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Abstract. Multimodal fake news detectors are typically trained to work
on fixed distributions, making them hardly applicable to ever-changing
events. Although it is possible to apply transfer learning to retrain a
model on the most recent facts, it will tend to lose its ability to recognize
old contents. We mitigate this problem by considering news as a stream
of data that becomes available over time and by introducing a continual-
learning solution that learns from new events as they become available.
Our solution maintains good performance on previously known tasks
without limiting the applicability of this solution to older news, leading
to a substantial gain of +9.22% accuracy on average compared to transfer
learning and a +3.65% increase in F1 score over the ideal scenario where
you train the model on all data in one session. Besides this, we introduce
the Tri-Encoder, a state-of-the-art multimodal model that allows the
cross-attention mechanism between images and texts to be applied.

Keywords: Fake news · Continual learning · Multimodal learning.

1 Introduction

The massive adoption of social networks has made them a very effective tool
for spreading false content. Fake news stories often spread faster and with a
higher frequency than the real ones [1], but, more importantly, the more a user is
exposed to the same content, the more she tends to perceive it as trustworthy [1].
This fact can have a more profound effect than one may expect. An example of
this is the 2016 presidential election in the United States. Snopes3 identified 529
social-media rumors about Donald Trump and Hillary Clinton that could have
influenced the election outcome.
3 https://www.snopes.com – Fact-checking website and reference source for urban

legends, folklore, myths, rumors, and misinformation.
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There are many challenges to face to counter this phenomenon. First, the
most influential fake news contain both texts and images. For example, tweets
with images obtain 18% more clicks, 89% more likes, and 150% more retweets
than tweets with text-only content [30]. A similar trend takes place on Facebook,
where the 87% of the posted photos have been liked, clicked, or shared [30]. Be-
cause of this fact, recent studies have analyzed the semantics of multimodal
content to classify the news as real or fals with three main approaches: (1) early-
fusion methods [31, 24] learn low-level features from different modalities that
are immediately fused, and fed into a single prediction model, (2) late-fusion
models [3] fuse unimodal decisions with some mechanisms such as averaging and
voting, and (3) hybrid-fusion [8] combines the early fusion and late fusion. Using
VisualBERT [16], MMBT, and ViLBERT, Dimitrov et al. [8] evaluated several
fusion techniques (such as early-fusion, late-fusion and self-supervised models)
for propaganda identification. According to their research, self-supervised joint
learning models, and in particular VisualBERT, outperform other fusion tech-
niques.

Although this type of approach seems to attain high levels of accuracy in most
of the studies, its applicability in real scenarios is still somewhat limited [17, 12,
22]. Indeed, most state-of-the-art approaches apply these techniques in a static
setting, where the training and test data belong to a fixed distribution, known at
design time. This assumption, however, does not reflect the ever-changing nature
of news [1] being spread online based on recent events. Some studies proposed
to tackle this problem from a different perspective, by analyzing the propaga-
tion of news or the communities and the users’ reactions to such content [19].
However, these interactions can sometimes be complex to capture because they
require monitoring of the entire network, something that is not always feasible.
Therefore, analyzing the content stream remains the most accessible way. Mo-
tivated by this discussion, in this work, we propose to model the latest news
flow as an incremental task, where data arrive sequentially in batches, and each
batch corresponds to some new events that we want to learn to classify. Our
contributions can be summarized as follows. (1) We introduce a multimodal ar-
chitecture (the Tri-Encoder) for fake-news classification based on the analysis of
texts and images. (2) Next, we apply a continual-learning strategy, which allows
to continually learn to classify new topics without losing the ability to classify
previously known ones. The proposed solution allows not only to maintain good
performance over time, but it even improves compared to the ideal case in which
all the topics are immediately available in the first training session. (3) Finally,
we perform various measurements and comparison of our approach with others.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce our proposed method. Section 3 present our experiments. We conclude in
Section 4.
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Fig. 1: Overview of the proposed Tri-Encoder multimodal architecture.

