
Vol.:(0123456789)

Social Network Analysis and Mining (2024) 14:157
https://doi.org/10.1007/s13278-024-01314-w

ORIGINAL ARTICLE

General‑purpose query processing on summary graphs

Aris Anagnostopoulos1 · Valentina Arrigoni2 · Francesco Gullo3 · Giorgia Salvatori4 · Lorenzo Severini2

Received: 3 June 2024 / Revised: 7 July 2024 / Accepted: 22 July 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024

Abstract
Graph summarization is a well-established problem in large-scale graph data management. Its goal is to produce a summary
graph, which is a coarse-grained version of a graph, whose use in substitution for the original graph enables downstream
task execution and query processing at scale. Despite the extensive literature on graph summarization, still nowadays query
processing on summary graphs is accomplished by either reconstructing the original graph, or in a query-specific manner. No
general methods exist that operate on the summary graph only, with no graph reconstruction. In this paper, we fill this gap,
and study for the first time general-purpose (approximate) query processing on summary graphs. This is a new important
tool to support data-management tasks that rely on scalable graph query processing, including social network analysis. We
set the stage of this problem, by devising basic, yet principled algorithms, and thoroughly analyzing their peculiarities and
capabilities of performing well in practice, both conceptually and experimentally. The ultimate goal of this work is to make
researchers and practitioners aware of this so-far overlooked problem, and define an authoritative starting point to stimulate
and drive further research.

Keywords Graph data management · Scalable graph processing · Graph summarization · Query processing

1 Introduction

Graphs, which are sets of entities (vertices) linked to one
another (via edges), have become a ubiquitous real-world
data-representation model (Aggarwal and Wang 2010a). In
many domains, graphs are so large that it is hard to directly
process them in their raw form. For instance, modern social
networks count billions or even more vertices and edges.

Thus, the problem of reducing the input graph—so as to
make graph data management less time/space-demanding
without changing algorithms for downstream query pro-
cessing/task execution—has received considerable attention
from researchers, practitioners, and in the industry (Besta
and Hoefler 2018; Liu et al. 2018). Generating more compact
versions of a big graph has been addressed from multiple
perspectives. The problem that is usually termed graph com-
pression (though there is no uniformity in the nomenclature
in the literature) aims at developing ad-hoc data structures
(and algorithms to manipulate them) to store and retrieve
an exact representation of a graph using the minimum pos-
sible space (Besta and Hoefler 2018). Graph sparsification
(a.k.a., graph simplification, or graph backboning) reduces a
graph by removing edges/vertices (Coscia and Neffke 2017;
Fung et al. 2019; Zeng et al. 2021). Graph summarization
produces a coarse-grained version of the original graph—a
summary graph—by grouping vertices and edges into super-
nodes and superedges (Beg et al. 2018; Hajiabadi et al. 2021;
Khan et al. 2015; Ko et al. 2020; Kumar and Efstathopoulos
2018; Lee et al. 2020; LeFevre and Terzi 2010; Liu et al.
2014; Navlakha et al. 2008; Riondato et al. 2017; Shin et al.

 * Francesco Gullo
 francesco.gullo@univaq.it

 Aris Anagnostopoulos
 aris@diag.uniroma1.it

 Valentina Arrigoni
 valentina.arrigoni@unicredit.eu

 Giorgia Salvatori
 g.salvatori@reply.it

 Lorenzo Severini
 lorenzo.severini@unicredit.eu

1 Sapienza University, Rome, Italy
2 UniCredit, Milan/Rome, Italy
3 University of L’Aquila, L’Aquila, Italy
4 Target Reply, Rome, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-024-01314-w&domain=pdf

 Social Network Analysis and Mining (2024) 14:157 157 Page 2 of 17

2019; Toivonen et al. 2011; Yong et al. 2021) (see Fig. 1).1
Each of these graph-reduction approaches comes with its
own pros and cons, effectiveness, and suitability, depend-
ing on the application scenario at hand. Graph summariza-
tion is mainly appealing as, unlike graph compression, it
does not require to employ algorithms (and corresponding
software) that have been developed ad-hoc for handling the
data structures of a particular compression technique. Also,
unlike graph sparsification, it guarantees that each vertex of
the original graph forms a part of the output summary graph
(through the corresponding supernode).

All these peculiarites make graph summarization a prob-
lem particularly appealing for the social-network context,
where graphs to be processed are big, and keeping handling
(a size-reduced version of) them with standard methodolo-
gies and data structures is highly desirable for purposes of
generality and software reusability. This is eagerly required,
for example, in social-network analysis, which heavily relies
on well-established and acknowledged tools.

Motivation. Designing methods for producing summary
graphs has been an extremely active research area. A pleth-
ora of graph-summarization methods exist, based on various
design principles, and targeting different graph types and
applications; see Sect. 2.

Despite this extensive literature on graph summarization,
an aspect that has received limited attention is how to use
graph summaries for effective and efficient approximate
query processing. Existing general-purpose query-process-
ing methods on summary graphs (methods that depend on
no specific query type) reconstruct on-the-fly the input graph
(Hajiabadi et al. 2021; Lee et al. 2022; Kang et al. 2022a, b;
Shin et al. 2019). Conversely, existing methods that exploit
the summary graph only (without reconstructing the input
graph) are query-specific (Hajiabadi et al. 2021; LeFevre
and Terzi 2010; Riondato et al. 2014, 2017). To the best of

our knowledge, no query-processing method on summary
graphs exist that are general-purpose and use the summary
graph only.

Contributions In this paper, we fill this gap and study,
for the first time, the problem of general-purpose (approxi-
mate) query-processing on summary graphs (GPQPS). We
focus on input vanilla graphs (possibly directed and edge-
weighted), and summary graphs that have been produced in
a general (i.e., non-task-specific) and lossy way, and whose
form is a grouping of original vertices/edges into super-
nodes and superedges (see Definition 1). We are interested
in approximate graph query-processing methods that (1) are
independent of the query, (2) exploit the summary graph
only, (3) do not access/reconstruct the input graph (not even
partially), and (4) are agnostic of the specific method that
generated the summary graphs.

With these design principles in place, we devise two
methods for GPQPS. The first one simply processes queries
on a summary graph as if it was a normal graph. The second
method interprets a summary graph as an uncertain graph
(Khan et al. 2018), and adopts Monte-Carlo-sampling-based
query processing on it.

We remark that our GPQPS methods are not meant to be
sophisticated algorithms facing complex algorithmic/tech-
nical challenges. Nor are they required to advance the state
of the art, and, as such, achieve good experimental results,
perhaps outperforming existing methods. As such, our pri-
mary contribution in this paper is not really algorithmic.
Rather, here we are mainly interested in setting the stage of
the novel GPQPS problem. Hence, we purposely focus on
basic, immediate (but anyway principled) algorithms, with
the main goal of providing conceptual/experimental insights,
highlighting both pros and cons.

Conversely, we point out that providing a comprehen-
sive comparative evaluation of existing methods (summary-
graph–construction methods, graph-query-processing meth-
ods, etc.) is not our focus.

Benefits of this work include: (1) bringing to the atten-
tion of the graph-data-management community GPQPS, a

Fig. 1 Illustration of graph
summarization. In S2L ’s
reconstructed graph edge
weights are omitted (for every
edge (u, v) they are equal to
the weight of the superedge
between supernodes containing
u and v). In this work, we focus
on lossy graph summarization,
where summary graphs lead to
reconstructed graphs that do not
necessarily correspond to the
original graph

1 Although other notions of “summary graph” do exist in the graph-
summarization literature, in this work we consider the one that col-
lapses nodes and edges into supernodes and superedges (Defini-
tion 1), which is the most common one.

Social Network Analysis and Mining (2024) 14:157 Page 3 of 17 157

relevant, so-far overlooked problem that focuses on scal-
able graph processing; (2) figuring out the status of the
problem, by deeply investigating how and why it can(not)
be addressed satisfactorily with simple methodologies; (3)
stimulating and driving further research; (4) paving the
way for further improving existing graph-summarization
methods.

In general, we believe that setting the stage of GPQPS
helps support the large variety of data-management appli-
cations that depend on scalable graph query processing,
including social network analysis (Biafore and Nawab 2016;
Fazzone et al. 2022; Galimberti et al. 2021; Jin et al. 2023;
Lanciano et al. 2023; Mosa et al. 2017; ur Rehman et al.
2021). Among others, our study is particularly appealing
in an industry setting, as the GPQPS problem enables scal-
able graph data management, without requiring to change
the technology already in place in a company (e.g., graph
databases/platforms/software libraries).

Summary and roadmap. Our main contributions are as
follows:

• We study for the first time the problem of general-pur-
pose (approximate) query processing on summary graphs
(GPQPS), with the main goal of setting its stage—mainly
conceptually and experimentally—and defining a princi-
pled starting point on it for researchers and practitioners
(Sect. 3).

• We devise simple algorithms for GPQPS, which are
intended to be a reference for the problem and constitute
a basic bar, to be raised by future work (Sect. 4).

• We set up an evaluation methodology that constitutes
a benchmark testbed for this and future GPQPS stud-
ies (Sect. 5).

• We perform extensive experiments, to derive insights on
the practical impact and obstacles to an effective employ-
ment of the GPQPS methods (Sects. 6–7).

• We provide nontrivial directions for further research
(Sect. 8). In this regard, we remark that such direc-
tions are not as high-level as the usual ones of scientific
papers; rather, they are a concrete yet highly specific
roadmap that we could draw thanks to all the previously
listed contributions.

2 Preliminaries and related work

The problem of graph summarization (Liu et al. 2018) takes
as input a graph that, in the general case, is assumed to be
directed and edge weighted. Formally, we are given a tri-
ple G = (V ,E,w) , where V is a set of vertices, E ⊆ V × V
is a set of edges, (i.e., ordered pairs of vertices), and
w ∶ E → ℝ>0 is a function assigning a positive real-valued
weight to every edge. Should G be undirected, E is defined

as a set of unordered vertex pairs. Should G be unweighted,
then w(e) = 1 , ∀e ∈ E . A graph G = (V ,E,w) may alterna-
tively, yet equivalently, be represented with its adjacency
matrix M ∈ ℝ

|V|×|V| , where M[u, v] = w(u, v) , if (u, v) ∈ E ,
M[u, v] = 0 , otherwise, ∀u, v ∈ V .

