralized data and model training. They also
provided a detailed convergence analysis, demonstrating that the min-
imum loss can converge to a small value under appropriate conditions,
and introduced gradient approximation techniques to enhance training
effectiveness, particularly for non-IID clients.

3.2.5. Personalized solutions

This section covers customized solutions that do not fit the categories
discussed above. It highlights the most novel and promising methods
from recent research, showcasing innovative approaches to enhancing
security in FL environments.

FoolsGold 1t is a defense method specifically designed to counter tar-
geted poisoning sybil attacks. It identifies clients with similar behav-
ior and characteristics of Sybil clones. It then adapts the learning rates
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of these clients based on the similarity of their contributions, effec-
tively reducing the influence of malicious updates and mitigating the
attack [68]. This technique also provides a way to tackle non-IID data
issues presented in Section 2.3, detecting overrepresented gradients and
down-weighting contributions from clients that exhibit unusually high
similarity, ensuring fairer aggregation despite heterogeneous data vari-
ations. However, when legitimate updates are similar, these methods
also tend to penalize them, causing significant drops in model perfor-
mance [99]. Some experiments have shown that FoolsGold might com-
pletely fail to train the model, potentially eliminating important local
models. Additionally, the method may encounter limitations when inte-
grated with large language models due to the substantial cache require-
ments needed to memorize intermediate results, such as models from
previous FL training rounds [93].

FL-Defender [99]: Proposed by Jebreel et al., FL-Defender is a defense
mechanism designed to combat targeted poisoning attacks, specifically
addressing label-flipping (a type of poisoning attack) and backdoor at-
tacks. Similarly to FoolsGold, FL-Defender extracts last-layer gradients
from workers’ updates and calculates cosine similarities to detect at-
tack patterns, followed by dimensionality reduction using PCA to fo-
cus on the most relevant features. During aggregation, it re-weights up-
dates based on historical deviations, minimizing the influence of poi-
soned data while preserving model performance and maintaining low
computational overhead. Its aggregation method is similar to Krum and
Trimmed Mean. However, FL-Defender adds an adaptive component by
re-weighting updates rather than rejecting them outright.

FLAME [73]: 1t is a robust defense framework designed to counter
backdoor attacks while preserving the benign performance of the global
model, even in non-IID data settings. Unlike traditional defenses that
rely on limited attacker models or degrade performance with excessive
noise, FLAME dynamically estimates and injects the optimal amount of
Gaussian noise to eliminate backdoors. Its clustering-based approach ef-
fectively separates malicious updates from benign ones, ensuring robust
aggregation despite data heterogeneity. Additionally, weight clipping
limits the influence of outlier updates, enabling FLAME to maintain high
model accuracy while efficiently removing adversarial backdoors.

PAMPAS [100]: Ching et al. proposed to combat GAN attacks by par-
titioning the model between users and edge servers, with users training
only part of the model to enhance security and efficiency. Their ap-
proach seeks to optimize model partitioning to resist GAN attacks and
minimize total training time while addressing the trade-offs between
computation, transmission, and maintaining data privacy.

PPFDL [101]: Xu et al. proposed a solution designed to reduce the
negative impact of irregular users (Users who join and leave the training
process frequently or unpredictably) on training accuracy by prioritizing
high-quality data contributions. The approach ensures the confidential-
ity of user information using Yao’s garbled circuits and additively ho-
momorphic cryptosystems. PPFDL is also robust against user dropout,
allowing the training to continue as long as some users remain online.

LeadFL [102]: Zhu et al. proposed a client-side defense mechanism
against backdoor and poisoning attacks, which introduces a novel reg-
ularization term in local model training to nullify the Hessian matrix
of local gradients. Additionally, the regularization helps to tackle non-
IID issues explored in Section 2.3 by neutralizing adversarial gradient
patterns, improving robustness against backdoor and targeted attacks
in heterogeneous data settings. Unlike existing defenses, LeadFL specif-
ically targets the Hessian matrix to enhance robustness against bursty
adversarial patterns, effectively handling the high variance in malicious
client activity that many server-side defenses struggle with. Designed to
work alongside existing server-side defenses, LeadFL enhances overall
security by complementing other mechanisms rather than functioning
as a standalone solution.

PASS [74]: To address Free-Rider attacks in FL, the paper introduces
the Parameter Audit-based Secure and Fair FL Scheme (PASS). PASS
employs a privacy-preserving strategy (PASS-PPS) incorporating weak
DP with a Gaussian mechanism and a parameter prune mechanism to
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Table 6
Relationship of defense mechanisms and attacks for secure FL.
Attacks/Threats
Defenses Poisoning GAN-based Sybil Backdoor Free-riding Jamming Evasion Straggling Dropout
Robust aggregation operators v/ v 4 v v v
Asynchronous schemes v v v v
Pruning v v v
Adversarial training v v v v
Personalized solutions v v v v v v

protect data during parameter auditing. Additionally, PASS utilizes
a novel contribution evaluation method to accurately measure each
client’s performance, ensuring fairness in the training process and de-
terring both AFR and Selfish SFR attacks.

Sageflow [85]: It introduces a staleness-aware grouping method that
integrates seamlessly with robust aggregation rules such as Multi-Krum.
This approach enhances resilience against adversaries through entropy
filtering and loss-weighted averaging, effectively managing non-IID data
distributions and outperforming previous methods like Zeno + in prac-
tical scenarios.

FedRLChain [86]: It leverages blockchain technology to address crit-
ical challenges in Federated Reinforcement Learning. This framework
features a novel verification algorithm to counter malicious client ac-
tions, an aggregation weight scheme to avoid bias in the global model,
and an enhanced FedAvg algorithm for improved convergence speed.

In Table 6, we provide a relation between the defense mechanisms
and the corresponding attacks or threats they aim to mitigate in FL. Cer-
tain defenses, like robust aggregation operators and anomaly detection,
address various attacks such as poisoning, GAN-based, Sybil, backdoor,
free-riding, jamming, and evasion. Asynchronous schemes, pruning, and
personalized solutions focus more specifically on addressing straggling
and dropout issues related to client heterogeneity and connectivity.

Thus, Table 6, together with the analysis of the papers assessed, re-
veals key insights into the current security landscape in FL by illustrating
the effectiveness of various defense mechanisms against different types
of attacks. A notable observation is the dominance of robust aggregation
operators and anomaly detection techniques, which address the broad-
est range of threats. This suggests that adversarial manipulations, partic-
ularly poisoning, Sybil, and backdoor attacks, remain central concerns
in FL security. However, these methods alone are not sufficient. For ex-
ample, while robust aggregation enhances resilience against model and
data poisoning, it does not directly counter jamming attacks, which dis-
rupt communication rather than manipulate training data.

Table 6 also highlights an ongoing challenge: no single defense mech-
anism can comprehensively mitigate all security threats, emphasizing
the need for hybrid approaches. Personalized solutions and adversar-
ial training offer promising advances by tailoring security mechanisms
to specific attack vectors, but they remain underexplored in the con-
text of free-riding and evasion attacks. The increasing sophistication of
FL attacks necessitates continuous refinement of defense strategies, in-
tegrating multiple techniques to address emerging adversarial tactics
holistically.

Lessons learned: The analysis of security attacks and defenses in
FL reveals several critical insights. First, the growing sophistication
of adversarial strategies highlights the need for adaptive and multi-
layered defense mechanisms. While robust aggregation operators and
anomaly detection remain foundational defenses, adversaries continu-
ously develop novel poisoning and backdoor attack strategies that evade
traditional filtering methods. This aspect highlights the limitations of
static, threshold-based defenses and motivates the need for more adap-
tive, real-time techniques. Second, client heterogeneity and participa-
tion dynamics significantly impact FL security, as attackers can exploit
phenomena like straggling, dropout, and free-riding, emphasizing the
importance of personalized and incentive-aligned solutions. However,
most current solutions assume honest or uniformly distributed clients,
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leaving a gap in defending against adversarial heterogeneity and collu-
sion. Additionally, adversarial tactics such as Sybil-based collusion and
GAN-powered attacks’ rapid evolution underscores the necessity for con-
tinuous monitoring and adaptive countermeasures. However, there is no
standardized framework to evaluate these defenses across diverse threat
types. Finally, while many defenses focus on protecting global model in-
tegrity, there is a growing need for client-side security solutions to detect
and mitigate threats locally before aggregation.

3.3. Comparative analysis of defenses for secure FL

In this subsection, we analyze quantitative and experimental studies
to evaluate the effectiveness of the previous defenses in specific scenar-
ios. For instance, studies such as Li et al. [15] and Zhang et al. [103]
offer a detailed quantitative comparison of various FL defense mech-
anisms across different attacks. Under untargeted model poisoning at-
tacks like the Fang et al. [54] attack, Bulyan demonstrates superior ro-
bustness, achieving up to 85% global model accuracy with a 20% adver-
sarial client ratio, compared to Trimmed Mean (78%) and Krum (75%).
However, Bulyan’s computational complexity (O(d»*) may hinder scala-
bility in large-scale FL systems. For targeted backdoor attacks, FLTrust,
which uses a small trusted dataset, achieves over 90% accuracy on be-
nign tasks while suppressing backdoor success rates below 5%, outper-
forming Trimmed Mean, which achieves 85% benign accuracy but strug-
gles with backdoor suppression. FLAME emerges as a strong candidate
in highly heterogeneous data settings by dynamically adds noise to mit-
igate backdoors while maintaining model performance at around 88%
accuracy. Trimmed Mean balances simplicity and effectiveness for sce-
narios prioritizing low overhead. Thus, the choice of defense depends
on the attack type and system constraints: Bulyan is recommended for
untargeted attacks in smaller systems, while FLTrust and FLAME are
preferred for targeted attacks or non-IID data distributions.