2 Methodology

Our model aims at learning the discriminable feature representations for fake-
news detection in a way that can constantly adapt to the most recent events. We
focus on the news spread on Twitter, but the same framework can be extended
to other social networks. Formally, given a tweet X = {T, V } comprising textual
(T ) and visual (V ) information, our goal is to learn a target function g(X, θ) = Y
that predicts whether the post is a fake (Y = 0) or true (Y = 1) content by
examining the textual and visual information, as well as the semantic relationship
between the two types of information. To this aim, we model news as a stream of
unknown distributions D = {D1, . . . ,Dn} over X × Y , with X and Y input and
output random variables, respectively. At time step i, the model learns a new
function fCL

i = g(X, θi) by updating its current parameters θi−1 on a new fact
Di by training it on a training set Di

train and testing it on a test set Di
test. The

objective of the continual-learning algorithm is to minimize the loss LD over the
entire stream of data D:

LD

(
fCL
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Lfact
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where the loss Lcls

(
fCL
n (xi

j), y
i
j

)
represents the binary cross entropy loss.

2.1 The Tri-Encoder Model Architecture

The Tri-Encoder model architecture is shown in Figure 1. The model involves
an image encoder and a text encoder to obtain unimodal image and text rep-
resentations, and a multimodal encoder to fuse and align the image and text
representations for multimodal reasoning.
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Text encoder. Given the text of a tweet, we first tokenize and embed it in
a list of word vectors using WordPiece [27] with a vocabulary of 30,000 tokens
and append two special characters to the input: the class token [CLS], which is
appended in front of each input example, and the separator token [SEP]. Then,
we apply a transformer model over the word vectors to encode them into a list
of NT hidden state vectors hT ∈ RH , including hCLS,T for the text classification
token. In all our experiments, we use the bidirectional BERT-base [7] model
with 12 layers and 12 attention heads, which produces 768-dimensional hidden
vectors. In the training phase, all weights are frozen except for the last two layers.

Image encoder. For the image encoder, we use the pretrained CLIP’s [20]
visual feature extractor. Given an input image, we split it into 32× 32 patches,
which are then linearly embedded and fed into a ViT-B/32 [9] transformer model
along with positional embeddings and an extra image classification token [CLS].
Similarly to the text encoder, the image-encoder output is a list of NV image
hidden state vectors hV ∈ RH (H = 768), each corresponding to an image patch,
plus an additional hCLS,V for the image classification token. Similarly to the text
encoder, all weights are frozen except for the last two layers during training.

Multimodal encoder. We use an additional transformer model for learn-
ing a joint contextualized representation of the image and text hidden states.
Specifically, we apply the VisualBERT [16] model that is pretrained on the Visual
Commonsense Reasoning dataset [29]. The model consists of a stack of trans-
former layers that align the regions of the input image with the textual input
through self-attention. Compared to a simple concatenation of the two unimodal
embeddings, this configuration allows cross-attention between the projected uni-
modal image and text representations and fuses the two modalities. This encoder
takes as input the visual (hV ) and textual (hT ) hidden representations extracted
from the unimodal models and produces NT +NV + 2 multimodal hidden state
vectors hM ∈ RH (H = 768), where NT and NV are the numbers of text tokens
and image patches, respectively, and the two additional vectors are the special
[CLS] and [SEP] tokens. The output of the last layer may not always be the
best representation of the input when fine tuning for downstream tasks. Previ-
ous studies proved that for pretrained language models, the most transferable
contextualized representations of input text tend to occur in the middle layers,
whereas the top layers specialize in language modeling [5]. Therefore, inspired
by the same considerations, we average the penultimate last three layers’ out-
put and concatenate the averaged hidden state vector with the [CLS] hidden
state vector of the output layer, producing a 1536-dimensional output hMM. We
validate this choice in Section 3.1.

Fusion mechanism. In the fusion step, the visual, textual, and the multi-
modal [CLS] feature vectors hT,CLS, hV,CLS, and hMM,CLS are all projected onto
a 64-dimensional subspace through a linear layer, producing the corresponding
h′
T,CLS, h′

V,CLS, and h′
M,CLS vectors. Finally, we calculate a weighted average of

these vectors

hTVM = avg(wTh
′
T,CLS + wV h

′
V,CLS + wMh′

M,CLS) (3)

where wT and wV are fixed to 0.25, and wM = 0.5.