Graph summarization relies on the key notion of sum-
mary graph:

Definition 1 (Summary graph) A summary graph (or,
simply, a summary) of a given graph G = (V ,E,w) is a
directed and (possibly) edge-weighted graph G = (S, E,�) ,
with vertices S , edges E ⊆ S × S , and edge-weighting
function 𝜔 ∶ E → ℝ>0 , such that every vertex u ∈ V is
assigned to one and only one S ∈ S : ∀S ∈ S ∶ S ⊆ V ,
∀S, T ∈ S, S ≠ T ∶ S ∩ T = � ,

⋃
S∈S = V . We term verti-

ces and edges of a summary supernodes and superedges,
respectively. The supernode to which a vertex u ∈ V belongs
is denoted by Su . E(S, T) = {(u, v) ∈ E ∣ u ∈ S, v ∈ T} and
�(S, T) =

∑
e∈E(S,T) w(e) denote the edges and the overall

edge weight between all the vertices of supernodes S and
T, respectively.

Simply speaking, a summary G = (S, E,�) of a graph
G = (V ,E,w) represents a partition of the vertices in V into
S supernodes. Superedges E are pairs (S, T) of supernodes,
which are unordered if the original graph is undirected, and
ordered otherwise. Superedges may possibly be assigned a
real-valued weight �(S, T) . However, a summary can simply
be unweighted (Kang et al. 2022a). This case is modeled by
setting �(S, T) = 1 , for all (S, T) ∈ E . Summary graphs admit
self-loops, that is, superedges of the form (S, S). In general,
a superedge (S, T), along with its possible weight �(S, T) ,
is meant to concisely represent the information about the
various edges in G that connect a vertex in S and some other
vertex in T.

From a summary we can derive the so-called recon-
structed graph:

Definition 2 (Reconstructed graph) Given a summary G of a
graph G, the reconstructed graph is a graph G� =(V ,E�,w�)
that is defined by properly exploiting G.

The definition of reconstructed graph is voluntarily left
general here, as it depends on the specific graph-summa-
rization method. Broadly speaking, the problem of graph
summarization consists in finding a summary of a given
graph such as to optimize some criteria that are typically
aimed at both (1) minimizing the difference between the
original graph and the reconstructed graph, and (2) keep-
ing the size of graph summarization’s output low (Liu et al.
2018). Specific formulations of graph summarization fall
into two main classes: size-driven and utility-driven, which
we overview below.

 Social Network Analysis and Mining (2024) 14:157 157 Page 4 of 17

Figure 1 illustrates the notions in Definitions 1 and 2.

Lossless vs. lossy graph summarization Regardless of
the formulation, graph summarization can be either lossless
or lossy. In the first case, the original graph can be recovered
exactly from the output of graph summarization. To guaran-
tee such an exactness, several graph-summarization methods
yield a correction set together with a summary graph (Ko
et al. 2020; Navlakha et al. 2008; Shin et al. 2019; Yong
et al. 2021), that is, edges to be added to or removed from
the reconstructed graph so as to make it actually correspond
to the input graph.

Conversely, a lossy graph-summarization output is not
required to allow for exactly recovering the input graph. As
such, lossy graph summarization typically outputs the sum-
mary only, with no correction set. In this work, we focus on
lossy graph summarization. Thus, we will not address the
notion of correction set further.

2.1 Size‑driven graph summarization

Let d(G,G) be an error function that quantifies how good
a summary G is for a graph G, in terms of the difference
between the reconstructed graph G′ and G. Given an integer
𝜅>0 , size-driven graph summarization looks for a summary
G with � supernodes that minimizes d(G,G) (Beg et al. 2018;
Lee et al. 2020; LeFevre and Terzi 2010; Liu et al. 2014;
Riondato et al. 2014, 2017; Toivonen et al. 2011). Existing
approaches of size-driven graph summarization differ from
each other in the specific error function employed.

The �p-reconstruction-error is a popular error function
(Beg et al. 2018; LeFevre and Terzi 2010; Riondato et al.
2014, 2017). Let pr(S, T) and �(S, T) be the probability of
existence and the average weight of an edge between super-
nodes S and T, respectively:

The lifted adjacency matrix given G is defined as a |V| × |V|
matrix M↑ whose M↑[u, v] cell contains the expected
weight of an edge between the supernodes of u and v:
M↑[u, v] = pr(Su, Sv) ⋅ �(Su, Sv) . The �p-reconstruction error
errp is defined as the entry-wise p-norm of the difference
between the adjacency matrix M of the input graph and M↑ ,
that is, errp(G,G) = ‖M −M↑‖p.

LeFevre and Terzi (2010) deal with err1 and propose a
greedy heuristic algorithm that resembles an agglomerative
hierarchical clustering using Ward’s method (Ward 1963).
Riondato et al. (2014, 2017) establish a connection between
errp-based graph summarization and �p

p-clustering, and
design algorithms with constant-factor approximation guar-
antees for err1 and err2 . Among Riondato et al.’s algorithms,

(1)
pr(S, T) = |E(S, T)|∕(|S| ⋅ |T|), �(S, T) = �(S, T)∕|E(S, T)|.

the S2L one targets err2 and employs k-median clustering,
which is tackled by Lloyd’s iterative approach (Lloyd 1982).

Beg et al. (2018) and Lee et al. (2020) develop techniques
that are mainly focused on improving the efficiency of the
aforementioned algorithms.

Other error functions adopted in the literature include cut-
norm error (Riondato et al. 2017), representation error (Liu
et al. 2014), and path-based error (Toivonen et al. 2011;
Zhou et al. 2017).

2.2 Utility‑driven graph summarization

This is the dual formulation of the size-driven counterpart:
given a utility function u(G,G) , which expresses how close
the graph reconstructed from summary G is to the input
graph G, find a summary G of minimum size, subject to the
constraint that u(G,G) is no less than a given threshold (Haji-
abadi et al. 2021; Khan et al. 2015; Ko et al. 2020; Kumar
and Efstathopoulos 2018; Navlakha et al. 2008; Shin et al.
2019; Yong et al. 2021). Navlakha et al. (2008) adopt a util-
ity function based on the representation error (see above).
Shin et al. (2019) introduce SWeG, a parallel algorithm
for Navlakha et al.’s formulation. Yong et al. (2021) further
improve SWeG through locality sensitive hashing (Indyk
and Motwani 1998). Khan et al. (2015) and Ko et al. (2020)
devise a set-based method and an incremental algorithm,
respectively, for a lossless variant of Navlakha et al.’s for-
mulation. Kumar and Efstathopoulos (2018) and Hajiabadi
et al. (2021) define the utility in terms of the importance of
the edges in the reconstructed graph. The importance of an
edge is computed according to any user-defined function
(e.g., edge centrality).

2.3 Summarizing weighted/directed graphs

Graph-summarization methods typically handle unweighted
and undirected graphs. A few methods (can be easily adapted
to) work for edge-weighted graphs (LeFevre and Terzi 2010;
Riondato et al. 2014, 2017; Toivonen et al. 2011; Zhou et al.
2017). As for directed graphs, to the best of our knowledge,
only Riondato et al. (2017) handle them: they propose to
decompose the input adjacency matrix into the sum of a
symmetric matrix and a skew-symmetric matrix, and com-
pute a summary for each of such matrices. The resulting
summaries still come with (constant-factor) approximation
guarantees, as the theoretical properties of their algorithms
carry over to skew-symmetric matrices.

2.4 Query processing on summary graphs

A graph summary corresponds to a succinct representation
of a graph (even though possibly lossy). As such, a major

Social Network Analysis and Mining (2024) 14:157 Page 5 of 17 157

use of a summary graph is to speedup query processing on
graphs.

Existing general-purpose (approximate) query-processing
methods (methods that depend on no specific query type)
assume that the basic primitive for graph queries corre-
sponds to retrieving the neighborhood of a vertex. Based on
this, such methods reconstruct on-the-fly a neighborhood
from the summary when processing the target query (Haji-
abadi et al. 2021; Lee et al. 2022; Kang et al. 2022a, b; Shin
et al. 2019). This strategy is beneficial for space complexity,
as it keeps in memory only the summary. However, it gives
no speedup in runtime, as reconstructed neighborhoods
are typically larger than actual neighborhoods, at least on
average.2

Conversely, existing methods to process graph queries
using the summary only (without reconstructing the input
graph) are ad-hoc defined for a few specific queries, for
instance, degree (LeFevre and Terzi 2010; Riondato et al.
2014, 2017), triangle counting (Riondato et al. 2014, 2017),
eigenvector centrality (LeFevre and Terzi 2010; Riondato
et al. 2014, 2017), or, in the case of lossless summaries,
PageRank and shortest path (Hajiabadi et al. 2021).

To the best of our knowledge, the problem of general-
purpose query-processing on summary graphs without
reconstructing the input graph has never been tackled. In
this paper, we fill this gap.

2.5 Other (marginally) related literature

Experimental evaluationsKang et al. (2022a) evaluate how
useful are weights on superedges of summary graphs. They
focus on errp and the size of the reconstructed graph, as well
as PageRank and vertex-proximity queries. Unlike our work,
those queries are evaluated by reconstructing on-the-fly the
input graph from the summary.

Besta et al. (2019) devise a programming model, a frame-
work, and a query-processing evaluation for what they term
lossy graph compression. By this term they mean “any
scheme that removes some parts of graphs,” thus, some-
thing that goes beyond graph summarization. Among the
techniques tested by Besta et al., there is one graph-summa-
rization method, specifically SWeG (Shin et al. 2019) (see
above). However, the query-processing evaluation performed
by Besta et al. on SWeG is carried out by recostructing the
whole graph from SWeG ’s summary. This differs from the
evaluation we perform in this work, which operates on the
summary without reconstructing the graph.

Other types of summary Summary graphs may have a
form other than the one in Definition 1: they can describe a
graph in terms of a given “vocabulary” of subgraph struc-
tures (e.g., stars, cliques, chains) (Koutra et al. 2014), or
have a hierarchical structure (Lee et al. 2022). Those alter-
native types of summary are out of the scope of this work.