Beyond robust aggregation, the literature reports competitive results
for the remaining four defense families in our taxonomy. Asynchronous
schemes such as FedAAM [97] and CodedPaddedFL [20] address strag-
glers and jamming by updating the global model as soon as partial gra-
dients are available. On MNIST, CodedPaddedFL provides around 95%
accuracy while delivering an 18x reduction in time compared with syn-
chronous FedAvg in settings with slow or jammed clients; the cost is
roughly a two-fold increase in uplink bandwidth due to coded padding.
Moreover, Pruning-based defenses remove dormant or highly suspicious
neurons after each aggregation round. [104] shows that neuron pruning
can cut a Fashion-MNIST backdoor attack success rate (ASR) from 99.7%
to 2%. Adversarial training hardens the model against inference-time ma-
nipulations. For example, pFedDef [82] improves robustness PGD per-
turbations by roughly 60% on CIFAR datasets while maintaining com-
petitive clean accuracy. Finally, personalised solutions mitigate Sybil and
free-rider behaviour. For example, Sageflow [85] further combines per-
sonalised weighting with entropy filtering, yielding a 12% improvement
in convergence speed under mixed Sybil-plus-straggler settings.

These results confirm that each defense family excels under spe-
cific threat models and resource budgets: asynchronous protocols pri-
oritise liveness, pruning targets stealthy backdoors, adversarial training
bolsters prediction-time robustness, and personalised auditing enforces
fairness against Sybil or free-riding behaviour. A balanced deployment
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Table 7
Categorization of privacy attacks in FL.
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Attack Scope Goal / Effect

Privacy Attack Method (Passive vs. Active) Phase Affected Adversary’s Role
Gradient Inversion Passive Training Insider

Gradient Suppression Active Training Insider
Membership Inference Passive or Active Inference Outsider / Insider
Canary Gradient Active Training Insider

Model Inconsistency Active Training Insider (Server)
GAN-based Inference Active Training Insider
Eavesdropping Passive or Active Training / Inference Outsider
Unintentional Data Leakage Passive Training

Multi-Round
Multi-Round
Single-Round
Multi-Round

Reconstruct private data

Amplify data leakage patterns

Check if a data sample was used in training
Insert small triggers to deduce sensitive info
Single-Round Compare user updates across different models
Multi-Round Generate synthetic data that reveals distribution
Single-Round or Multi-Round Intercept model updates or network traffic

Outsider / Insider Single-Round or Multi-Round Exploit unintended gradient exposure

should therefore mix complementary mechanisms—for example, pairing
Bulyan with FedAAM for integrity and liveness, or coupling Trimmed-
Mean with pFedDef to resist both poisoning and evasion-rather than
relying on robust aggregation alone.

4. Privacy in FL

Following the taxonomy depicted in Fig. 4, we describe the main
attacks and defenses for privacy in FL in this section. For the attacks,
we provided specific mechanisms, degrees of harm, and specific exam-
ples of manifestations in the real world. At the end of each subsection,
we provide some lessons learned after analyzing the papers regarding
attacks and defenses for privacy in FL.

4.1. Privacy attacks/threats

In ML, privacy attacks and threats refer to techniques or strategies
used by adversaries to compromise the privacy of individuals or sensi-
tive data during the training or inference phase of ML models. These
attacks aim to exploit vulnerabilities in the ML process to gain unautho-
rized access to private information or infer sensitive attributes of indi-
viduals [105]. In the FL area, privacy attacks refer to attempts by ad-
versaries to compromise data privacy during the training process. These
attacks allow extracting sensitive information from local or aggregated
global models to infer, reconstruct, or cause data leakage. In particular,
we categorize such attacks based on the following four main dimensions.
First, method of inference distinguishes between passive attacks (e.g., gra-
dient inversion), which rely on observing shared updates without inject-
ing malicious behavior, and active attacks (e.g., canary gradient), which
manipulate or perturb updates to increase data leakage. Second, phase
affected differentiates between leaks that occur predominantly during
training (such as gradient-based reconstruction) and those emerging
at inference time (like membership inference on final model outputs).
Third, adversary’s role clarifies whether an attacker is an insider—a legit-
imate FL client with access to local computations—or an outsider who
intercepts or eavesdrops on communication, for instance, through man-
in-the-middle tactics. Lastly, the attack scope specifies whether an attack
is single-round, occurring once (e.g., a single instance of eavesdropping),
or multi-round, gradually accumulating sensitive information over multi-
ple iterations (as in repeated gradient inversion attempts). Thus, Table 7
summarizes how each known privacy threat fits into these four dimen-
sions. When a threat spans multiple categories (for example, exhibiting
both passive and active behaviors), we explicitly mark that overlap.

The following sections explore the most relevant attacks on privacy
in FL by defining their nature, objectives, consequences, and examples
proposed in the literature.

4.1.1. Gradient manipulation

Gradient manipulation in FL involves exploiting shared gradients to
infer or reconstruct sensitive data, posing significant privacy risks. This
includes techniques like gradient inversion, reconstruction through in-
ference, and canary attacks, highlighting vulnerabilities in FL’s gradient-
sharing mechanisms.

13

Gradient inversion attacks. These attacks exploit gradients or weight up-
dates shared during the aggregation process in FL to reconstruct pri-
vate data, posing significant privacy risks [27]. These attacks typically
leverage optimization techniques or linear relationships between gradi-
ents and inputs to infer sensitive information. For instance, Kariyappa et
al. [106] introduced the Cocktail Party Attack (CPA), which uses inde-
pendent component analysis to recover private inputs from aggregated
gradients, demonstrating its scalability to large batch sizes. This high-
lights how gradient inversion can compromise privacy even in high-
dimensional settings. Li et al. [19] proposed the End-to-End Gradient
Inversion (E2EGI) attack, which iteratively reconstructs training data
by reversing gradients, showcasing its potential to breach privacy across
multiple iterations. Pasquini et al. [107] further explored two variants:
a passive optimization-based approach that infers private training sets
without active interference and an active attack that manipulates model
updates to amplify privacy leakage. These methods underline the nu-
anced mechanisms attackers employ to exploit gradients.

The consequences of gradient inversion attacks are severe. In real-
world scenarios, such attacks can expose sensitive medical images or
financial records used in FL systems, violating privacy regulations and
enabling misuse [27]. However, Hatamizadeh et al. [108] argue that
practical risks may be mitigated by factors like large batch sizes and lo-
cal iterations, which reduce reconstruction fidelity. Similarly, Boenisch
et al. [109] observed that gradient inversion often suffers from local
minima and requires extensive iterations for meaningful data recovery,
limiting its feasibility in some production environments. Implementa-
tion typically requires intercepting aggregated gradients and running a
local optimization loop that refines random inputs until the gradients
match observed signals. Encrypting or clipping gradients partially hin-
der this by reducing the attacker’s visibility or precision, though some
accuracy trade-offs may arise.

In contrast, gradient suppression attacks involve maliciously sup-
pressing gradients during aggregation to manipulate global model up-
dates [107]. By isolating individual updates, attackers can amplify spe-
cific patterns in user data, increasing exposure risks. Such attacks can in-
fer the presence of specific data points in user datasets, enabling targeted
tracking [110]. While their mechanisms differ from gradient inversion,
suppression attacks similarly exploit vulnerabilities in gradient-sharing
protocols. Implementation of gradient suppression often involves inter-
cepting or nullifying certain gradient components before sending them
to the server, typically by modifying the local backward pass. A partial
defense strategy is to rely on cryptographic checks that ensure gradi-
ent consistency across dimensions, thereby preventing an attacker from
selectively masking or removing critical features.

Reconstruction through inference. It is a privacy-threatening scenario
where an adversary attempts to reconstruct or infer sensitive infor-
mation about the training data of individual clients by analyzing the
model updates or outputs shared during the FL process [30]. Such at-
tacks exploit the inherent vulnerability of gradient-sharing mechanisms
in FL. For instance, adversaries can reverse-engineer specific data points
or patterns from gradients using techniques like gradient inversion, as
demonstrated by Chen et al. [111]. They identified two distinct types
of reconstruction attacks. The first, called extraction attack, focuses on
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accurately reconstructing a single training sample with minimal com-
putational cost. This attack leverages advanced optimization techniques
to improve reconstruction accuracy, posing significant risks to data pri-
vacy. The second type, manipulating reconstructed data, allows adver-
saries to recover private training data and labels from gradients and
subsequently modify this data to execute targeted attacks on models.
For example, in healthcare FL applications, attackers could reconstruct
sensitive medical images shared across hospitals and manipulate them
to mislead diagnostic models [112]. Attackers mostly rely on final model
outputs or partial gradient snapshots for offline reconstruction, requir-
ing minimal changes to the FL pipeline. Defensive measures like gradi-
ent masking or cryptographic aggregation reduce the granularity of the
information available, limiting reconstruction success.

Canary Gradient. A canary gradient attack is a privacy breach in FL
where an attacker exploits gradients or weight updates shared during
the aggregation process to infer sensitive information. Its name origi-
nates from using canaries in coal mines to detect poisonous gases [110].
In this attack, the adversary injects small, carefully crafted perturba-
tions into a client’s gradients or weight updates and observes the server’s
response to deduce private data. For instance, such attacks have been
shown to reconstruct sensitive client data under certain conditions, rais-
ing concerns about FL’s privacy guarantees [113]. Maddock et al. [113]
propose CANIFE, a method to evaluate empirical privacy risks in FL by
introducing adversarially crafted "canary" samples. These samples are
used to measure model exposure to privacy breaches, revealing that the
empirical per-round privacy loss is significantly tighter than theoreti-
cal bounds. This approach highlights vulnerabilities in FL systems, such
as susceptibility to gradient inversion attacks in real-world scenarios,
which theoretical DP guarantees may underestimate. By offering a re-
alistic assessment of privacy risks, CANIFE underscores gaps in current
defenses and emphasizes the importance of robust threat models for FL.
To carry out a canary attack, an adversary could inject imperceptible
’signatures’ into local gradients, then checks if these signatures reappear
in the global model’s updates. Clipping (see Section 4.2 or encrypting
gradients dilutes such signatures, minimizing the attacker’s ability to
confirm the presence of sensitive data.