What’s Real News Today? 5

Classifier. The final step of the Tri-Encoder is the classification step. The
classifier is composed of two linear layers generating a 32-dimensional and a 1-
dimensional outputs, and are separated by the rectified linear unit (ReLU) and
dropout operations. A sigmoid activation function follows the output of the last
layer:

σ(x) =
1

1 + exp(−x)

Values below a threshold τ are predicted false. Experimentally, we found τ = 0.46
as the optimal value.

2.2 Continual-Learning Strategy

Now, we propose a continuous learning strategy that allows the Tri-Encoder
to update its knowledge on the latest news as they become available. To this
end, it is essential to avoid catastrophic forgetting [6], as we want the model to
continue to classify previous content accurately. A naive idea might be to retrain
the model on an ever-growing set of training data; however, such an approach
can become prohibitively expensive as the volume of data grows over time. On
the other hand, the model should not overfit to a new event because it would
cause it to loose its previous skills.

We choose to adopt a knowledge distillation approach. We choose this simple
regularization method since it allows maintaining the model size fixed as the
data size increases and it does not require to store the previous data in memory.
Distillation techniques were introduced by Hinton et al. [11] as a means to trans-
fer knowledge from a neural network T (the teacher) to a neural network S (the
student). The key idea behind knowledge distillation is that soft probabilities
predicted by a network of trained "teachers" contain much more information
about a data point than a simple class label. For example, if multiple classes
are assigned high probabilities for an image, this could mean that the image
must be close to a decision boundary between those classes. Forcing a student to
mimic these probabilities should then cause the student network to absorb some
of this knowledge that the teacher discovered, above and beyond the information
in training labels alone. To implement this strategy, we modify the classification
loss Lcls in Equation 2 by adding a regularization factor

L′
cls = αLkd + βLcls

(
fCL
n (xi

j), y
i
j

)
, (4)

where α and β are experimentally set to 0.5 and 0.6, respectively, and Lkd is the
mean squared error (MSE) loss that measures the squared L2 norm between the
teacher and the student outputs.

3 Experiments

In this section, we validate the model and the proposed continual-learning solu-
tion. All models were trained with the Adam optimizer, a learning rate fixed to
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3e−5 and a batch size of 32 samples. For the experiments reported in Sections 3.1,
and 3.2, we train the models for 10 epochs, while for the other experiments we
train for 5 epochs only. For evaluating our experiments, we chose three com-
monly used datasets: (1) MediaEval Verifying Multimedia Use benchmark [2],
(2) PolitiFact , and (3) GossipCop [21].

3.1 Ablation Study

To evaluate the design choices of our model, we now analyze several possible
multimodal variants. We consider three baseline models, which are combined
with the following three feature extractors for the images: ResNet50 (R), CLIP
Vision (C), and ViT (V).

Model All news Fake News Real News
Acc/F1 F1-macro Prec. Rec. F1 Prec. Rec. F1

SE(R) 0.6347 0.6338 0.7180 0.5984 0.6528 0.5584 0.6837 0.6147
SE(C) 0.7586 0.7520 0.7820 0.8031 0.7924 0.7250 0.6987 0.7119
DE(R) 0.7094 0.6711 0.6844 0.9158 0.7834 0.7921 0.4316 0.5587
DE(C) 0.7058 0.7024 0.7623 0.7079 0.7341 0.6413 0.7029 0.6707
VB(R)-b 0.7613 0.7564 0.7948 0.7873 0.7910 0.7172 0.7264 0.7218
VB(R)-cat 0.7513 0.7460 0.7846 0.7809 0.7828 0.7070 0.7115 0.7092
VB(R)-avg 0.7367 0.7313 0.7728 0.7666 0.7697 0.6892 0.6965 0.6928
VB(C)-b 0.7522 0.7382 0.7479 0.8571 0.7988 0.7606 0.6111 0.6777
VB(C)-cat 0.7358 0.7337 0.8003 0.7190 0.7575 0.6672 0.7585 0.71
VB(C)-avg 0.7978 0.7934 0.8248 0.8222 0.8235 0.7617 0.7649 0.7633
VB(V)-b 0.6766 0.6766 0.7956 0.5873 0.6757 0.5892 0.7970 0.6775
VB(V)-cat 0.6493 0.6485 0.7351 0.6079 0.6655 0.5719 0.7051 0.6315
VB(V)-avg 0.7167 0.7115 0.7593 0.7412 0.7502 0.6625 0.6837 0.6729

Table 1: Multimodal methods performances on the MediaEval [2] dataset.