Problem variants of vanilla graph summarization
include meta-graph summarization, whose goal is to apply
meta-methods on top of basic graph-summarization meth-
ods, so that the resulting summaries exhibit properties that
do not otherwise hold (e.g., vertex degree preservation in
superedges (Zhou et al. 2021)); personalized graph summa-
rization (Kang et al. 2022b), where summaries are tailored
to a given set of target vertices; or summarization of more
complex types of graph, such as dynamic/temporal graphs
(Gou et al. 2019; Jiang et al. 2023; Tsalouchidou et al. 2020),
or multi-relation graphs (Ke et al. 2022).

Query-specific graph summarization All the discus-
sions so far are about summaries that are query-agnostic,
that is, not tailored to any specific queries. There exist query-
specific graph-summarization approaches too, for queries
such as reachability, distance, neighborhood, community
membership (Fan et al. 2012, 2021, 2022; Hernández and
Navarro 2014; Maserrat and Pei 2010; Sadri et al. 2017).
Query-specific graph summarization is not a focus of this
work.

Related problems There exist problems that are similar
in spirit to graph summarization, while still being different.
The one that is usually termed graph compression (though
there is no uniformity in the nomenclature in the literature)
is concerned with developing data structures (and algorithms
to manipulate them) to store (and retrieve) an exact represen-
tation of a graph using the minimum possible space (Besta
and Hoefler 2018; Boldi et al. 2009; Boldi and Vigna 2004).
A major difference with respect to graph summarization is
that graph compression is not general: one needs to stick
to the algorithms (and corresponding software) that have
been ad-hoc developed for handling the data structures of
that particular compression technique. Further differences
include the fact that, typically, graph compression is lossless
and operates at a lower level of graph representation (e.g.,
at a bit-level).

Graph sparsification (or graph simplification, or graph
backboning) consists in reducing a graph by removing
edges/vertices. As such, graph sparsification differs from
graph summarization as it may completely discard parts of
the graph in its output, while graph summarization guar-
antees that at least every vertex is part of the output sum-
mary. Another difference is that, although a few general
approaches exist (Coscia and Neffke 2017; Serrano et al.
2009; Slater 2009), graph sparsification is mostly tailored to
preserve specific properties, such as shortest paths, degree
distribution, or spectral properties (Fung et al. 2019; Ahn

2 Experimental evidence of this claim is reported in Lee et al. (2022),
for PageRank, triangle counting, breadth first search, and shortest
path queries.

 Social Network Analysis and Mining (2024) 14:157 157 Page 6 of 17

et al. 2012; Spielman and Teng 2011; Zeng et al. 2021; Zhou
et al. 2010).

Graph clustering aims at finding groups of vertices with
high intra-cluster connectivity and inter-cluster separation
(Aggarwal and Wang 2010b; Schaeffer 2007). This differs
from graph summarization, which groups vertices with simi-
lar connection patterns with the rest of the graph.

3 Problem statement

Graph queries A (graph) query Q is a computable function
whose input is a graph G = (V ,E,w) and (query) context C , and
whose output is an object from a certain domain OQ.3 Context C
identifies the complementary input of the query. It may corre-
spond to pairs or sets of vertices, subgraphs, functions, numeri-
cal values, and so on, or it can also be empty. The output of a
query Q (with context C) on a graph G is denoted by Q(G, C) ,
and is alternatively termed the answer of Q on G. The answer
of a query can be a Boolean, a numerical value, a set of vertices,
a subgraph, a partition of the vertices, and so on. For instance,
global queries computing numerical statistics on G (e.g., num-
ber of triangles, clustering coefficient, diameter) have C = � and
OQ = ℝ . Node embedding queries take a vertex u as a context
C , and output a d-dimensional numerical vector representing
the embedding of u (thus, OQ = ℝ

d). Inner-most core queries
have C = � , and the output is the vertices of the k-core (Batagelj
and Zaversnik 2011) of G with the highest k (thus, OQ = 2V).
Reachability queries (in directed graphs) take an ordered vertex
pair (u, v) as a context C , and output a Boolean stating whether v
is reachable from u (thus, OQ = {�, �}). In top-ranked central-
ity queries, C corresponds to an integer s, and the output is the
top-s—ranked vertices according to a certain centrality (thus,
OQ = 2V). In community detection queries, C either contains the
parameters of the algorithm to be used (e.g., number of com-
munities), or is empty if the algorithm at hand is parameterless,
and the output is a partition of V (thus, OQ = BV , where BV
denotes the set of all possible partitions of V). In this work, we
restrict our study to query answers that are either numerical or
sets/partitions of vertices (i.e., OQ ∈ {ℝd, 2V ,BV}). Adaptation
of our methodologies to other forms of answer is possible with
relatively low effort. Anyway, we defer a more rigorous study
of this to future work.

Answering queries from summaries We focus on a
scenario where the answer to a query is approximated by
exploiting solely a summary G of a graph G, without access-
ing G at all. Also, we require query processing to be agnostic

of both the specific query and the graph-summarization tech-
nique that has produced G . Specifically, we are interested in
what we term summary-based approximate query answers:

Definition 3 (Summary-based approximate query answer)
Given a graph G, a summary G of G, and a query Q on G
with context C , a summary-based approximate answer to
Q on G—denoted Q̃(G,G)—is an approximation of Q(G, C)
obtained by making use only of G.

GPQPS problem With the above notation and discus-
sion in place, we can now state the problem that we tackle
in this work:

Problem 1 (General-Purpose Query Process-
ing on Summary graphs (GPQPS)) Given a sum-
mary G of a graph G, and a query Q on G with context C ,
compute Q̃(G,G) that is the closest to Q(G, C).

Simply speaking, Problem 1 asks for summary-based
query answers which approximate well the true answer to
the given query.

4 Algorithms

Naïve-GPQPS algorithm As a very first, simple method
for Problem 1 we consider the one where a query Q is pro-
cessed on summary G as if it were a normal graph, with the
only precaution of letting each vertex u in the input graph
G conceptually be identified with the supernode Su of G it
belongs to, and vice versa. To be more precise, let us intro-
duce the following notions:

Definition 4 (Summary-aware query context) Given con-
text C of a query Q on a graph G, the summary-aware query
context of C on a summary G of G—denoted by CG—is a
copy of C where every vertex u ∈ C is replaced with the
supernode Su of G it belongs to.

Definition 5 (Summary-processed query answer) Let Q
be a query on a graph G with context C , G be a summary
of G, and CG be the summary-aware context of C on G . The
summary-processed answer to Q on G—denoted by Q(G, CG)
—is the answer obtained by processing Q on G with context
CG as if G were a normal graph.

The simple method considered here is termed Naïve-
GPQPS , and is outlined as Algorithm 1. It computes a
summary-processed query answer Q(G, CG) , then derives
a summary-based approximate query answer Q̃(G,G) , dis-
tinguishing two cases, based on Q’s output domain. If the
answer to Q is numerical (e.g., a global statistic, such as

3 In this work, we consider solely queries that operate on graphs.
Thus, we hereinafter use the terms “graph query” and “query” inter-
changeably. Moreover, our notion of query corresponds to what is
termed “query class” in some existing works (Fan et al. 2012, 2021,
2022).

Social Network Analysis and Mining (2024) 14:157 Page 7 of 17 157

clustering coefficient or diameter, or a property of a ver-
tex, such as a centrality score or an embedding vector), the
answer obtained on the summary is interpreted as is as the
ultimate answer to the given query, up to a multiplicative
factor c ∈ ℝ

d , that is, Q̃(G,G) = c◦Q(G, CG) , where “ ◦ ”
denotes Hadamard (i.e., element-wise) product. Instead, if
the answer is in the form of a set of subsets of vertices, then
Q(G, CG) will be a set of subsets of supernodes, and Q̃(G,G)
corresponds to a set of subsets of vertices derived by taking
the union of all the supernodes in each of the output super-
node subsets. Note that 2V ⊂ 22

V , BV ⊂ 22
V , thus the latter

covers also the special cases where Q’s answer is a single
subset of vertices (e.g., the inner-most core) or a partition of
the vertices (e.g., a community structure).4

Algorithm 1 Naïve-GPQPS

Example 1 Consider a clustering-coefficient query Q on
a graph G, i.e., a query whose output is a scalar numeri-
cal value corresponding to the average clustering coeffi-
cient over all the vertices of G. For this query, C = � , and
c = [1] . The execution of Algorithm 1 on a summary G of
G for this clustering-coefficient query Q is as follows. First,
summary-aware context information CG is computed from C
and G . As C = � , CG = � as well. Then, summary-processed
query answer Q(G, CG) is computed. Q(G, CG) corresponds to
the average clustering coefficient over all the supernodes of
G . Finally, the ultimate output Q̃(G,G) of the algorithm is
exactly equal to Q(G, CG) , as the query at hand is numerical
and c = [1].

Probabilistic-GPQPS algorithm The probabilistic
interpretation of, among others, errp (cf. Sect. 2) suggests to
model a summary as an uncertain (or probabilistic) graph,
that is, a graph whose edges are assigned a probability of
existence:

Definition 6 (Uncertain graph) An uncertain (or proba-
bilistic) graph is a triple � = (V ,E,�) , where V is a set of
vertices, E ⊆ V × V is a set of edges, and � ∶ E → (0, 1] is a
function assigning existence probabilities to edges. Accord-
ing to the possible-world semantics (Abiteboul et al. 1987;
Dalvi and Suciu 2004), an uncertain graph � = (V ,E,�) is
interpreted as a set {G = (V ,EG)}EG⊆E

 of 2|E| deterministic
graphs (worlds), each defined by a subset of E. Assuming
independence among edge probabilities (Khan et al. 2018),
the probability of observing any possible world G = (V ,EG)
drawn from � is Pr(G) =

∏
e∈EG

�(e)
∏

e∈E⧵EG
(1 − �(e)).