4.1.2. Membership inference

In this privacy threat, an adversary seeks to determine whether a
specific data point was part of a client’s training dataset used in the FL
process. Such an attack primarily aims to verify the membership status
of individual data points, discerning whether they belong to a client’s
private training data [33]. This breach of privacy may lead to the disclo-
sure of identities or sensitive attributes, undermining the confidentiality
and anonymity of data contributors. Zhang et al. [114] highlights two
types of membership inference attacks with distinct mechanisms and im-
plications. Poisoning membership inference attacks involve adversaries
injecting carefully crafted malicious samples into the training data to
detect membership. For instance, by observing how poisoned examples
alter model loss, attackers can infer membership, posing severe risks
in healthcare FL systems where patient data is highly sensitive. Black-
box membership inference attacks, such as Memguard [115], operate
without direct access to training data or models. These attacks generate
adversarial queries to exploit model predictions and infer membership,
which could compromise user anonymity in recommendation systems.
Pasquini et al. [107] emphasize that adversaries can leverage model up-
dates or query responses to enhance their guesses. The harm caused by
these attacks extends beyond privacy breaches, as they can facilitate fur-
ther privacy threats like attribute inference attacks, creating a cascading
effect on the overall security of FL systems. Specifically, membership in-
ference often queries the global model’s confidence scores for specific
inputs. Small modifications to the local or server-side scripts can track
these score patterns, exposing training-set membership. Defensive tech-
niques such as local DP or randomizing confidence outputs inhibit the
attack’s reliability.
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4.1.3. Model inconsistency

This attack exploits a vulnerability in the FL protocol caused by
incorrect usage of secure aggregation and a lack of parameter valida-
tion. Specifically, a malicious server distributes different versions of the
model to different users within the same training round. The server can
analyze behavioral differences in user updates, even though these up-
dates are securely aggregated. The attack leverages the fact that vary-
ing model parameters can induce detectable differences in gradient up-
dates, which may reveal sensitive training data. For instance, Pasquini et
al. [110] demonstrated that this approach enables inference of private
information regardless of the number clients. Real-world implications
include risks to applications like healthcare and IoT, where sensitive
data is prevalent. Zhang et al. [116] further noted that inconsistencies
between global and local models could reflect attack-related informa-
tion, potentially guiding personalized FL algorithms to improve fault
diagnosis accuracy. These findings underscore the severe privacy risks
of model inconsistency attacks and their potential to compromise FL
systems at scale.The implementation of such an attack only requires
slight server-side changes—assigning slightly different model parameters
to each client in a single round. A recommended mitigation is verifying
model consistency across clients or leveraging secure multi-party aggre-
gation to ensure identical parameter distributions.

4.1.4. GANs-based inference

A GANs-based inference attack in FL uses GANs to infer sensitive
information about the training data held by individual clients. This at-
tack aims to create a generator network that can produce data sam-
ples indistinguishable from the data used for training in the local client
models [27]. The attacker can effectively determine whether a specific
data point was part of a client’s training dataset, conducting member-
ship inference. For example, in medical diagnosis scenarios, such at-
tacks could allow a malicious client to infer sensitive patient conditions
from gradients shared during FL updates [117]. The consequences of
such attacks are severe, as they breach privacy by revealing which data
points were used during training, leading to potential misuse or dis-
crimination risks. Huang and Xiang [117] introduce Cross-Client GANs
(C-GAN ) attacks, where a malicious client reconstructs samples resem-
bling the distribution of other clients’ training data. This enables adver-
saries to compromise privacy by leaking benign clients’ sensitive data,
as demonstrated in experiments involving reconstructed images from
medical datasets.Attackers usually train a local generator alongside the
global model, refining synthetic samples that mimic real client data. By
limiting gradient visibility with cryptographic or noisy protocols, such
as DP, defenders hamper the generator’s ability to converge on sensitive
distributions.

4.1.5. Eavesdropping

In this threat, an attacker intercepts the communication between the
clients and the central server. It is done by sniffing the network traf-
fic or by compromising the devices of the clients or the server [118].
The objectives of an eavesdropping attack often include stealing the FL
model, inferring sensitive information from the client’s data, and dis-
rupting the FL process. Guo et al. [119] identifies four types of eaves-
dropping attacks: Passive Eavesdropping, where an attacker monitors
communication without altering data; Active Eavesdropping, involving
data modification, such as injecting malicious gradients; Man-in-the-
Middle (MitM) Attacks, which intercept and relay messages, posing sig-
nificant risks to data integrity and confidentiality; and Network Sniff-
ing, capturing network traffic to extract sensitive information. Practical
eavesdropping often exploits unsecured Wi-Fi or inadequate encryption.
An attacker needs little more than packet-capture tools to observe lo-
cal updates. Configuring Transport Layer Security (TLS) or implement-
ing fully HE (FHE) for parameter exchanges effectively thwarts passive
intercepts.
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4.1.6. Unintentional data leakage

The latter is not precisely an attack, but it is more of a vulnerabil-
ity that attackers can exploit once discovered. It occurs when private
training data leaks through the gradient-sharing mechanism deployed
in FL systems. The objective of this is to recover batch data from the
shared aggregated gradients. The latter can be catastrophic and lead to
users’ private data reconstruction by eavesdropping on shared gradients.
The risk of confidential data leaking from the training gradients in stan-
dard FL, especially the vertical case, is high. For Nair et al.[120], these
vulnerabilities are a concern in FL due to the potential for data leak-
age and adversarial attacks during gradient transfer operations. These
threats can occur when gradients are transferred between clients in the
FL system. Ziz et al. [121] introduce the CAFE (catastrophic data leak-
age in vertical FL) attack, an advanced data leakage attack in FL that
aims to recover private data from shared aggregated gradients. It ad-
dresses the limitations of existing approaches regarding scalability and
theoretical justification for data recovery. The attack algorithm consists
of three steps: (1) Recovering the loss gradients concerning the outputs
of the first fully connected (FC) layer. (2) Using the recovered gradi-
ents as a learned regularizer to improve the performance of the data
leakage attack. (3) Using the updated model parameters to perform the
data leakage attack. Such leakage arises when partial gradient details or
intermediate layer outputs inadvertently reveal private features. Mini-
mizing or masking these signals (via secure aggregation or randomiza-
tion) lowers the precision with which attackers can reassemble original
training data.

Leveraged on the literature review done, we retrieved a list of privacy
threats included in the current literature. Fig. 6 demonstrates a notable
increase in privacy attack research publications, reflecting heightened
awareness and concern in this field. The early years of 2018 until 2020
saw minimal research output with a narrow focus on attack types. How-
ever, a marked shift occurred since 2021, with a substantial rise in the
quantity and range of studies. Attacks like Membership inference and
Reconstruction through inference gained significant traction, particu-
larly in 2023 and 2024. Concurrently, research on GANs-based Infer-
ence and Gradient Inversion/Suppression expanded considerably, with
anoticeable peak in 2024. The emergence of Unintentional data leakage
as a research focus in recent years adds to the diversifying landscape.
The year 2024 stands out with the most comprehensive coverage across
various attack categories, indicating an intensified focus on privacy pro-
tection research. This progression highlights the dynamic nature of pri-
vacy threats and showcases the academic community’s proactive stance
in addressing evolving challenges in data privacy safeguarding.
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4.2. Privacy defenses

Simultaneously, as the range and intricacy of attacks and threats on
FL grow, novel defenses are also emerging to counteract their harmful
impacts [29]. The following sections explore the most relevant defenses
on privacy in FL by defining their concept, advantages, disadvantages,
and the attacks each type of defense can defend against, proposed in the
most recent and pertinent literature.

4.2.1. Zero-knowledge proof

Zero-knowledge proof-based FL (ZKP-FL) scheme leverages zero-
knowledge proof for both the computation of local data and the ag-
gregation of local model parameters, aiming to verify the computa-
tion process without requiring the plaintext of the local data. Xing et
al. [122] provided that on a blockchain, ZKP-FL allows clients in an
FL system to prove to the central server that they have computed the
correct model updates without revealing their underlying data. It helps
to protect against attacks that aim to infer sensitive information from
the federated model or the FL process. The FLAG framework [123] uti-
lizes ZKP-FL techniques to provide secure computation without reveal-
ing sensitive information. It protects against data leakage, inference at-
tacks, and unauthorized access to sensitive information. It provides a
lightweight and efficient framework for secure aggregation in FL. How-
ever, implementing ZKP-FL protocols requires additional computational
resources, which may introduce complexity and overhead due to the
need for safe communication and encryption.

4.2.2. Oblivious transfer

Oblivious Transfer (OT) in FL refers to a cryptographic protocol that
allows a client to obtain one out of multiple potential values from a
server without revealing the chosen value to the server. OT ensures pri-
vacy and confidentiality in FL by enabling clients to securely access and
retrieve information from the server without compromising sensitive
data. Rathee et al. [52] introduced ELSA (Ensemble Learning with Semi-
honest Aggregators) as a defense mechanism in FL to protect the pri-
vacy of individual gradients during aggregation. ELSA employs 12-norm
bounding to defend against boosted gradients from malicious clients.
It consists of multiple layers that incorporate semi-honest and adver-
sarial privacy defenses. ELSA’s 12-norm protection is relatively simple
compared to other securities, making it suitable for working over secret
shares. ELSA cannot guarantee fairness, as it cannot distinguish between
a malicious server and a malicious client, potentially leading to some
honest clients’ inputs not being used in the computation. ELSA’s pri-
vacy defenses aim to protect the privacy of individual gradients during
aggregation, limiting information leakage from the global aggregate.