Simple-Encoder (SE). This model is based on the simple concatenation
of the features extracted from images and texts. For text, we use BERT, taking
the [CLS] representation for the last hidden state. The unimodal models are
fed into a linear layer with an output size of 512 and concatenated, producing
a 1024-dimensional vector that is passed through two linear layers of 1024× 32
and 32 × 1 dimensions separated by a ReLU function, a dropout layer (set to
0.4), and a sigmoid activation function.

Dual-Encoder (DE). This architecture has been inspired by the double
visual textual transformer model (DVTT) [18]. Each modality is conditioned
by the other, enriching the text with visual information from the text encoder
and vice-versa. The textual representation is taken from the last hidden state of
the BERT model. Similarly, when CLIP Vision is employed as a visual feature
extractor, the image representation comes from the last hidden state of the
transformer encoder. In the case of ResNet50, feature maps are extracted from
the second last layer, and a (6, 6) pooling is applied. Finally, we concatenate the
[CLS] tokens from both transformers, obtaining a 1024-dimensional embedding.
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VisualBERT (VB). This model combines image regions and language with
a transformer, allowing self-attention to discover implicit alignments between
language and vision. It is pretrained on visual-reasoning tasks. We consider the
following three variants with all the backbones:

– base (b): the representation of the [CLS] token representation from the last
hidden state is fed into the classifier;

– concatenation (cat): the [CLS] token representations from the last four layers
are concatenated before classification;

– average (avg): the [CLS] token representations from the penultimate three
layers are averaged and concatenated with the last [CLS] token before clas-
sification.

Table 1 summarizes all the experiments. The results show a consistent advan-
tage of the VB(C)-avg configuration over the others, which is the same configu-
ration used for our Tri-Encoder. Besides that, we can observe that using CLIP
Vision for the visual component achieves superior performance in all the config-
urations. As the original model is trained in a multimodal setting, we make the
hypothesis that this is because of the fact that it manages to extract features
more aligned with the textual component. Regarding the compared architec-
tures, VisualBERT achieves, on average, superior performance compared to the
Simple-Encoder and Dual-Encoder.

3.2 Fake-News Detection Performance

To validate the proposed Tri-Encoder, we propose a comparison with state-of-
the-art methods. In particular, we validate the model’s performance against (1)
well-known unimodal deep-learning architectures and (2) multimodal solutions
designed for fake-news detection. All the models have been trained on MediaEval
for 10 epochs with a batch size of 32, a learning rate of 3e-05, and the Adam [14]
optimizer.

Table 2 reports the results of this first experiment. We can notice that our Tri-
Encoder architecture outperforms all the other methods, followed by CALM [28],
which achieves comparable performance. In the next section we study the ar-
chitectural choices that led to the proposed Tri-Encoder. We can generally ob-
serve that multimodal models perform better than unimodal ones, confirming
the additive contribution of the images to an accurate classification. We can also
notice that for the unimodal architectures, models that analyze images outper-
form BERT, a model based on text. A possible explanation for this could be
that in the MediaEval dataset, many fake images have been manipulated in a
way that makes the detection of such manipulation highly accurate by the image
classifiers.