Our second GPQPS method, Probabilistic-GPQPS
(Algorithm 2), is based on the interpretation of a sum-
mary as an uncertain graph. It takes as input a summary
G = (S, E,�) and a function � ∶ E → (0, 1] assigning

existence probabilities to superedges. Function � can be
defined, for example, as the expected number of edges
between two supernodes (as in errp , see Equation (1)).
However, the algorithm is independent of the definition
of � . Also, no relationship is required between � and G :
� may have been (as, for example, the S2L graph-summa-
rization method; see Sect. 2), or may have not been (e.g.,
the SWeG method) exploited for computing G . Given G
and � , Probabilistic-GPQPS defines an uncertain summary
graph as G� = (S, E,�) , and adopts a consolidated Monte-
Carlo—sampling query-processing methodology on uncer-
tain graphs, which consists in processing a query on a set of
random possible worlds drawn from G� , and then aggregat-
ing the answers obtained for each such worlds (Khan et al.
2018). A possible world W = (S, E

W
,�) is drawn from G�

by generating a number r(S, T) ∈ [0, 1] uniformly at random
for every superedge (S, T) ∈ E , and adding (S, T) to E

W
 if

r(S, T) ≤ �(S, T) . On every world W the query is processed

4 2V ⊂ 22
V slightly abuses notation: ∀x ∈ 2V , {x} ∈ 22

V.

 Social Network Analysis and Mining (2024) 14:157 157 Page 8 of 17

with Naïve-GPQPS (Algorithm 1). Query-answer aggrega-
tion is performed by: averaging over all individual answers
(for numerical queries), or taking the intersection of all the

vertex sets obtained as an answer on each world (for queries
returning a single vertex set), or via clustering aggregation
(Gionis et al. 2007) (for queries returning a vertex partition).

Table 1 Characteristics of the selected datasets (|V|: #vertices;
|E|: #edges) and summaries (|S| : #supernodes; |E| : #superedges;
#CCs: #connected components; | GCC | : size of the giant connected

component (%); #self: #self-loops; Cpr.: compression defined as
1 − (|V| + |S| + |E|)∕(|V| + |E|) (%))

Characteristics S2L Summaries SWeG Summaries

|S| 350 500 750 |S| 708 977 1168
|V|: 4,039 |E| 8462 14,390 24,327 |E| 664 2157 4448

Facebook (Leskovec and Krevl 2014) |E|: 88,234 #CCs 1 1 1 #CCs 240 18 38
Undirected | GCC | 100% 100% 100% | GCC | 20% 77% 79%
Unweighted #self 264 280 323 #self 11 22 36

Cpr. 86% 79% 68% Cpr. 94% 92% 90%
|S| 500 750 1000 |S| 3375 3568 3821

|V|: 7429 |E| 6835 10,350 12,768 |E| 1217 1550 1997
LastFM (Leskovec and Krevl 2014) |E|: 27788 #CCs 1 1 1 #CCs 2169 . 2076. 1966

Undirected | GCC | 100% 100% 100% | GCC | 1% 11% . 26%
Unweighted #self 133 176 185 #self 6 10 17

Cpr. 58% 47% 40% Cpr. 66% 64% 62%
|S| 1000 1500 2000 |S| 22,832 23,957 24,371

|V|: 33,696 |E| 50,872 68,405 81,444 |E| 10,160 28,825 44,086
Enron (Leskovec and Krevl 2014) |E|: 180,811 #CCs 1 1 1 #CCs 14,537 7159 6056

Undirected | GCC | 100% 100% 100% | GCC | 19% 64% 70%
Unweighted #self 231 303 397 #self 557 702 749

Cpr. 68% 61% 54% Cpr. 69% 60% 52%
|S| 500 750 1000 |S| – – –

|V|: 6301 |E| 2016 3383 5000 |E| – – –
Gnutella (Leskovec and Krevl 2014) |E|: 20,777 #CCs 1 1 1 #CCs – – –

Directed | GCC | 100% 100% 100% | GCC | – – –
Unweighted #self 5 6 12 #self – – –

Cpr. 60% 52% 45% Cpr. – – –
|S| 350 500 750 |S| – – –

|V|: 3024 |E| 35,346 55,276 82,589 |E| – – –
Ubuntu (Fu et al. 2019) |E|: 144,094 #CCs 1 1 1 #CCs – – –

Undirected | GCC | 100% 100% 100% | GCC | – – –
Weighted #self 67 86 110 #self – – –

Cpr. 74% 60% 41% Cpr. – – –
|S| 1000 10,000 25,000 |S| 1,087,434 1,087,430 1,103,931

|V|: 1,696,415 |E| 39,064 461,826 983,129 |E| 1,704,954 1,857,562 2,073,416
AS-Skitter (Leskovec and Krevl 2014) |E|: 11,095,298 #CCs 4 38 73 #CCs 204,299 200,833 181,766

Undirected | GCC | 99.6% 99.7% 99.6% | GCC | 70.1% 72.7% 75.9%
Unweighted #self 671 5306 10,746 #self 11,936 11,955 12,325

Cpr. 86% 83% 79% Cpr. 65% 64% 62%

Social Network Analysis and Mining (2024) 14:157 Page 9 of 17 157

Algorithm 2 Probabilistic-GPQPS

Example 2 Consider again the clustering-coefficient query
Q of Example 1. The execution of Algorithm 2 on a sum-
mary G of G for this clustering-coefficient query Q is as fol-
lows. First, possible worlds W1,… ,WK are sampled from
G� = (S, E,�) . Then, query answer Q̃(G,Wi) is computed on
every world Wi , by running Algorithm 1. Finally, the ulti-
mate output Q̃(G,G) of the algorithm is equal to the average
1

K

∑K

i=1
Q̃(G,Wi) over all the various Q̃(G,Wi)’s, as the query

at hand is numerical.

5 Experimental methodology

Datasets We experiment with public datasets, most of which
are traditionally used in the graph-summarization literature
(Kang et al. 2022b; Ko et al. 2020; Lee et al. 2020; Riondato
et al. 2017; Shin et al. 2019), and whose characteristics are
reported in Table 1. Regarding the ones composed of multi-
ple connected components (LastFM, Enron), we retain only
the giant component.

Graph-summarization methods To generate summa-
ries, we selected one representative per category of graph-
summarization approach (see Sect. 2), namely size-driven
S2L (Riondato et al. 2017) and utility-driven SWeG (Shin
et al. 2019). These two methods differ in the type of input
graph and output summary: S2L handles possibly directed/
weighted graphs and produces weighted summaries, whereas
SWeG handles only undirected and unweighted graphs, and
yields unweighted summaries. This way, we cover a rea-
sonably complete and diverse spectrum of testbeds for our
GPQPS methods. We report results in correspondence of
various different sizes of the resulting summary graphs.

We used a SWeG ’s unofficial implementation (Hajiabadi
et al. 2021). As for S2L, although it is capable of handling
weighted/directed graphs, its official implementation (Rion-
dato et al. 2017) supports unweighted and undirected graphs

only. Thus, we also developed a custom S2L ’s implementa-
tion, and used it on weighted, directed, and smaller graphs.
Instead, we used S2L ’s official implementation for the
remaining graphs.

Queries We selected queries for all the classes discussed
in Sect. 3: clustering coefficient, representative of numerical
queries (answer ∈ ℝ); community detection, representative
of partitioning queries (answer ∈ BV); top-ranked centrality
and core decomposition, representatives of vertex-set queries
(answer ∈ 2V).

Clustering coefficient refers to the average of the indi-
vidual clustering coefficient of every vertex in the graph.
Community detection’s output is a partition of the input ver-
tices into communities, computed with the well-established
Louvain algorithm (Blondel et al. 2008). Centrality queries
include PageRank, and closeness. As for core decomposi-
tion (Batagelj and Zaversnik 2011), we consider the vertex
set corresponding to the union of the top-z inner-most cores
(z∈{1, 2, 5}). For all our queries apart from core decom-
position, we used the corresponding implementations in
NetworkX (Hagberg et al. 2008). For core decomposi-
tion, we used a custom implementation of the classic Bat-
agelj and Zaversnik’s algorithm (Batagelj and Zaversnik
2011) (as NetworkX’s implementation does not support
weighted graphs).

GPQPS methods We evaluate Naïve-GPQPS and
Probabilistic-GPQPS (Algorithms 1 and 2). On S2L sum-
maries, we test two variants of Naïve-GPQPS : “N ” and “N
w,” which either consider (N w) or discard (N) superedge
weights, and three variants of Probabilistic-GPQPS : “P,”
“P a,” and “P e,” depending on the weight considered for
every superedge (S, T) in the sampled worlds: no weight
(P), average weight �(S, T) (P a), and expected weight
pr(S, T) ⋅ �(S, T) as defined in Eq. (1) (P e). On summa-
ries computed with SWeG, we consider N only, as SWeG
produces no superedge weights. We defer to future work
the investigation of the other GPQPS variants on SWeG ’s

 Social Network Analysis and Mining (2024) 14:157 157 Page 10 of 17

summaries coupled with other-party superedge weightings
(e.g., the one by S2L). Unless otherwise specified, for all
the Naïve-GPQPS variants, we set c = |Su| for PageRank
queries of every vertex u, and c = 1 for all other numerical
queries. Instead, parameters for all the Probabilistic-GPQPS
variants are: K = 100 ; � is set equal to function pr in Eq. (1);
for clustering aggregation in vertex-set queries we use (a
custom implementation of) Topchy et al.’s algorithm (Top-
chy et al. 2003).

Assessment criteria We assess accuracy, efficiency,
and space requirements of the GPQPS methods. Effi-
ciency is measured simply in terms of query-processing
runtime. Regarding space, note that a summary requires
O(|V| + |S| + |E|) space (to store supernodes, superedges,
vertex-to-supernode assignment), as opposed to O(|V| + |E|)
space required by the original graph. Hence, we assess the
gain in space of GPQPS methods by means of compression
percentage 1 − (|V| + |S| + |E|)∕(|V| + |E|) (the higher, the
better).

Accuracy depends on the specific query. For clustering
coefficient, we measure the relative error of the answer
obtained via GPQPS with respect to the answer in the origi-
nal graph. For community detection, we consider the relative
error of the modularity (Newman and Girvan 2004) of the
communities yielded by GPQPS with respect to the modular-
ity of the communities computed in the original graph. For
both queries, the relative error is defined as |(qG − qG)∕qG|
where qG is the query answer in the graph G and qG is the
query answer in G , the summary of G.