4.2.3. Homomorphic encryption (HE)

HE is a cryptographic technique that enables computations to be per-
formed on encrypted data, producing an encrypted result that, when
decrypted, matches the result of the same operations performed on the
(original) plaintext. Singh et al. [124] discuss using HE to protect crucial
data in the healthcare system, allowing computations to use encrypted
data without decrypting it, preserving privacy. It enables secure data
sharing and analysis in FL without revealing sensitive information to
the central server or other clients. Nevertheless, it is a complex technol-
ogy that requires specialized knowledge and infrastructure for imple-
mentation. The solution protects against unauthorized access, data leak-
age, and inference attacks. HE is a critical component of the SoK [21]
defense strategy in FL. It offers robust privacy guarantees by ensuring
data remains encrypted throughout the computation process. However,
it can introduce notable drawbacks, including computational overhead
and increased communication costs due to the complexity of processing
encrypted data. It serves as a robust defense against various threats, in-
cluding eavesdropping and data inference attacks, ultimately enhancing
the privacy of FL systems.
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4.2.4. Secret sharing

Secret sharing (SS) is used in FL to distribute sensitive information,
such as model parameters, among multiple clients. It involves dividing
the secret into shares and distributing them to different clients, ensuring
that no single client can access the complete secret. tMK-CKKS [125]
with secret sharing provides information-theoretic security, making it
impervious to collusion attacks by up to t-1 clients working in concert
with the server. Even when many clients join forces, they cannot deduce
details about the master’s secret. It involves the distribution of the mas-
ter public key among all clients for encryption purposes. Furthermore,
individual secret keys for each client are generated using a linear secret-
sharing scheme. Notably, the decryption of aggregated ciphertexts ne-
cessitates the cooperation of only a specific threshold value, t clients.
This careful balance of secret sharing and threshold requirements en-
hances the FL system’s privacy.

4.2.5. MPC

MPC allows multiple clients to collaboratively compute a function
on their private inputs without disclosing those inputs to one another.
Bangalore et al. [123] proposed FLAG that scales to 1000s of clients,
requires only a constant number of rounds, outperforms prior work in
computational cost, and has competitive communication cost. However,
it may introduce computational overhead due to the need for secure pro-
tocols and encryption. It helps defend against attacks that aim to com-
promise the privacy of user-held data during the aggregation process in
FL. Mansouri et al. [21] proposed SoK, a defense mechanism in FL that
focuses on the MPC of data from multiple sources without revealing in-
dividual inputs. It provides privacy protection and prevents adversaries
from inferring sensitive information. SOK defense offers advantages in
FL, like ensuring that individual data contributions remain confidential,
making it difficult for attackers to carry out these attacks by obfuscating
individual data contributions. Some downsides may include additional
computational overhead and communication costs, specialized crypto-
graphic knowledge, and careful design to ensure efficiency and scala-
bility. SoK was specially designed to prevent membership inference and
data reconstruction attacks.

4.2.6. DP

Nagy et al. [126] proposed a privacy-preserving FL framework for
natural language processing incorporating local differential privacy
(LDP) as a robust defense mechanism. LDP safeguards the privacy of
individual data contributions, introducing noise to the model updates
before sharing it with the server. The critical advantage of LDP is that it
is exceedingly challenging for potential attackers to infer sensitive infor-
mation about individual data contributors. However, introducing noise
can impact the accuracy of the trained ML models, necessitating a care-
ful balance between privacy preservation and model utility. LDP is a
defense against attacks to uncover sensitive information about individ-
ual data contributors. Dynamic differential privacy (DDP), proposed by
Guo et al. [119], involves dynamically adjusting the privacy budget and
noise scale during model training, allowing for higher-quality models
with a fixed privacy budget. It helps to get higher quality models and
real-time privacy tracking, preventing the privacy budget from being
exceeded, which could lead to the leakage of sensitive information. One
drawback of this method is that it requires careful adjustment and injec-
tion of noise in each iteration, which adds complexity to the FL process.
It is particularly effective at defending against eavesdropping attacks.

4.2.7. Gradient clipping

Gradient-based defenses in FL involve modifying the gradients dur-
ing training to protect against adversarial attacks. These defenses aim
to make the model more robust by perturbing the gradients or adding
noise. Chen et al. [111] proposed FedDef as an optimization-based in-
put perturbation defense in FL that aims to preserve privacy and FL
model performance by transforming private data into pseudo data that
is dissimilar to the original data while maintaining similar gradients.
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Users download the global model from the server and use FedDef dur-
ing local training to transform their data and gradients. However, the
computational and memory overhead of FedDef needs to be considered,
compared with HE in terms of performance. FedDef defends against re-
construction attacks, such as inversion attacks, extraction attacks, and
attacks that manipulate reconstructed data. Gradient clipping restricts
the size of updates from individual clients, ensuring that large updates
from skewed or non-IID data do not disproportionately impact the model
performance.

Li et al. [18] study gradient clipping and sparsification as defense
mechanisms in FL. Gradient clipping involves setting a threshold for the
magnitude of gradients during training and scaling them down if they
exceed the threshold. This technique helps mitigate privacy leakage risks
by controlling gradient magnitudes, making it harder to infer sensitive
information from them. However, striking the right balance between
privacy and model performance is crucial, as overly stringent thresholds
can hinder learning. On the other hand, gradient sparsification enhances
privacy by selectively transmitting only a subset of gradients that exceed
a specified threshold. The latter reduces the information shared with the
central server, minimizing the risk of privacy breaches. While it offers
strong privacy protection, it may introduce computational overhead and
affect the learning process by discarding some information.

4.2.8. Personalized solutions

The references reviewed offer tailor-made solutions created to im-
prove the security of FL environments. The most relevant are mentioned
below.

CrowdFL. CrowdFL [127] is an innovative approach that combines mo-
bile crowdsensing (MCS) with FL to address privacy concerns while har-
nessing the computational power of clients. In this system, participants
can perform local data processing using the FL framework, ensuring that
sensitive sensing data remains on their clients. Only encrypted training
models are uploaded to the server, preserving clients’ privacy. CrowdFL
offers scalability by leveraging MCS’s large-scale data collection capa-
bilities and reduces deployment costs by eliminating the need for exten-
sive centralized infrastructure. This integration of FL into MCS enhances
privacy and makes it a cost-effective and scalable solution for privacy-
preserving mobile crowdsensing applications.

Soteria. Soteria [111,128] is a defense mechanism proposed against
model inversion attacks in FL. The defense focuses on perturbing data
representation to severely degrade the quality of reconstructed data
while maintaining FL performance. It aims to improve the privacy of
FL systems by addressing data representation leakage from gradients,
which has been identified as the essential cause of privacy leakage. Af-
ter applying the protection, it provides a certified robustness guaran-
tee to FL and a convergence guarantee to FedAvg. The privacy of the
FL system is significantly improved with the implementation of Soteria
defense. Soteria is designed to defend against model inversion attacks
in FL, specifically the deep leakage from gradients (DLG) and gradient
stalking (GS) attacks. These attacks aim to infer private data by exploit-
ing the vulnerability of FL to inference attacks. Soteria ensures that the
perturbed representations remain similar to the true representations for
effective learning but degrade the quality of reconstructed data, mitigat-
ing the exacerbated privacy risks caused by non-IID data distributions.

FLTrust. [114,129]: FLTrust is a defense mechanism designed to en-
hance the privacy of FL, aiming to detect and mitigate malicious clients
in the FL process by evaluating their trustworthiness based on their
behavior and contributions to the model training process. FLTrust uti-
lizes trust scores to assess the reliability of clients and make informed
decisions regarding their inclusion in the FL system. It relies on trust
scores, which may not always accurately reflect the true intentions of
clients. False positives or false negatives in trust evaluation can impact
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the fairness and effectiveness of the defense mechanism. FLTrust de-
fends against attacks involving malicious clients in FL, such as Byzan-
tine poisoning adversarial attacks, local models, and poisoning attacks
in Byzantine-robust FL. This method addresses non-IID data issues (see
Section 2.3) using a trusted server-side dataset to evaluate and assign
trust scores to client updates, ensuring that malicious or biased updates
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grade model utility. Despite these limitations, hybrid protocols (e.g., DP-
MPC) offer promising trade-offs, yet their scalability and deployment in
real-world FL settings remain largely underexplored. Another challenge
is the fragmented evaluation of defense strategies; indeed, most studies
lack unified benchmarks or attack coverage, making it difficult to assess
robustness across multiple threat vectors. Personalized solutions, such as

17



D.M. Jimenez-Gutierrez et al.

FLTrust and Soteria, offer targeted protection against specific attack vec-
tors but may require careful tuning to balance security and efficiency.
Lastly, while many efforts focus on protecting server-side aggregation
or model parameters, client-side privacy preservation (e.g., during local
training or device compromise) remains insufficiently addressed, creat-
ing opportunities for attack vectors beyond the current scope of most
defenses.

4.3. Comparative analysis of defenses for private FL

In this subsection, we examine quantitative and experimental re-
search to assess how well previous privacy defenses perform under par-
ticular attack scenarios [133]. DP is effective against inference attacks
by adding noise to gradients, but it often reduces accuracy, especially
for underrepresented classes; newer methods like DP-MPC improve ef-
ficiency significantly (16-182x faster) while maintaining privacy guar-
antees. HE ensures strong confidentiality by enabling computations on
encrypted data, achieving high accuracy (e.g., 99.95% on MNIST) but
at a significant computational cost. MPC, particularly when combined
with DP, enhances communication efficiency (56-794x) and speed, mak-
ing it suitable for both privacy and efficiency scenarios. Gradient Clip-
ping stabilizes training and reduces the risks of exploding gradients, but
can slightly degrade performance if thresholds are too restrictive. ZKPs
provide strong privacy and verifiability in trustless environments, such
as blockchain-based FL, but can be computationally expensive. DP-MPC
is recommended for applications prioritizing privacy without excessive
overhead due to its balance of efficiency and privacy. Despite its cost,
HE is ideal for accuracy-critical tasks like medical imaging, while gradi-
ent clipping with DP is effective for resource-constrained scenarios. In
decentralized systems requiring trustless operations, ZKPs are valuable
but should be used selectively due to their computational demands.