Regarding centrality, a direct comparison of centrality
scores is not really meaningful. Instead, we compare the
centrality rank (ties broken randomly) of all the vertices
obtained in the original graph and via GPQPS (for the cen-
tralities considered in this work, higher scores correspond
to better ranks). More specifically, for integer g (resp. s)
∈ {1,… , |V|} , we take the centrality score xg (resp. xs) of
the gth (resp. sth) vertex in the centrality ranking within
the original graph (resp. via GPQPS), and define the g-set
(resp. s-set) as the set of vertices with centrality score no less
than xg (resp. xs). To ultimately assess a centrality query, we
measure the precision P = |g-set ∩ s-set |∕|s-set | and the
recall R = |g-set ∩ s-set |∕|g-set | of the s-set with respect to
the ground-truth g-set. In our experiments, we set g = 100 ,
and vary s ∈ {100, 200, 500} . The rationale here is to assess
to what extent the top-g central vertices (according to the
original graph) are part of the top-s central vertices (accord-
ing to GPQPS). On AS-Skitter, computing closeness for all
the vertices is infeasible, because of its large size. Thus, on
that dataset, we compute closeness on a subset of one thou-
sand randomly sampled vertices.

As for core decomposition, we assess it similarly to
centrality. We take the inner-most core C∗ of the graph
as a ground-truth vertex set, the top-z inner-most cores

{Cz ∣ z ∈ {1, 2, 5}} computed by GPQPS, and we meas-
ure the precision P = ||Cz ∩ C∗||∕||Cz

|| and the recall
R = ||Cz ∩ C∗||∕|C∗| , for all z ∈ {1, 2, 5}.

Environment We run all experiments with no paralleli-
zation on a single machine equipped with a Dual 20-Core
Intel Xeon E5-2698 v4 2.20GHz CPU and 512GB RAM.

6 Experimental results

Storage space Table 1 shows the compression percentages
of the various summaries. Those percentages attest how
GPQPS methods (which, we recall, need to keep in memory
the summary only) are able to consistently reduce the space
requirements.

Effectiveness and efficiency results are reported in
Tables 2, 3, 4. and 5.

Because of lack of space, we report results with varying
the summary size for clustering coefficient and community
detection queries, and for the other queries we show results
for one summary size only. Results with other summary
sizes are in the supplementary material (Anagnostopou-
los et al. 2024).

General remarks As expected, the accuracy and runtime
overall increase as the the summary size increases. Regard-
ing accuracy, a few exceptions may arise with the Proba-
bilistic-GPQPS variants as well as on SWeG summaries
(e.g., clustering-coefficient relative errors on Gnutella and
AS-Skitter, for both S2L and SWeG). A motivation for
this relies on the degree of connectedness of a summary (in
general or in the various sampled worlds): a larger, worse-
connected summary may lead to less effective query pro-
cessing than a smaller, better-connected summary.

The Naïve-GPQPS variants are evidently faster than
actual query processing on the input graph. The speedup
depends on dataset and summary sizes, and expensiveness
of the query. However, it is always tangible (up to 4 orders
of magnitude).

The Probabilistic-GPQPS variants are faster than actual
query processing only for large graphs and expensive queries
(e.g., closeness centrality). However, these methods can still
be useful for smaller graphs/inexpensive queries as (1) they
lead to storage-space savings nonetheless, and (2) their com-
putation over individual worlds may be easily parallelized
(we note that the reported runtimes of P, P a, and P e refer
to a sequential execution of them).

Clustering coefficient (Tables 2 and 3). As for S2L summa-
ries, in most cases, relative errors are rather low, mostly
concentrated around a [0.2, 0.3] range. Exceptions to this are
on Ubuntu for the GPQPS methods that discard superedge

Social Network Analysis and Mining (2024) 14:157 Page 11 of 17 157

Table 2 GPQPS results for
clustering coefficient and
community detection queries
with S2L (Riondato et al. 2017)
summaries

“A ” means actual query processing on the original graph

Method Clustering coefficient Community detection (modularity)

Relative error Runtime (s) Relative error Runtime (s)

Facebook #supernodes: 350 500 750 350 500 750 350 500 750 350 500 750
#superedges: 8k 14k 24k 8k 14k 24k 8k 14k 24k 8k 14k 24k
A – 1.69 – .86
N .263 .21 .138 .121 .261 .548 .124 .101 .038 .06 .11 .24
N w .466 .367 .284 .864 1.74 3.01 .116 .043 .043 .06 .11 .23
P .034 .025 .01 1.12 3.3 7.45 .069 .047 .052 1.11 1.88 4.09
P a .034 .025 .01 5.92 18.6 42.6 .058 .045 .052 .97 2.02 3.81
P e .207 .161 .128 6.26 19.4 43.4 .115 .106 .065 .99 1.83 4.03

LastFM #supernodes: 500 750 1k 500 750 1k 500 750 1k 500 750 1k
#superedges: 7k 10k 13k 7k 10k 13k 7k 10k 13k 7k 10k 13k
A – .215 – .61
N 1.67 1.31 1.13 .069 .111 .141 .342 .309 .262 .06 .11 .13
N w .002 .075 .048 .263 .396 .452 .329 .299 .268 .16 .12 .29
P 1.02 .857 .755 .456 .769 1.08 .388 .334 .321 .95 1.48 2.08
P a 1.02 .857 .755 1.53 2.51 3.36 .37 .317 .332 1.01 1.56 1.93
P e .766 .64 .579 1.56 2.54 3.42 .353 .317 .278 .92 1.58 2.12

Enron #supernodes: 1k 1.5k 2k 1k 1.5k 2k 1k 1.5k 2k 1k 1.5k 2k
#superedges: 51k 68k 81k 51k 68k 81k 51k 68k 81k 51k 68k 81k
A – 3.97 – 6.58
N .132 .198 .244 1.64 2.09 2.25 .271 .215 .218 .54 .67 1.36
N w .666 .632 .613 6.87 8.06 8.16 .23 .201 .18 .51 .77 1.74
P .273 .308 .31 1.08 16.6 22.3 .301 .325 .312 6.97 11.1 17.6
P a .279 .309 .312 38 59.1 73.7 .318 .322 .317 6.61 10.5 20.7
P e .37 .383 .381 38.6 6.45 75.5 .238 .223 .223 7.33 13.1 21.5

Gnutella #supernodes: 500 750 1k 500 750 1k 500 750 1k 500 750 1k
#superedges: 2k 3k 5k 2k 3k 5k 2k 3k 5k 2k 3k 5k
A – .128 – 1.13
N 39.9 34.8 30.1 .017 .033 .055 .947 .914 .865 .05 .1 .15
N w 1.28 .677 .422 .035 .064 .1 .954 .910 .863 .05 .11 .16
P .017 .19 .3 .067 .108 .168 1.02 1.02 1.01 1.28 1.94 2.37
P a .017 .19 .3 .085 .142 .268 1.02 1.02 1 1.5 2.26 2.32
P e .003 .222 .345 .085 .142 .238 1.02 1.01 1.02 1.19 1.69 2.4

Ubuntu #supernodes: 350 500 750 350 500 750 350 500 750 350 500 750
#superedges: 35k 55k 83k 35k 55k 83k 35k 55k 83k 35k 55k 83k
A – 33.5 – 1.79
N 1316 1208 1075 .999 2.28 3.5 .838 .733 .656 .26 .4 .86
N w 1.18 .526 .123 11.4 19.5 28.1 .130 .093 .055 .29 .49 .76
P 1231 1150 1058 14.9 31.2 52.6 .788 .783 .66 4.76 7.69 12.9
P a 1.88 1.07 .509 145 244 371 .202 .117 .078 5.31 8.37 13.4
P e 1.77 .982 .439 146 246 379 .153 .114 .069 4.99 7.94 14.8

AS-Skitter #supernodes: 1k 10k 25k 1k 10k 25k 1k 10k 25k 1k 10k 25k
#superedges: 39k 462k 983k 39k 462k 983k 39k 462k 983k 39k 462k 983k
A – 1.6k – 440
N 1.58 .8 .56 1.54 53.8 106 .544 .342 .283 .381 6.32 14.9
N w .92 .815 .754 8.03 118 217 .518 .35 .289 .452 7.09 18.7
P .44 .191 .155 .417 30.9 147 .632 .5 .455 45.1 92.7 204
P a .184 .129 .117 3.95 133 593 .734 .609 .509 47.9 91.8 216
P e .657 .451 .402 1.3 109 433 .666 .465 .416 96.6 104 234

 Social Network Analysis and Mining (2024) 14:157 157 Page 12 of 17

weights (N, P). This is not surprising, as Ubuntu is a
weighted graph. Between Naïve-GPQPS and Probabilistic-
GPQPS (looking at their best-performing variants in each
dataset) there is no clear winner, as each method achieves
better performance in 3 out of 6 datasets. No winner is
between N and N w either: this meets literature evidence
that superedge weights are useful or not, depending on the
dataset (Kang et al. 2022a). A similar finding arises compar-
ing the Probabilistic-GPQPS variants to each other. As for
SWeG summaries, GPQPS the performance is high on sum-
maries that are not too sparse (e.g., Facebook, AS-Skitter),
but it drops on very sparse summaries (e.g., LastFM).

Community detection (Tables 2 and 3). Results here are
broadly in line with the ones of clustering coefficient.
Error values are slightly lower, but still mostly falling into
a [0.2, 0.3] range. Again, the unweighted GPQPS methods
(N, P) do not achieve good results on Ubuntu. A difference
with respect to clustering coefficient is that GPQPS does not
perform well on Gnutella (relative errors around 1). A moti-
vation for this could be that Gnutella is a directed graph.
Performance on Gnutella is not particularly good for other
queries too (see next), at least for some GPQPS methods.
This suggests that, perhaps, GPQPS is still not mature for
handling directed graphs, at least not with the current graph-
summarization methods for directed graphs.

PageRank centrality (Tables 4 and 5)). As expected, increas-
ing the number s of the summary-retrieved vertices, leads

to decreasing precision and increasing recall. On S2L sum-
maries, the GPQPS methods are particularly good at recall:
for s=500 , the recall of the best Naïve-GPQPS and Prob-
abilistic-GPQPS variants is ∈ [0.7, 1] across all datasets.
Precision results are worse, but still overall reasonable, and
even very high on some datasets (e.g., on Ubuntu from 0.8
to 0.97, for s = 100). This behavior is not surprising, as it is
inherent in the design principles of the evaluation for these
queries, where the summary-retrieved vertex sets tend to
be larger than the ground-truth sets, and this clearly favors
recall, not precision. As with the previous queries, there is
no clear winner or looser among the GPQPS variants. On
the negative side is Probabilistic-GPQPS ’s results on Gnu-
tella, explained by the nature of that dataset (directed), as
mentioned previously. Again, the performance of SWeG on
sparser summaries is much worse than the performance on
denser summaries.

Closeness centrality (Tables 4 and 5). Results here are
mostly in accordance with PageRank, with an overall slight
decrease in the various precision and recall scores. This is
not surprising, because closeness centrality is a harder query
for GPQPS. Indeed, the closeness score is less robust than
PageRank to the disappearing of paths between vertices
when switching from the original graph to the summary,
as we discuss in Sect. 7. An important remark here is that
the efficiency results on AS-Skitter are not very reliable,
because for this large dataset we compute closeness of only
one thousand randomly sampled vertices. Therefore, the

Table 3 GPQPS results for clustering coefficient and community detection with SWeG (Shin et al. 2019) summaries

“A ” means actual query processing on original graph

Dataset Method Clustering coefficient Community detection (modularity)

Relative error Runtime (s) Relative error Runtime (s)

Facebook #supernodes 708 977 1.2k 708 977 1.2k 708 977 1.2k 708 977 1.2k
#superedges 664 2.2k 4.4k 664 2.2k 4.4k 664 2.2k 4.4k 664 2.2k 4.4k
A – 1.69 – .86
N .652 .404 .228 .006 .014 .036 .23 .204 .21 .03 .06 .08

LastFM #supernodes 3.4k 3.6k 3.8k 3.4k 3.6k 3.8k 3.4k 3.6k 3.8k 3.4k 3.6k 3.8k
#superedges 1.2k 1.6k 2k 1.2k 1.6k 2k 1.2k 1.6k 2k 1.2k 1.6k 2k
A – .215 – .61
N .991 .951 .924 .012 .015 .017 .703 .511 .512 .19 .28 .33

Enron #supernodes 23k 24k 24.4k 23k 24k 24.4k 23k 24k 24.4k 23k 24k 24.4k
#superedges 10k 29k 44k 10k 29k 44k 10k 29k 44k 10k 29k 44k
A – 3.97 – 6.58
N .907 .773 .568 .196 .416 .773 .731 .464 .412 2.39 2.15 2.74

AS-Skitter #supernodes 1.1M 1.1M 1.1M 1.1M 1.1M 1.1M 1.1M 1.1M 1.1M 1.1M 1.1M 1.1M
#superedges 1.7M 1.9M 2.1M 1.7M 1.9M 2.1M 1.7M 1.9M 2.1M 1.7M 1.9M 2.1M
A – 1.6k – 440
N .044 .071 .076 60.8 76.8 78.4 .679 .675 .688 197 192 206

Social Network Analysis and Mining (2024) 14:157 Page 13 of 17 157

Table 4 GPQPS results for centrality and core decomposition queries with S2L (Riondato et al. 2017) summaries

“A ” stands for actual query processing on the original graph. Metrics for centralities: runtime (s), and precision (P) and recall (R) with vary-
ing the number of top-s-ranked vertices in the summary (w.r.t. the “ground-truth” of top-100-ranked vertices in the original graph). Closeness-
centrality results on AS-Skitter refer to a subset of 1000 randomly-sampled vertices. Metrics for core decomposition: runtime (s), and precision
(P) and recall (R) with varying the number of top-z innermost cores in the summary (w.r.t. the “ground-truth” innermost core C∗ of the original
graph)

Dataset Method PageRank centrality Closeness centrality Core decomposition

runt. s=100 s=200 s=500 runt. s=100 s=200 s=500 runt. z=1 z=2 z=5

P R P R P R P R P R P R P R P R P R

Facebook #supernodes: 500, #superedges: 14,390
A 2.2 – 23 – .64 –
N .98 .26 .26 .21 .43 .13 .64 .43 .22 .22 .15 .31 .08 .41 .11 .99 .05 .99 .05 .93 .69
N w .56 .36 .36 .23 .45 .15 .76 6.7 .18 .18 .15 .31 .08 .41 .13 1 .12 1 .12 1 .12
P 40 .39 .28 .24 .41 .16 .65 45 .32 .28 .16 .31 .08 .4 7.7 1 .03 1 .03 1 .03
P a 40 .39 .28 .24 .41 .16 .65 437 .32 .28 .16 .31 .08 .4 9.6 1 .04 1 .06 1 .15
P e 39 .36 .3 .23 .42 .16 .7 454 0 0 .18 .27 .09 .37 9.6 1 .07 1 .07 1 .08

LastFM #supernodes: 750, #superedges: 10,350
A 1.7 – 61 – .25 –
N .31 .66 .66 .42 .85 .2 .98 .81 .47 .49 .27 .55 .19 .93 .08 .79 .14 .84 .2 .84 .24
N w .36 .69 .69 .42 .85 .2 1 8.7 .11 .11 .09 .22 .13 .68 .09 1 .04 1 .06 1 .09
P 20.3 .79 .61 .51 .79 .21 .97 76 .8 .6 .51 .88 .2 .95 4 1 .06 1 .08 1 .15
P a 20.8 .79 .61 .51 .79 .21 .97 337 .8 .6 .51 .88 .2 .95 5.3 1 .04 1 .09 1 .15
P e 20.9 .72 .65 .46 .83 .21 .99 367 1 .01 1 .03 .31 .94 5.1 1 .04 1 .07 1 .12

Enron #supernodes: 1500, #superedges: 68,405
A 24 – 1.2k – 4.2 –
N 1.7 .56 .56 .35 .7 .17 .87 8.8 .75 .75 .46 .91 .19 .98 .55 .52 .62 .53 .67 .48 .92
N w 2.1 .56 .56 .35 .7 .17 .86 112 0 0 .01 .04 .02 .12 .67 .77 .83 .67 .9 .58 .92
P 123 .6 .53 .37 .68 .18 .84 610 .89 .78 .54 .98 .21 .99 32 .65 .65 .59 .68 .59 .74
P a 126 .6 .53 .37 .68 .18 .84 5.8k .89 .78 .54 .98 .21 .99 43 .64 .66 .58 .69 .49 .75
P e 130 .59 .55 .36 .69 .18 .86 6.4k 0 0 0 0 1 .03 42 .78 .61 .69 .67 .62 .75

Gnutella #supernodes: 750, #superedges: 3383
A .76 – 42 – .2 –
N .11 .65 .65 .4 .8 .17 .87 .14 .62 .72 .36 .73 .14 .73 .03 .99 .15 .99 .16 1 1
N w .15 .55 .55 .39 .78 .18 .88 2.9 .03 .05 .02 .05 .02 .09 .03 .91 .01 .94 .01 .96 .02
P 8.3 0 0 1 .08 .85 .39 37 .96 .24 .84 .41 .76 .6 1.2 .82 0 .86 0 .97 .02
P a 8.6 0 0 1 .08 .85 .39 77 .96 .24 .84 .41 .76 .6 1.3 .82 0 .86 0 .97 .02
P e 8.8 0 0 1 .08 .84 .38 77 1 .11 .84 .38 .76 .6 1.3 1 0 1 0 .9 .01

Ubuntu #supernodes: 500, #superedges: 55276
A 4.1 – 471 – 1.5 –
N 1.1 .8 .8 .49 .99 .2 1 .79 .51 .5 .34 .68 .16 .81 .41 .99 .27 .99 .27 .99 .28
N w 1.5 .96 .96 .5 1 .2 1 28 .04 .04 .06 .12 .14 .68 .46 1 0 1 .01 .97 .01
P 94 .82 .75 .53 .99 .21 1 52 .54 .5 .34 .63 .17 .81 32 .99 .2 .99 .26 .82 .88
P a 125 .97 .95 .51 1 .2 1 1.9k .6 .39 .35 .52 .17 .81 38 1 0 1 .01 .97 .01
P e 127 .97 .95 .51 1 .2 1 2k 0 0 0 0 .19 .81 38 1 0 1 .01 .97 .01

AS-Skitter #supernodes: 10,000, #superedges: 461,826
A 66 – 2.5k – 180 –
N 2.17 .27 .27 .21 .43 .14 .71 53.4 .42 .42 .37 .75 .1 1 4.6 .8 .57 .8 .57 .8 .58
N w 20.1 .36 .36 .24 .49 .16 .79 266 .43 .43 .38 .75 .1 1 5.9 1 0 1 0 1 0
P 383 .38 .27 .3 .46 .16 .69 630 .46 .41 .38 .71 .1 .96 125 1 .06 1 .06 1 .07
P a 444 .38 .27 .3 .46 .16 .69 4.5k .46 .41 .38 .71 .1 .96 139 .81 .61 .81 .61 .81 .62
P e 391 .37 .31 .27 .46 .16 .72 3.7k .7 .26 .64 .65 .11 .92 126 1 0 1 0 1 0

 Social Network Analysis and Mining (2024) 14:157 157 Page 14 of 17

comparison to what comes from summary is not fair, as for
our assessment we need the closeness of a variable-size set
of supernodes, that is all the supernodes that contain the
sampled vertices. Despite this, we still observe a consistent
speedup of GPQPS methods (at least by Naïve-GPQPS).

Core decomposition (Tables 4 and 5). Trends and observa-
tions here are similar to the previous queries. As a key dif-
ference, for z = 1 or 2, the precision is mostly higher than the
recall. This suggests that taking up to the two top-innermost
cores of the summary does match the original innermost
core, but it does not cover it entirely.

7 Summary of main findings

Promising effectiveness Overall, the basic GPQPS meth-
ods introduced in this work achieve fair accuracy results.
Particularly good performance is observed for clustering-
coefficient and community-detection queries, in terms of
recall for centrality queries, and precision for core decom-
position. All in all, we can claim that the methods we design
in this work are rather powerful baselines for the emerging
GPQPS problem.

Obstacles for a more effective GPQPS Main exceptions
to satisfactorily effective GPQPS are when: (1) weighted

graphs are handled with unweighted summaries or with
GPQPS methods that discard superedge weights (at least for
some queries); (2) handling directed graphs; (3) summaries
are overly sparse or not well-connected. All these aspects
are limitations for the basic GPQPS methodologies devised
in this work. Among these, the first aspect (i.e., sparse/not
well-connected summaries) is perhaps the most critical one,
as it limits the capability of the proposed basic GPQPS meth-
ods to provide correct answers to queries (e.g., shortest-path
queries) which rely on the fact that the underlying graph is
connected.