FL inherently involves trade-offs between privacy, security, and
model performance. Strengthening privacy mechanisms often reduces
model utility, while enhancing security may increase computational
overhead [51,134]. Therefore, selecting appropriate techniques depends
on the specific application needs-whether prioritizing efficiency, accu-
racy, or privacy. Understanding these trade-offs is essential for designing
robust and practical FL systems [135].

5. FL Frameworks

FL has witnessed the emergence of several frameworks designed to
facilitate its application and address various aspects of privacy and se-
curity. Table 9 compares multiple features evaluated for the mentioned
FL frameworks. The comparison involves the privacy and security sup-
port, attack simulation capacity, FL implemented types, and documen-
tation and tutorials provided for the users. This comparative analysis
enables us to provide insights into the strengths and weaknesses of
each FL framework in terms of privacy, security, functionality, and user-
friendliness, aiding researchers and practitioners in selecting the most
suitable framework for their specific needs. The following paragraphs
overview the most relevant FL frameworks, highlighting their charac-
teristics, advantages, and limitations. At the end of the section, we also
provide some lessons learned from analyzing the frameworks.

CRYPTEN [136]: CrypTen is a privacy-preserving ML framework im-
plemented in Python and compatible with both Linux and Windows.
Built on PyTorch, it provides MPC primitives, enabling collaborative
computations on private data without exposing sensitive information.
Its API closely resembles PyTorch, offering tensor computations, auto-
matic differentiation, and modular neural networks, which simplify the
integration of secure MPC techniques into ML workflows. CrypTen sup-
ports horizontal FL but lacks vertical and split FL capabilities. While it
excels in secure aggregation and secret sharing, it does not implement
DP or advanced attack simulations. The framework is open-source, well-
documented, and user-friendly, making it accessible to ML practitioners.
However, its reliance on an honest-but-curious threat model and limited
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support for advanced privacy mechanisms may restrict its application in
certain adversarial scenarios.

FATE [137]: FATE is a flexible FL framework compatible with Linux
and Windows, supporting popular programming languages like Python
and Java. It offers comprehensive, secure computation protocols and
diverse ML algorithms, including HE and MPC. FATE supports hori-
zontal and vertical FL but lacks split FL capabilities. Its modular de-
sign provides end-to-end usability with pre-built components and user-
friendly visualization tools, simplifying the implementation of privacy-
preserving techniques. Additionally, FATE includes robust documenta-
tion, case studies, and tutorials to guide users. However, it does not
implement DP or advanced attack simulations.

FEDML [138]: FedML, also referred to as TensorOpera Al, is a
versatile and robust FL platform compatible with Linux, macOS, and
Windows, developed in Python. It supports three distinct comput-
ing paradigms: on-device training, distributed computing, and single-
machine simulation, making it adaptable to various FL scenarios. FedML
offers a flexible API design with comprehensive baseline implementa-
tions for optimizers, models, and datasets. Security and privacy are ad-
dressed through the FEDML-HE module, which employs HE techniques.
Additionally, its FEDMLSecurity component includes FedMLAttacker for
simulating all type of attacks and FedMLDefender for testing defensive
strategies. It does not implement advanced privacy mechanisms such as
Zero-knowledge proof or MPC. Despite these limitations, its extensive
documentation and strong attack simulation features make it a recom-
mended tool for research and practical applications in FL.

FEDSCALE [139]: FedScale is an FL benchmarking suite compatible
with Linux, macOS, and Windows, implemented in Python. It provides
scalable runtime and realistic datasets that support diverse FL tasks,
such as image classification, object detection, and language modeling.
Its high-level APIs simplify the implementation, deployment, and eval-
uation of FL algorithms, enabling researchers to benchmark FL at scale
with minimal effort. FedScale employs DP techniques to enhance se-
curity and privacy but lacks support for other mechanisms. It supports
horizontal FL but does not implement vertical or split FL. While its doc-
umentation is somewhat limited, it includes essential resources for ex-
perimentation.

FL AND DP [53]: The Federated Learning (FL) and Differential Pri-
vacy (DP) framework is cross-platform, supporting Linux, Windows, and
macOS, and is implemented in Python, Java, and C+ +. It emphasizes
data privacy by integrating DP and holomorphic encryption techniques
to quantify and mitigate privacy loss during distributed learning. The
framework excels in ensuring privacy-preserving communication but
lacks advanced security features. It supports horizontal and vertical FL
but does not implement split FL. While the framework provides detailed
documentation to guide users, its lack of a unified vision and a well-
defined methodological workflow may limit its usability and effective-
ness.

FLOWER [140]: Flower is an open-source FL framework compat-
ible with Linux, macOS, and Windows, implemented in Python. It is
designed for large-scale FL experiments, supporting up to 15 million
clients using only a pair of high-end GPUs, showcasing its scalability
and efficiency. Flower excels in handling heterogeneous FL cross-device
scenarios, making it suitable for diverse real-world applications. The
framework prioritizes privacy by implementing various secure aggre-
gation protocols, ensuring the server cannot inspect individual client
models. However, it lacks support for advanced privacy techniques like
FoolsGold or Geomed and does not include attack simulation features
such as data poisoning or backdoor attacks. Flower supports horizontal
and vertical FL but does not implement split FL. Detailed documenta-
tion and an active community enhance its usability by providing com-
prehensive guidance on installation, usage, and API references. Despite
its limitations in attack simulations, Flower’s scalability and flexibility
make it a recommended tool for FL research and experimentation.

FLUTE [141]: The FLUTE (Federated Learning Under True Environ-
ment) framework is an open-source tool compatible with Linux, ma-
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Table 9
FL frameworks features comparison ( ¢: Complete,
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: Under development/incomplete, X: Unknown/Not implemented).
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c0S, and Windows, implemented in Python (version 3.6 or higher). It
is designed for high-performance FL research, enabling rapid prototyp-
ing and large-scale simulations of novel FL algorithms. FLUTE supports
local and global DP methods, emphasizing data security and preserva-
tion. However, it lacks other advanced privacy mechanisms and does
not include attack simulation features. While it supports horizontal FL,
it does not implement vertical or split FL. The framework’s documenta-
tion is available but incomplete, with no tutorials to assist new users.

NVFLARE [142]: The NVIDIA FLARE (a.k.a NVFLARE) framework is
a tool compatible with Linux and Windows. FLARE primarily supports
Python as the programming language for developing FL workflows. Its
exceptional features encompass state-of-the-art FL algorithms and ap-
proaches, allowing researchers to apply their data science workflows
seamlessly using popular training libraries such as PyTorch, TensorFlow,
XGBoost, or NumPy. Its lightweight, flexible, and scalable nature distin-
guishes the framework, rendering it suitable for real-world FL scenar-
ios. It ensures secure and privacy-preserving multiparty collaboration
by implementing HE or DP techniques. Comprehensive documentation
provided by NVIDIA FLARE aids users in harnessing the framework’s
potential for both research and practical applications.

OPENFL [143]: OpenFL is a Python-based FL framework compatible
with Linux, macOS, and Windows. It supports developing and training
ML and DL algorithms using TensorFlow, PyTorch, and other ML/DL
frameworks, enhancing its adaptability for diverse use cases. As an open-
source platform, OpenFL offers flexibility and customization options
for researchers and developers. However, it lacks support for advanced
privacy-preserving techniques such as secure aggregation or HE, limit-
ing its security features. It supports horizontal FL but has an incomplete
implementation of vertical FL. While documentation is available on its
official website, it is incomplete and lacks specialized tutorials to guide
new users effectively.

PaddleFL [144]: PaddleFL is an open-source framework built on
PaddlePaddle, supporting horizontal and vertical FL with privacy-
preserving techniques like DP and Secure Aggregation. It is compatible
with multiple platforms and languages but lacks split FL and attack sim-
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ulation support. Despite its scalability, PaddleFL’s usability is limited by
sparse documentation and a predominantly Chinese-speaking commu-
nity.

PYSYFT [145]: PySyft is an FL library compatible with Linux, ma-
c0S, and Windows, primarily implemented in Python and extending
popular DL frameworks like PyTorch. Its mission is to democratize
privacy-preserving techniques in ML, making them accessible to re-
searchers and data scientists. PySyft supports privacy-enhancing meth-
ods such as MPC and DP. Howevetr, it lacks advanced security protocols
and does not provide attack simulation capabilities. PySyft implements
horizontal vertical and an uncompleted version of split FL. Its compre-
hensive documentation includes detailed procedures, implementation
guides, and example workflows, empowering users to effectively utilize
the framework for privacy-focused FL projects.

TFF [146]: TensorFlow Federated (TFF) is a Python-based frame-
work that integrates with TensorFlow, supporting horizontal FL and in-
corporating privacy mechanisms like MPC and DP. It includes a simu-
lation environment for testing attacks but lacks support for vertical and
split FL and advanced privacy techniques like secure aggregation. Com-
prehensive documentation aids usability, though its limitations may re-
strict its use in highly adversarial settings.

XFL [147]: XFL is a versatile framework compatible with multiple
platforms and languages, offering a user-friendly interface and pre-built
algorithms for horizontal and vertical FL. It supports privacy-preserving
techniques like HE, DP, and MPC but lacks support for split FL and attack
simulations. While XFL simplifies deployment via Docker, incomplete
documentation somewhat limits its usability.

Lessons learned: Given the previous details of each FL framework,
FEDML emerges as the most complete solution since it incorporates
many security and privacy methods, all the most common FL types,
and vast documentation and tutorials. In addition, it highlights that
since it is the only framework that includes a comprehensive suite of at-
tack simulations. It is perfect for quickly testing new defenses proposed
by security and privacy FL researchers. Nevertheless, FLOWER and FL
AND DP are also relevant frameworks for researchers to consider due
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Fig. 7. Main applications using privacy and secure FL.

to the implementation of various security and privacy protocols. How-
ever, they lack support for adversarial testing modules and fine-grained
control over threat modeling, which limits their effectiveness for eval-
uating defenses under dynamic or adaptive adversaries. A notable gap
is that none of the surveyed frameworks implement geometric median-
based defenses like GeoMed, despite their empirical robustness against
poisoning. In addition to missing implementations of advanced defenses
(e.g., FLAME, Pruning-based defenses), we also find limited support for
simulating realistic deployment conditions such as heterogeneous par-
ticipation, client drift, or colluding Sybil attacks—factors increasingly rel-
evant in real-world FL. We also observe that support for vertical and
split FL is incomplete across most frameworks, which may hinder ap-
plications in finance, healthcare, or IoT, where data distributions are
often partitioned by feature. Finally, the lack of standardized interfaces
for measuring privacy-utility trade-offs (e.g., formal accounting of DP
budgets vs. accuracy degradation) further limits reproducibility. Future
framework development should prioritize modular threat modeling, in-
tegrated attack-defense testbeds, and support for adaptive, personalized,
and hybrid defense strategies.

6. Main applications

We explore how various domains are employing this transformative
FL technology. This chapter delves into real-world applications where
FL plays a pivotal role, providing a deeper understanding of its practical
significance. By highlighting relevant use cases, ranging from healthcare
and finance to intrusion detection, we unveil the diverse scenarios where
FL is making a substantial impact. Additionally, at the end of the section,
we provide a paragraph of lessons learned based on analyzing the main
applications of secure and private FL.

Based on our literature review, we obtained the fields of applications
that use FL in a private and secure context.Fig. 7 depicts the participa-
tion of each field over the papers analyzed. The top three fields applying
secure and private FL are text prediction, healthcare, and the financial
sector. The latter have been the most employed fields for a long time.
Nevertheless, it is relevant to highlight that the intrusion detection sys-
tems field has gained strong participation among researchers in recent
years. The following subsections describe how FL was employed for each
field, emphasizing some challenges, attacks, and defenses utilized.

Text prediction. Privacy and security are relevant in FL for text predic-
tion because sensitive user data, such as personal messages or search
queries, is processed locally on devices. Without strong privacy mea-
sures and secure communication (e.g., encryption), there is a high risk of
exposing personal information, which could lead to breaches of user con-
fidentiality or misuse of private data by malicious actors. Advancements
in FL for text prediction emphasize privacy and security through tech-
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niques like DP and local DP [126,148]. However, these methods often
struggle to balance privacy and model performance, as stringent privacy
measures can reduce prediction accuracy. Given the sensitive nature of
textual data, ensuring security and privacy is vital for maintaining user
trust and compliance with data protection regulations. Vulnerabilities
in this field can stem from the decentralized nature of the data, with
common attacks including poisoning attacks [126], GAN-based infer-
ence [131,149], and gradient inversion/suppression [150]. To address
these risks, defenses such as DP, employed by Qi et al. [151], can secure
text data while preserving model utility.

Healthcare. FL helps with privacy and security in healthcare by allow-
ing institutions (i.e., hospitals) to train models collaboratively without
sharing sensitive patient data. Techniques such as DP and HE safeguard
patient information during model updates, addressing risks like data
leakage and unauthorized access [152,153]. However, they can also
introduce computational overhead and potentially compromise model
accuracy. This domain encounters significant security and privacy chal-
lenges due to the sensitive nature of medical data. Common attacks in-
clude poisoning attacks [154-156], where adversaries inject malicious
data to undermine model integrity [114], and gradient inversion/sup-
pression [19,157], which attempts to recover private medical informa-
tion from shared gradients [108]. Membership inference attacks pose
additional risks by revealing whether a specific patient was used in
model training [158].

To mitigate these threats, cryptographic techniques like HE and
MPC ensure data privacy while allowing computations on encrypted
data [124,159]. DP also plays a crucial role in limiting the risk of sen-
sitive information being memorized or inferred from model updates.
Moreover, robust aggregation operators defend against poisoning and
other adversarial manipulations, ensuring the integrity of the global
model. By combining cryptographic techniques with privacy-preserving
methods, healthcare FL systems can effectively protect against multi-
faceted attacks while maintaining accuracy and compliance with health-
care regulations, as highlighted by Singh et al. [108].

Financial sector. FL enhances privacy and security in the financial sector
by enabling institutions (i.e., banks and Fintech enterprises) to collabo-
rate on fraud detection and risk management without sharing sensitive
customer data. Ensuring security and privacy is critical in finance due to
the sensitive nature of financial data and regulatory requirements, fos-
tering customer trust and compliance with regulations like GDPR, which
enable safer financial services. FL is particularly valuable for fraud de-
tection and risk management but is susceptible to various attacks, no-
tably GAN-based poisoning attacks [65,160], which can degrade model
performance and compromise privacy by manipulating training data, as
highlighted by Qiao et al. [83]. Moreover, MPC ensures that no single
client gains access to sensitive financial data during joint model training.

Intrusion detection systems. FL enhances privacy and security in intru-
sion detection systems by facilitating distributed model training without
sharing raw logs. Techniques such as MPC and optimization-based input
perturbation [111] guard against inference and poisoning attacks [161].
However, challenges like deployment complexity and potential impacts
on model accuracy persist. Security and privacy are vital in this domain,
as adequate intrusion detection safeguards sensitive environments from
unauthorized access, ensuring compliance with security standards and
fostering user trust in system reliability. In IoT networks, FL encounters
significant security challenges, including label-flipping attacks [162],
where malicious clients manipulate labels to mislead the global model,
as Yang et al.[111] noted.

Visual question-answering. In visual question-answering (VQA) models
using FL, several security and privacy concerns arise due to the com-
plexity of the task and the diverse data types involved. One prominent
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attack in vertical FL VQA is the ADI, where adversaries manipulate in-
put data, such as images, to dominate the learning process and reduce
the contributions of other clients, as explored by Pang et al. [83]. GAN-
based inference is another risk, where attackers attempt to reconstruct
private information, such as images or questions, from model updates.
Anomaly detection can be employed to defend against these threats by
identifying and excluding manipulated data or adversarial inputs before
they influence the model. DP can obscure sensitive images or question
details to protect clients’ local data [163]. Additionally, robust aggrega-
tion operators ensure that adversarial contributions, like poisoned data,
do not degrade the overall model performance. Vertical FL. VQA systems
can leverage these defenses to maintain privacy and security, enabling
collaborative model training without exposing sensitive visual or textual
information.

Vehicles. Under this field, using FL with secure and private defenses is
critical because connected cars generate sensitive data about drivers’ lo-
cations, routes, driving behaviors, and vehicle diagnostics, and protect-
ing this information prevents unauthorized tracking, behavior profiling,
and potential safety vulnerabilities. In the vehicle field, ADI attacks,
such as random or bounded mutation, can manipulate vehicle data and
degrade model performance, as Pang et al. [83] reported. Additionally,
model inconsistency may arise from adversarial updates across clients.
To defend against these, robust aggregation operators reduce the impact
of malicious updates, while DP and additive noise protect sensitive ve-
hicle data from being inferred through model updates. These defenses
ensure secure and accurate FL models in vehicle-related tasks.

Products production line. In this field, privacy and security in FL are
functional because manufacturers can collaboratively improve their pro-
duction models and optimize processes while securely keeping sensitive
proprietary data (like manufacturing parameters, quality control met-
rics, and production recipes) within their facilities, preventing indus-
trial espionage and maintaining competitive advantages. FL faces label-
flipping and backdoor attacks in product production lines, which can
compromise model accuracy and reliability in assembly processes [164].
To counter these threats, robust aggregation operators filter out harmful
contributions from adversaries, while anomaly detection identifies and
excludes suspicious data. Additionally, DP protects sensitive production
metrics during model training [165].

Mobile crowd-sensing. Privacy and security in mobile crowd-sensing FL
are crucial to protect sensitive location and behavioral data, prevent-
ing unauthorized tracking and identity breaches while enabling valu-
able insights for urban planning and services. FL is susceptible to eaves-
dropping and membership inference attacks in mobile crowd-sensing,
which can compromise client privacy. Additionally, poisoning attacks
can manipulate model updates, degrading performance [127]. To de-
fend against these threats, secure aggregation methods based on the
threshold Paillier cryptosystem protect model confidentiality while DP
obscures individual contributions. Robust aggregation operators also
help mitigate the impact of adversarial updates.

Merchandising. Privacy and security in FL regarding this field are rel-
evant because retailers handle sensitive customer purchasing patterns,
inventory strategies, and pricing data across multiple locations. Thus,
protecting such information prevents competitors from accessing valu-
able business intelligence while fostering peer-to-peer modeling to op-
timize merchandising decisions and customer experience across store
networks. In this field, FL faces threats like poisoning attacks, where
malicious clients corrupt the global model by manipulating their local
data, and membership inference attacks, which attempt to deduce the
presence of specific data samples in the training dataset [114]. To de-
fend against these attacks, robust aggregation operators can filter out
adversarial updates, ensuring that only reliable contributions influence
the global model. Additionally, employing DP techniques helps obscure
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individual shopping histories, protecting sensitive merchandising data
from exposure [7].

Location. FL’s privacy and security are paramount in location services
as they protect users’ sensitive movement patterns and visited places
while leveraging multiparty learning to improve location-based services
without exposing individual data. FL is vulnerable to location track-
ing attacks in the location field, where adversaries attempt to infer
users’ movements or patterns from shared model updates. Membership
inference attacks can also expose sensitive information about individ-
uals based on their location check-ins [114]. Implementing DP tech-
niques can obscure individual check-in data to mitigate these threats,
protecting user privacy while allowing practical model training. Ad-
ditionally, robust aggregation operators can help filter out adversarial
contributions, ensuring that only trustworthy data influences the global
model [7].

Information retrieval. In information retrieval, FL’s privacy measures
protect users’ sensitive search patterns and interests while permitting
collaborative improvement of search systems without exposing personal
data. In this field, FL faces challenges such as insufficient training data,
where individual users may lack enough interactions to achieve high
search effectiveness. The latter can be exploited through model inver-
sion attacks, where adversaries infer sensitive user data from shared
model parameters [64]. DP techniques can be employed to protect in-
dividual search interactions, ensuring user privacy while still allowing
model training. Additionally, robust aggregation operators can help mit-
igate the effects of malicious updates, enhancing the reliability of the
global model.