Consistent gain in storage space is achieved by any
tested GPQPS method.
Drastic speedup by Naïve-GPQPS It depends on the
dataset and the query, but, typically, it is consistent (i.e.,
orders of magnitude).
Speedup by probabilistic-GPQPS is appreciable for
large datasets or expensive queries. However, the use-
fulness of this method is not limited to those cases as
(1) it gives storage space saving nevertheless, and (2)
speedup in smaller graphs or less expensive queries can
still be achieved by parallelizing its computation over
the various worlds (straightforward parallelization).
Increasing summary size corresponds to an increase
of effectiveness and a decrease of speedup, which per-
fectly meets common sense. A few exceptions to effec-

Table 5 GPQPS results for centrality and core decomposition queries with SWeG (Shin et al. 2019) summaries

“A ” stands for actual query processing on the original graph. Metrics for centralities: runtime (s), and precision (P) and recall (R) with vary-
ing the number of top-s-ranked vertices in the summary (w.r.t. the “ground-truth” of top-100-ranked vertices in the original graph). Closeness-
centrality results on AS-Skitter refer to a subset of 1000 randomly-sampled vertices. Metrics for core decomposition: runtime (s), and precision
(P) and recall (R) with varying the number of top-z innermost cores in the summary (w.r.t. the “ground-truth” innermost core C∗ of the original
graph)

Dataset Method PageRank centrality Closeness centrality Core decomposition

runt. s=100 s=200 s=500 runt. s=100 s=200 s=500 runt. z=1 z=2 z=5

P R P R P R P R P R P R P R P R P R

F.book #supernodes: 977, #superedges: 2157
A 2.2 – 23 – .64 –
N .12 .13 .13 .07 .13 .03 .13 .54 .14 .14 .09 .17 .03 .17 .02 .97 .99 .97 .99 .94 1

L.FM #supernodes: 3568, #superedges: 3821
A 1.7 – 61 – .25 –
N .18 .01 .01 0 .01 0 .02 .17 0 0 0 0 0 0 .03 .71 .05 .45 .11 .38 1

Enron #supernodes: 23,957, #superedges: 28,825
A 24 – 1.2k – 4.2 –
N 1.9 .67 .67 .34 .67 .13 .67 209 .37 .37 .23 .46 .12 .58 .51 .02 .48 .02 .48 .02 1

AS-Sk. #supernodes: 1,087,430, #superedges: 1,857,562
A 66 – 2.5k – 180 –
N 9.9 .65 .65 .39 .78 .19 .95 712 .18 .18 .09 .18 .08 .39 30 1 .34 1 .34 .89 .84

Social Network Analysis and Mining (2024) 14:157 Page 15 of 17 157

tiveness increase are when the summaries are not well-
connected.

Naïve-GPQPS vs. Probabilistic-GPQPS: no clear
winner These two methods are mostly comparable to one
another, with each one (slightly) outperforming the other
depending on the dataset and the query. We conjecture that a
major reason why Probabilistic-GPQPS performs similarly
to Naïve-GPQPS despite it is more sophisticated lies in the
query-answer aggregation strategy over the various worlds,
especially for vertex-set or partitioning queries (see Sect. 8
for ideas on how to address this in future work).

No clear winner among weighted and unweighted
variants of the various GPQPS methods. This confirms a
literature finding (Kang et al. 2022a) that superedge weights
in a summary may be beneficial or not.

8 Future directions and conclusion

In this paper, we introduce general-purpose (approximate)
query processing on summary graph (GPQPS), a new tool
to support scalable data-management workloads on graphs.
Our major goal in studying this problem is to set its stage,
and stimulate and drive further research on it, by devising
initial, basic methodologies. Possible, concrete future direc-
tions are as follows.

Refine GPQPS methods in general The GPQPS meth-
ods presented here are basic ones: they can and should be
improved, from several perspectives. A possible refine-
ment consists in understanding the relationship between
the coarser-grained structure of a summary and the finer-
grained structure of the original graph, such as to derive
proper correction terms to be used for numerical queries. As
an example, this way one may discover that the clustering
coefficient of the summary should be multiplied by a certain
factor in order to actually match the clustering coefficient of
the input graph.

As for vertex-set or partitioning queries, an effective
direction could be to refine the strategies for deriving a set of
vertices out of a set of supernodes. More concretely, instead
of the one investigated in this work, which simply takes the
union of the supernodes, one can also exploit the informa-
tion of superedges to derive a more representative vertex set.
Another idea could be to rerun the query on the union of the
supernodes. In particular, this could intuitively work well
for queries such as core decomposition, that only depend on
intra-set edges. Conversely, this could be less effective for

queries such as community detection, where inter-set edges
matter as well.

Refine probabilistic‑GPQPS algorithm Probabilistic-
GPQPS (Algorithm 2) is particularly prone to improvement.
For instance, one could define more sophisticated strategies
of vertex-set aggregation than simple vertex-set intersec-
tion. A concrete idea here could be to compute aggregation
spheres out of the vertex sets produced in various worlds,
taking inspiration by what Mehmood et al. (2016) do for the
problem of influence maximization.

Another refinement could be to perform summary aggre-
gation over the possible worlds, instead of query-answer
aggregation. A major advantage of this is that aggregation
over the worlds would be no more dependent on the form
of query answer.

GPQPS on sparse summaries As mentioned in
Sect. 7 one of the main obstacles for a really effective
GPQPS is a summary that is overly sparse or not so well-
connected. In fact, these types of summary limit the capabil-
ity of the proposed basic GPQPS methods to provide cor-
rect answers to queries (e.g., shortest-path queries) which
rely on the fact that the underlying graph is connected. In
this regard, therefore, opportunities for future work include
proper corrections to the GPQPS methodologies, or, even
better, proper ways to increase the connectedness of the sum-
maries before having them processed by GPQPS methods.

Miscellanea Other interesting directions include deriv-
ing approximation guarantees for GPQPS methods, testing
GPQPS on more queries, and devising query-processing-
effective methods to produce summaries. The last one is par-
ticularly appealing, as, so far, graph-summarization methods
have been defined by considering mostly the adherence of
the reconstructed graph to the original graph, and agnosti-
cally to how good a resulting summary is at answering que-
ries. For instance, graph-summarization methods can focus
better on reducing the sparsity of the resulting summaries,
an aspect that affects GPQPS significantly, as observed in
our experiments.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13278- 024- 01314-w.

Acknowledgements Francesco Gullo and Lorenzo Severini were sup-
ported for this research by Project ECS 0000024 Rome Technopole—
CUP B83C22002820006, “PNRR Missione 4 Componente 2 Investi-
mento 1.5”, funded by European Commission—NextGenerationEU.
Aris Anagnostopoulos was supported by the ERC Advanced Grant
788893 AMDROMA, the EC H2020RIA project “SoBigData++”
(871042), the PNRR MUR project PE0000013-FAIR, the PNRR
MUR project IR0000013-SoBigData.it, and the MUR PRIN project

https://doi.org/10.1007/s13278-024-01314-w

 Social Network Analysis and Mining (2024) 14:157 157 Page 16 of 17

2022EKNE5K “Learning in Markets and Society”. Giorgia Salva-
tori’s work for this research was carried out while she was an intern
at UniCredit.

Author contributions All the authors contributed equally to all the
phases of the work.

Data availability No datasets were generated or analysed during the
current study.

Reproducibility Data and code are available at https:// github. com/
fgullo/ GPQPS

Declarations

Conflict of interest The authors declare no competing interests.

References

Abiteboul S, Kanellakis P, Grahne G (1987) On the representation and
querying of sets of possible worlds. In: Proceedings of ACM inter-
national conference on management of data (SIGMOD), pp 34–48

Aggarwal CC, Wang H (2010) Managing and mining graph data,
advances in database systems, vol 40. Springer, Berlin

Aggarwal CC, Wang H (2010) A survey of clustering algorithms for
graph data. In: Aggarwal CC, Wang H (eds) Managing and min-
ing graph data, advances in database systems, vol 40. Springer,
Berlin, pp 275–301

Ahn KJ, Guha S, McGregor A (2012) Graph sketches: sparsification,
spanners, and subgraphs. In: Proceedings of symposium on prin-
ciples of database systems (PODS), pp 5–14

Anagnostopoulos A, Arrigoni V, Gullo F et al (2024) General-purpose
query processing on summary graphs—supplementary material
(https:// github. com/ fgullo/ GPQPS)

Batagelj V, Zaversnik M (2011) Fast algorithms for determining (gen-
eralized) core groups in social networks. Adv Data Anal Classif
(ADAC) 5(2):129–145

Beg MA, Ahmad M, Zaman A et al (2018) Scalable approximation
algorithm for graph summarization. In: Proceedings of Pacific-
Asia conference on advances on knowledge discovery and data
mining (PAKDD), pp 502–514

Besta M, Hoefler T (2018) Survey and taxonomy of lossless graph
compression and space-efficient graph representations. CoRR
arXiv: abs/ 1806. 01799

Besta M, Weber S, Gianinazzi L et al (2019) Slim Graph: practical
lossy graph compression for approximate graph processing, stor-
age, and analytics. In: Proceeedings of international conference
for high performance computing, networking, storage and analysis
(SC), pp 35:1–35:25

Biafore C, Nawab F (2016) Graph summarization for geo-correlated
trends detection in social networks. In: Proceedings of ACM
international conference on management of data (SIGMOD), pp
2247–2248

Blondel VD, Guillaume JL, Lambiotte R et al (2008) Fast unfold-
ing of communities in large networks. J Stat Mech: Theory Exp
10:P10008

Boldi P, Vigna S (2004) The WebGraph framework I: compression
techniques. In: Proceedings of world wide web conference
(WWW), pp 595–602

Boldi P, Santini M, Vigna S (2009) Permuting web and social graphs.
Internet Math 6(3):257–283

Coscia M, Neffke FMH (2017) Network backboning with noisy data.
In: Proceedings of IEEE International conference on data engi-
neering (ICDE), pp 425–436