Lessons learned: The analysis of secure and private FL across main do-
mains highlights its transformative potential and persistent challenges.
The widespread adoption in fields like text prediction, healthcare, and
finance underscores the necessity of FL for protecting sensitive user
data while enabling collaborative model training. However, ensuring
privacy and model performance remains a central challenge, as strict
privacy mechanisms often introduce accuracy and computational ef-
ficiency trade-offs. The rise of FL in intrusion detection systems and
mobile crowd-sensing indicates an increasing awareness of its role in
security-sensitive environments, though these applications face threats
like poisoning attacks and adversarial data manipulation. Across all do-
mains, the decentralized nature of FL introduces vulnerabilities such
as gradient inversion and membership inference attacks, emphasizing
the need for robust defense mechanisms. Notably, emerging vehicles,
manufacturing, and information retrieval applications demonstrate FL’s
adaptability yet reveal unique domain-specific risks, from adversarial at-
tacks in autonomous driving to industrial espionage in production lines.
Another key limitation is the lack of standardized, reproducible evalua-
tion pipelines across domains, making it difficult to compare defense ef-
fectiveness or understand trade-offs across threat models. Furthermore,
many application areas lack publicly available benchmarks that reflect
realistic attack scenarios, hindering the development and validation of
domain-adaptive security mechanisms. A key lesson is that while FL en-
hances data privacy, both its privacy and security largely depend on
continuous advancements in cryptographic techniques, adversarial de-
fenses, and efficient aggregation strategies tailored to each field’s re-
quirements.

7. Future directions

While significant strides have been made in addressing FL’s security
and privacy challenges, several areas remain ripe for exploration and
improvement. The complexity and evolving nature of FL environments
necessitate ongoing research to refine existing techniques and develop
novel solutions. This section outlines vital areas for future work, high-
lighting the need for advanced methods to enhance the robustness of
FL systems against emerging threats. It emphasizes the importance of
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addressing limitations in current approaches and exploring innovative
strategies that balance security, privacy, and efficiency.

7.1. Security future directions

Security in FL remains a significant challenge, especially in light of
sophisticated poisoning and backdoor attacks. Future directions should
focus on developing robust and adaptive security mechanisms that can
detect and mitigate these threats while maintaining the integrity of the
global model. The emphasis would be on improving the resilience of
FL systems, enhancing verification processes, and developing scalable
solutions that support high performance even in adversarial settings.

e Enhanced Robustness Against Advanced Attacks: As discussed in
Section 3, FL environments face significant challenges from adver-
sarial attacks, such as model poisoning and backdoor insertion, par-
ticularly in heterogeneous data settings [166].

To counter model poisoning attacks, where compromised clients
degrade global model performance, future work should explore
adaptive aggregation techniques that dynamically adjust the con-
tributions of client updates based on anomaly detection metrics.
For example, methods like adaptive local aggregation [167] or
sparsification-based defenses [168] could be extended to incorpo-
rate real-time monitoring of update trajectories [169]. Additionally,
integrating client-side defenses like FL-WBC, which perturbs param-
eter spaces affected by attacks, could mitigate long-term attack im-
pacts [170].

For backdoor attacks, in which malicious clients insert triggers
into models to induce targeted misclassifications, future defenses
could leverage hybrid anomaly detection approaches combining
statistical gradient analysis and cryptographic verification [171].
Techniques like ARIBA have shown promise in identifying distri-
butional anomalies in model updates. Furthermore, incorporating
multi-method adaptive aggregation algorithms (e.g., SAPAA-MMF)
could enhance robustness by balancing contributions based on data
quality and variance [172]. Exploring interdisciplinary methods in-
spired by biological immune systems could also provide novel in-
sights for adaptive and self-healing mechanisms in FL systems.

¢ Resilience to Emerging Threats in Dynamic Environments: De-
ploying FL in dynamic settings such as autonomous vehicles and
smart cities introduces unique vulnerabilities, including free-riding
attacks, model extraction attacks, and jamming threats [173]. Ad-
dressing these challenges requires targeted strategies:

Free-Riding Attacks: Free-riders exploit FL aggregation protocols
by contributing no meaningful updates while benefiting from the
global model [75]. Future work should explore advanced anomaly
detection mechanisms such as high-dimensional clustering tech-
niques (e.g., STD-DAGMM) to identify free-riders [174]. Integrat-
ing blockchain-based accountability frameworks could also enhance
trust by recording client contributions transparently [175].

Model Extraction Attacks: Malicious clients can reverse-engineer
global models to steal intellectual property or compromise pri-
vacy [176]. Hybrid encryption techniques combining HE and MPC
could be employed to counter this. Furthermore, gradient obfus-
cation methods that distort shared parameters without degrading
model performance warrant investigation [177].

emphCollaborative Jamming Attacks: Jamming attacks in FL-
based 5G networks disrupt communication channels, degrading
model performance. In 5G networks, jammers exploit public NR
standards (e.g., PUCCH intra-slot hopping patterns and RACH proto-
cols) [178] to disrupt synchronization signals with energy-efficient
methods like reactive jamming, posing critical risks to public
safety and military operations. Mitigation includes spread spec-
trum techniques (DSSS/FHSS) and ML-based detection (XGBoost en-
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sembles achieving 99.72% accuracy). Concurrently, model extrac-
tion attacks-enabled via API query duplication (e.g., LLM "leech-
ing") [179]-threaten proprietary models in finance and health-
care. Defenses like ModelGuard’s information-theoretic perturbation
maintain <3% utility loss while thwarting extraction. A promis-
ing direction involves implementing decentralized jamming detec-
tion frameworks using convolutional autoencoders for unsupervised
anomaly detection and FedProx algorithms for supervised classifica-
tion [180].

Fairness, Bias Mitigation, and Security Integration: As FL mod-
els are increasingly deployed in sensitive applications like healthcare
and finance, ensuring fairness under adversarial conditions remains
a critical challenge. A particularly concerning threat is fairness at-
tacks (poisoning), where attackers manipulate data or model updates
to introduce or amplify bias [181]. These attacks disproportionately
harm specific groups, such as racial minorities or underrepresented
communities, making fairness a direct target of adversarial manipu-
lation.

Future research should focus on developing fairness-preserving

aggregation methods that integrate anomaly detection with fairness
constraints. For example, leveraging techniques like FairFed [182],
which adaptively reweights client contributions based on fair-
ness metrics, could counteract biased updates. Additionally, in-
terdisciplinary approaches combining cryptographic tools with
fairness-aware algorithms can enhance defenses against malicious
clients [183]. Addressing indirect bias—where even non-malicious
clients contribute biased data unintentionally-requires advanced
techniques like fairness-aware pruning or incorporating domain
adaptation methods to balance performance across heterogeneous
client distributions [184].
Scalable, Efficient, and Verifiable Secure Aggregation: As FL
scales to larger and more complex systems, secure aggregation tech-
niques face significant challenges, particularly in mitigating attacks
such as model poisoning and Sybil attacks. A critical technical chal-
lenge is designing aggregation protocols that balance computational
efficiency with robust security guarantees. For instance, lightweight
encryption mechanisms like homomorphic hash functions or single-
mask symmetric encryption could reduce overhead while maintain-
ing privacy and verifiability [185]. Additionally, dynamic masking
strategies, which adapt to threat levels in real-time, could enhance
resilience against predictable attack patterns [186].

To counter Sybil’s attacks effectively, interdisciplinary ap-
proaches integrating DP with anomaly detection methods show
promise. For example, combining DP with graph-based anomaly de-
tection could identify malicious clients based on their interaction
patterns [187]. Furthermore, verifiable aggregation protocols such
as LightVeriFL can ensure the integrity of updates by leveraging ho-
momorphic commitment schemes for lightweight verification [188].
Future work should explore these approaches in scenarios with high
user dropout rates to ensure robustness.

Blockchain technology offers a promising avenue for tamper-
resistant and auditable aggregation. However, its scalability remains
a concern due to high computational costs. A potential solution is hy-
brid architectures that combine blockchain with adversarial training
techniques or verifiable delay functions to balance security and effi-
ciency [189]. Another plausible solution is using dedicated off-chain
servers to handle validation and aggregation (e.g., Fantastyc’s proof
generation), reducing on-chain operations by 70% [190]. Moreover,
reinforcement learning-based adaptive Proof-of-Work (PoW) dynam-
ically adjusts mining difficulty in response to real-time miner capa-
bilities and network conditions, reducing energy waste by up to 45%
and lowering computational overhead for honest clients [191]. Re-
search should focus on optimizing these solutions for decentralized
FL settings where central servers are absent.
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7.2. Privacy future directions

Privacy preservation is a critical aspect of FL, mainly when deal-
ing with sensitive data distributed across multiple clients. The future
of privacy-enhancing techniques will focus on improving the efficiency
and scalability of existing methods, making them suitable for a wide
range of applications, from edge devices to large-scale cross-silo FL en-
vironments. The goal is to ensure data privacy without compromising
model performance or significantly increasing computational and com-
munication overhead.

¢ Privacy-Enhancing Techniques for Non-IID Data: Non-IID data
presents one of the biggest challenges in FL, particularly in safe-
guarding privacy while ensuring robust model performance (see Sec-
tion 2.3). In non-IID scenarios, privacy-preserving techniques like
HE, MPC, and DP face limitations due to data heterogeneity, which
increases susceptibility to targeted inference attacks [192]. Attack-
ers can exploit discrepancies in data distributions across clients to
perform data reconstruction or membership inference attacks. To ad-
dress these vulnerabilities, future research should focus on:

Dynamic Privacy Mechanisms: Developing adaptive DP mecha-
nisms that adjust privacy budgets based on client-specific data het-
erogeneity. For instance, privacy budgets could be dynamically al-
located using metrics such as the Hellinger, Jensen-Shannon, or
Earth mover’s distances to quantify inter-client distribution dispari-
ties [41].

Scalable Encryption Protocols: Optimizing HE and MPC for non-
IID settings by reducing computational overhead through techniques
like hybrid encryption schemes or gradient compression [193].

Robust Aggregation Methods: Designing aggregation tech-
niques that mitigate the influence of skewed client updates,
such as similarity-weighted aggregation or clustering-based
approaches [192].

o Integration of Advanced Cryptographic Protocols: As FL contin-
ues to scale, particularly in sensitive domains like IoT and healthcare,
privacy remains vulnerable to specific attacks such as inference and
canary gradient attacks. Future research must focus on integrating
advanced cryptographic protocols that enhance privacy while mini-
mizing performance costs. Such future work includes the following
technical challenges:

Inference Attacks: Adversaries reconstruct sensitive data from ag-
gregated model updates. This requires efficient HE schemes that
support secure aggregation without significant computational over-
head [194].

Canary Gradient Attacks: Attackers inject small perturbations into
gradients or weight updates. Existing cryptographic methods strug-
gle to detect such subtle manipulations [11].

Key Management in HE: Current single-key HE schemes risk key
leaks, necessitating multi-key or secret-sharing schemes for en-
hanced security [195].

Therefore, some proposed solutions that can be explored in fu-
ture research are: First, develop hybrid cryptographic frameworks
combining HE with MPC to protect against both classical and quan-
tum adversaries [194]. Second, implement adaptive gradient clip-
ping techniques alongside DP to mitigate inference and canary at-
tacks without degrading model accuracy [196]. Third, design decen-
tralized key management systems using secret sharing or blockchain-
based approaches to enhance security in HE implementations.

e Enhanced Verification of Aggregated Models: Ensuring the in-
tegrity of aggregated models while preserving privacy is critical, es-
pecially given the growing threat of GAN-based inference attacks.
These attacks exploit GANSs to infer sensitive information about train-
ing data in FL settings [197]. Future research must address specific
challenges, such as reducing computational overhead and communi-
cation costs while maintaining robust privacy guarantees. Promising
directions include:
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Lightweight Verifiable Aggregation Protocols: Techniques such as ho-
momorphic hashing and bilinear aggregate signatures have shown
potential for verifying aggregation results [198]. However, these
methods often face scalability issues due to high-dimensional model
gradients. Research should optimize these protocols by leveraging
advanced cryptographic techniques like polynomial commitments or
ProxyZKP frameworks [199].

Combating GAN-Based Attacks: Defense mechanisms like Anti-
GAN frameworks, which manipulate visual features to thwart GAN-
based inference attacks, are promising [122]. Future work could
explore integrating such frameworks with secure aggregation tech-
niques to enhance privacy without compromising model accuracy.

ZKPs for Privacy-Preserving Verification: ZKPs enable entities to
prove the correctness of computations without revealing sensitive
data [122]. While ZKPs hold great promise for FL, current imple-
mentations face scalability challenges.

Optimizing ZKP Scalability: Techniques like zk-SNARKs and zk-
STARKs provide efficient proof systems but require further optimiza-
tion for large-scale FL applications. The ProxyZKP framework, which
uses polynomial decomposition to reduce proof generation times, of-
fers a viable path forward [199]. Another avenue is using Batch ver-
ification processes to verify multiple proofs simultaneously, cutting
verification overhead by up to 70%, while recursive composition hi-
erarchically aggregates proofs into compact representations, ideal
for large-scale deployments [16]. For resource-constrained environ-
ments, collaborative zk-SNARKs distribute proof generation across
parties, linearly reducing per-node complexity [200].

¢ Quantitative Privacy-Performance Trade-off Models: While nu-
merous studies have explored the qualitative trade-offs between pri-
vacy, security, and model performance in FL, a unified quantitative
framework remains an open challenge. Existing research provides
valuable insights into individual trade-offs, such as the impact of
privacy budgets in DP on model utility, but lacks a standardized
mathematical formulation that systematically captures these inter-
dependencies. Future research should focus on developing mathe-
matical models that integrate privacy loss, computational overhead,
and model accuracy into a single framework. These models could
incorporate utility functions that balance security guarantees with
performance metrics, similar to approaches in economic game the-
ory or optimization-based frameworks [135]. By addressing these
directions, future research can bridge the gap between qualitative
discussions and rigorous quantitative analysis, ensuring a more pre-
cise understanding of privacy-performance trade-offs in FL.

7.3. Joint directions on security-privacy in FL

While this survey separately addresses challenges in security and pri-
vacy, real-world FL deployments often suffer from their combined vul-
nerabilities. A critical future direction lies in understanding how attacks
on one axis may amplify risks on the other, and how certain defenses
may inadvertently open new threat vectors. For instance, a poisoning
attack can manipulate the model’s sensitivity to benign client gradients,
thereby increasing the effectiveness of gradient inversion techniques.
Similarly, colluding Sybil clients can bias the global model toward a
specific user’s data distribution, enhancing the attacker’s chances in sub-
sequent membership inference. Conversely, privacy defenses like secure
aggregation or heavy DP noise may hinder the detection of adversarial
behavior, thereby weakening overall system security.

Future research should pursue co-designed mechanisms that bridge
this gap:

o Integrated threat modeling that considers both privacy leakage and
security compromise in unified scenarios.

¢ Privacy-aware robust aggregation techniques that maintain anomaly
detection capabilities even under DP noise.
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¢ Layer-wise defense strategies that protect sensitive layers with cryp-
tographic tools while preserving transparency in others for anomaly
auditing.

¢ Client-side collaborative monitoring, using lightweight trusted ex-

ecution environments (TEEs) to audit gradients locally before en-

crypted aggregation.

Benchmark frameworks that evaluate FL systems against compound

attack scenarios rather than isolated vectors.

Based on the previous analysis, FL research must evolve from siloed
views to holistic frameworks, ensuring that strengthening one defense
front does not unintentionally weaken the other. Tackling this interplay
remains a fundamental challenge and opportunity for building resilient
and trustworthy federated systems.

An emerging dimension of this security-privacy interplay arises from

the integration of FL with Generative AI (GenAl) systems, including
large language models (LLMs). While these models offer powerful per-
sonalization and collaborative capabilities, they also amplify both axes
of vulnerability. For example, GenAl systems are particularly prone
to data memorization, making them susceptible to privacy leakage
even under secure aggregation [201]. This problem becomes more pro-
nounced in FL, where attackers may exploit intermediate gradients or
personalized prompts to extract or reconstruct client data. This raises
new privacy risks beyond what traditional FL defenses like secure ag-
gregation or DP were designed to handle. Security threats also take new
forms. For instance, poisoning attacks in generative models may bias
completions toward specific ideologies or inject imperceptible toxic con-
tent.
Federated foundation models. As part of the “GenAl” systems, an
important emerging direction is federated fine-tuning and deployment
of foundation models, including LLMs and vision-language models
(VLMs) [163,179]. Compared to classical FL, these models introduce
new constraints (billions of parameters, long-context data, multimodal
inputs) and new attack/leakage channels (prompt-based interactions
and cross-modal reconstruction). Future research directions include:

e Parameter-efficient federated adaptation: Develop FL pipelines that
rely on Parameter-Efficient Fine-Tuning (PEFT), such as adapters,
LoRA, and prompt-tuning [179] to reduce communication and client
compute, while studying how partial-update sharing changes both
poisoning/backdoor effectiveness and privacy leakage.

e Privacy for instruction tuning and prompts: Extend privacy mechanisms

to cover prompt traces and instruction-tuning data, including protec-

tions against memorization and prompt-level membership/property
inference, and support federated unlearning [202] for foundation
models.

Multimodal threat models for VLMs: Formalize attacks/defenses when

clients hold sensitive images + text (e.g., medical or surveillance),

where gradients/activations may leak cross-modal content; evaluate
whether existing defenses (secure aggregation/DP) remain effective

for VLM objectives [151].

e Robustness and alignment under federation: Study how backdoors, data
poisoning, and reward-hacking-like behaviors manifest in federated
instruction tuning, and design verifiable, privacy-preserving checks
for alignment and safety without centralized auditing [203].

e Benchmarks and reproducible evaluation: Create standardized bench-
marks for federated LLM/VLM security and privacy that include real-
istic client heterogeneity, generative-specific metrics, and compound
threat scenarios [139].

Detection and mitigation of threats become more complex when the
goal of an attack is to subtly influence output distributions rather than
flip classification labels [203]. Additionally, verifying the integrity and
alignment of decentralized GenAl systems becomes increasingly difficult
without centralized auditing. Future research must thus explore new
FL frameworks tailored for generative tasks. These may include feder-
ated instruction tuning pipelines with private prompt alignment, hybrid

24

Information Fusion 131 (2026) 104155

split-federated architectures to manage compute imbalance, and adap-
tive privacy controls that account for generative memorization risks,
for example, considering federated unlearning notions [202]. Address-
ing these questions is essential for deploying GenAl responsibly in dis-
tributed environments, as well as for advancing the robustness and trust-
worthiness of FL systems more broadly.

8. Conclusion

This survey provides an in-depth analysis of the security and privacy
challenges in FL. It reveals that despite FL’s design to enhance data pri-
vacy, it is susceptible to various threats, such as data poisoning, model
inversion, and backdoor attacks, underscoring the need for effective de-
fense mechanisms. By categorizing these attacks and their impacts, we
offer a structured understanding of FL systems’ diverse threats. We also
highlight the importance of balancing privacy, security, and model per-
formance through techniques like cryptographic methods and DP. Re-
cent research trends indicate a growing focus on addressing these issues,
calling for scalable and adaptive solutions suitable for dynamic envi-
ronments. Future research should develop innovative, energy-efficient
solutions to address the identified challenges, paving the way for more
secure and practical FL applications. Overall, this survey is a valuable
resource for future work advancing secure, privacy-preserving collabo-
rative learning systems.
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