Dalvi N, Suciu D (2004) Efficient query evaluation on probabilistic
databases. In: Proceedings of international conference on very
large data bases (VLDB), pp 864–875

Fan W, Li J, Wang X et al (2012) Query preserving graph compression.
In: Proceedings of ACM international conference on Management
of Data (SIGMOD), pp 157–168

Fan W, Li Y, Liu M et al (2021) Making graphs compact by lossless
contraction. In: Proceedings of ACM international confernce on
management of data (SIGMOD), pp 472–484

Fan W, Li Y, Liu M et al (2022) A hierarchical contraction scheme for
querying big graphs. In: Proceedings of ACM international con-
fernce on management of data (SIGMOD), pp 1726–1740

Fazzone A, Lanciano T, Denni R et al (2022) Discovering polarization
niches via dense subgraphs with attractors and repulsers. Proc
VLDB Endowm (PVLDB) 15(13):3883–3896

Fu X, Yu S, Benson AR (2019) Modelling and analysis of tagging
networks in stack exchange communities. J Complex Netw 8(5)

Fung WS, Hariharan R, Harvey NJA et al (2019) A general frame-
work for graph sparsification. SIAM J Comput (SICOMP)
48(4):1196–1223

Galimberti E, Ciaperoni M, Barrat A et al (2021) Span-core decompo-
sition for temporal networks: Algorithms and applications. ACM
Trans Knowl Discov Data (TKDD) 15(1):2:1–2:44

Gionis A, Mannila H, Tsaparas P (2007) Clustering aggregation. ACM
Trans Knowl Discov Data (TKDD) 1(1):4

Gou X, Zou L, Zhao C et al (2019) Fast and accurate graph stream
summarization. In: Proceedings of IEEE international conference
on data engineering (ICDE), pp 1118–1129

Gullo F, Tagarelli A, Greco S (2009) Diversity-based weighting
schemes for clustering ensembles. In: Proceedings of SIAM inter-
national conference on data mining (SDM), pp 437–448

Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure,
dynamics, and function using NetworkX. In: Proceedings of the
7th python in science conference, pp 11–15

Hajiabadi M, Singh J, Srinivasan V et al (2021) Graph summarization
with controlled utility loss. In: Proceedings of ACM SIGKDD
international conference on knowledge discovery and data mining
(KDD), pp 536–546

Hernández C, Navarro G (2014) Compressed representations for web
and social graphs. Knowl Inf Syst (KAIS) 40(2):279–313

Indyk P, Motwani R (1998) Approximate nearest neighbors: towards
removing the curse of dimensionality. In: Proceedings of ACM
symposium on theory of computing (STOC), pp 604–613

Jiang Z, Chen H, Jin H (2023) Auxo: a scalable and efficient graph
stream summarization structure. In: Proceedings of the VLDB
endowment (PVLDB) 16(6)

Jin D, Yu Z, Jiao P et al (2023) A survey of community detection
approaches: from statistical modeling to deep learning. IEEE
Trans Knowl Data Eng (TKDE) 35(2):1149–1170

Kang S, Lee K, Shin K (2022a) Are edge weights in summary graphs
useful? A comparative study. In: Proceedings of Pacific-Asia con-
ference on advances on knowledge discovery and data mining
(PAKDD), pp 54–67

Kang S, Lee K, Shin K (2022b) Personalized graph summarization: for-
mulation, scalable algorithms, and applications. In: Proceedings
of IEEE international conference on Data Engineering (ICDE),
pp 2319–2332

Ke X, Khan A, Bonchi F (2022) Multi-relation graph summarization.
ACM Trans Knowl Discov Data (TKDD) 16(5):82:1–82:30

Khan A, Ye Y, Chen L (2018) On uncertain graphs. Synthesis lectures
on data management, Morgan & Claypool Publishers, San Rafael

Khan K, Nawaz W, Lee Y (2015) Set-based approximate approach
for lossless graph summarization. Computing 97(12):1185–1207

https://github.com/fgullo/GPQPS
https://github.com/fgullo/GPQPS
https://github.com/fgullo/GPQPS
http://arxiv.org/abs/abs/1806.01799

Social Network Analysis and Mining (2024) 14:157 Page 17 of 17 157

Ko J, Kook Y, Shin K (2020) Incremental lossless graph summariza-
tion. In: Proceedings of ACM SIGKDD international conference
on knowledge discovery and data mining (KDD), pp 317–327

Koutra D, Kang U, Vreeken J et al (2014) VoG: summarizing and
understanding large graphs. In: Proceedings of SIAM interna-
tional conference on data mining (SDM), pp 91–99

Kumar KA, Efstathopoulos P (2018) Utility-driven graph summariza-
tion. Proc VLDB Endowm (PVLDB) 12(4):335–347

Lanciano T, Savino A, Porcu F et al (2023) Contrast subgraphs allow
comparing homogeneous and heterogeneous networks derived
from omics data. GigaScience 12

Lee K, Jo H, Ko J et al (2020) SSumM: sparse summarization of mas-
sive graphs. In: Proceedings of ACM SIGKDD international
conference on knowledge discovery and data mining (KDD), pp
144–154

Lee K, Ko J, Shin K (2022) SLUGGER: lossless hierarchical summa-
rization of massive graphs. In: Proceedings of IEEE international
conference on data engineering (ICDE), pp 472–484

LeFevre K, Terzi E (2010) GraSS: Graph structure summarization. In:
Proceedings of SIAM international conference on data mining
(SDM), pp 454–465

Leskovec J, Krevl A (2014) SNAP datasets: stanford large network
dataset collection. http:// snap. stanf ord. edu/ data

Liu X, Tian Y, He Q et al (2014) Distributed graph summarization. In:
Proceedings of ACM international conference on information and
knowledge management (CIKM), pp 799–808

Liu Y, Safavi T, Dighe A et al (2018) Graph summarization meth-
ods and applications: a survey. ACM Comput Surv (CSUR)
51(3):62:1–62:34

Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf
Theory 28(2):129–136

Maserrat H, Pei J (2010) Neighbor query friendly compression of
social networks. In: Proceedings of ACM SIGKDD international
conference on knowledge discovery and data mining (KDD), pp
533–542

Mehmood Y, Bonchi F, García-Soriano D (2016) Spheres of influ-
ence for more effective viral marketing. In: Proceedings of ACM
international conference on management of data (SIGMOD), pp
711–726

Mosa MA, Hamouda A, Marei M (2017) Graph coloring and ACO
based summarization for social networks. Expert Syst Appl
74:115–126

Navlakha S, Rastogi R, Shrivastava N (2008) Graph summarization
with bounded error. In: Proceedings of ACM international confer-
ence on management of data (SIGMOD), pp 419–432

Newman MEJ, Girvan M (2004) Finding and evaluating community
structure in networks. Phys Rev E 69(2):026113

Riondato M, García-Soriano D, Bonchi F (2014) Graph summarization
with quality guarantees. In: Proc. IEEE international conference
on data mining (ICDM), pp 947–952

Riondato M, García-Soriano D, Bonchi F (2017) Graph summariza-
tion with quality guarantees. Data Min Knowl Discov (DAMI)
31(2):314–349

Sadri A, Salim FD, Ren Y et al (2017) Shrink: distance preserving
graph compression. Inf Syst 69:180–193

Schaeffer SE (2007) Graph clustering. Comput Sci Rev 1(1):27–64
Serrano MÁ, Boguñá M, Vespignani A (2009) Extracting the multi-

scale backbone of complex weighted networks. Proc Natl Acad
Sci 106(16):6483–6488

Shin K, Ghoting A, Kim M et al (2019) SWeG: Lossless and lossy sum-
marization of web-scale graphs. In: Proceedings of world wide
web conference (WWW), pp 1679–1690

Slater PB (2009) A two-stage algorithm for extracting the multiscale
backbone of complex weighted networks. Proc Natl Acad Sci
106(26):E66–E66

Spielman DA, Teng S (2011) Spectral sparsification of graphs. SIAM
J Comput (SICOMP) 40(4):981–1025

Toivonen H, Zhou F, Hartikainen A et al (2011) Compression of
weighted graphs. In: Proceedings of ACM SIGKDD international
conference on knowledge discovery and data mining (KDD), pp
965–973

Topchy AP, Jain AK, Punch WF (2003) Combining multiple weak
clusterings. In: Proc. IEEE international conference on data min-
ing (ICDM), pp 331–338

Tsalouchidou I, Bonchi F, Morales GDF et al (2020) Scalable dynamic
graph summarization. IEEE Trans Knowl Data Eng (TKDE)
(TKDE) 32(2):360–373

ur Rehman S, Nawaz A, Ali T et al (2021) g-Sum: agraph summariza-
tion approach for a single large social network. EAI Endorsed
Trans Scalable Inf Syst 8(32):e2

Ward JH (1963) Hierarchical grouping to optimize an objective func-
tion. J Am Stat Assoc 58(301):236–244

Yong Q, Hajiabadi M, Srinivasan V et al (2021) Efficient graph sum-
marization using weighted LSH at billion-scale. In: Proceedings
of ACM international conference on management of data (SIG-
MOD), pp 2357–2365

Zeng Y, Song C, Ge T (2021) Selective edge shedding in large graphs
under resource constraints. In: Proceedings of IEEE international
conference on data engineering (ICDE), pp 2057–2062

Zhou F, Mahler S, Toivonen H (2010) Network simplification with
minimal loss of connectivity. In: Proc. IEEE international confer-
ence on data mining (ICDM), pp 659–668

Zhou F, Qu Q, Toivonen H (2017) Summarisation of weighted net-
works. J Exp Theor Artif Intell 29(5):1023–1052

Zhou H, Liu S, Lee K et al (2021) DPGS: degree-preserving graph
summarization. In: Proceedings of SIAM international conference
on data mining (SDM), pp 280–288

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://snap.stanford.edu/data

	General-purpose query processing on summary graphs
	Abstract
	1 Introduction
	2 Preliminaries and related work
	2.1 Size-driven graph summarization
	2.2 Utility-driven graph summarization
	2.3 Summarizing weighteddirected graphs
	2.4 Query processing on summary graphs
	2.5 Other (marginally) related literature

	3 Problem statement
	4 Algorithms
	5 Experimental methodology
	6 Experimental results
	7 Summary of main findings
	8 Future directions and conclusion
	Acknowledgements
	References