3.3 Robustness to Incremental Topics

Whereas the previous results demonstrate the effectiveness of the proposed
method on a task, in this section, we evaluate the model’s performance on new
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Model F1-micro F1-macro
BERT [7] 0.6247 0.6238
ResNet50 [10] 0.7021 0.6962
VGG19 [23] 0.6275 0.6273
CLIP Vision [20] 0.7440 0.7353
VisualBERT [16] 0.7978 0.7934
MVAE [13] 0.745 0.744
EANN [25] 0.715 0.719
EANN- [25] 0.648 0.6385
SpotFake [24] 0.778 0.760
MFN [3] 0.808 0.785
MCAN [26] 0.809 0.808
CALM [28] 0.845 0.839
CAFE [4] 0.806 0.805
Simple-Encoder (ours) 0.7586 0.7520
Dual-Encoder (ours) 0.7058 0.7024
Tri-Encoder (ours) 0.851 0.845

Table 2: Fake news detection performance on the MediaEval [2] dataset.

tasks in a continual-learning scenario. Specifically, we evaluate the performance
of knowledge distillation (KD) compared to two other strategies: the transfer
learning (TL) and the elastic weight consolidation (EWC ) [15], which can be
seen as an improvement of the L2-regularization.

Static training sessions. Before illustrating the results on the continual-
learning setting, let’s evaluate the performance of the models when the Tri-
Encoder is trained from scratch on all datasets simultaneously. This allows us to
evaluate the performance of the continual learner in the ideal scenario where the
data are immediately available in the first training session. In Table 4, we report
the results in terms of F1 score when the training set is balanced or unbalanced
between the three datasets. As expected, when the data are unbalanced, the F1
score on the MediaEval dataset is higher than the others, having three times
the number of samples that the other slices have. By balancing the data, the
overall accuracy doesn’t change much, but the distribution between the differ-
ent portions is more even. We can also notice that the model’s performance on
MediaEval drops slightly compared to the case in which the model is trained
only on this dataset (see Table 2). This could be justified by the fact that when
the model is trained on all datasets simultaneously, the broader distribution of
facts present in all datasets leads the model to converge into a region where it
minimizes errors on all topics, but which leads to a slight performance drop on
the MediaEval topics.

Furthermore, we evaluate the model’s performance in a scenario where we
apply transfer learning. Starting from MediaEval as the first task (T1), in Ta-
ble 3a we see the performance after applying transfer learning to T2 = PolitiFact
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Task MediaEval PolitiFact GossipCop
T1 0.8515 - -
T2 0.7312 0.7932 -
T3 0.7218 0.5224 0.7117

a T1 = MediaEval, T2 = PolitiFact, T3 =
GossipCop

Task MediaEval GossipCop PolitiFact
T1 0.8515 - -
T2 0.6860 0.7259 -
T3 0.6466 0.5123 0.7351

b T1 = MediaEval, T2 = GossipCop, T3 =
PolitiFact

Table 3: Transfer learning performance in terms of F1 score of the model trained
on T1, followed by TL to T2, followed by TL to T3. The rows indicate the
dataset on which we perform the TL (or the initial training for row T1), and the
columns indicate the dataset on which we perform evaluation.

Tested dataset Not Balanced Balanced
F1-micro F1-macro F1-micro F1-macro

MediaEval 0.7810 0.7762 0.7105 0.6855
PolitiFact 0.6251 0.6232 0.6529 0.6519
GossipCop 0.6781 0.6776 0.6855 0.6848
All 0.6984 0.6978 0.6966 0.6895

Table 4: Results of the model trained from scratch on all three datasets available
at once. Balanced indicates that in the training dataset, we balance a number
of samples for each fact.

and to T3 = GossipCop, and in Table 3a we see the performance after applying
transfer learning to T2 = GossipCop and to T3 = PolitiFact. We can see that in
both cases, the model suffers from catastrophic forgetting. Indeed, as we train
it on new datasets, it becomes less accurate on previously seen ones. In the fol-
lowing section we see how our incremental-learning strategy manages to reduce
this problem.

Continual-training sessions. We now evaluate the robustness of the model
through several continual-learning sessions. To do this, in the first training ses-
sion T1, we train the model on MediaEval. We chose this dataset for the first
session as it is the largest among those considered and it allows a first training
phase of the Tri-Encoder without causing overfitting. In subsequent training ses-
sions, we expose the model to the new facts in GossipCop and PolitiFact. To this
end, we introduce two more training sessions, namely T2 and T3. The goal of the
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Fig. 2: F1 score of the Tri-Encoder over all tasks during time. In each of figures (a)
and (b), the first plot shows the F1 score evaluated on dataset T1 (MediaEval for
both of them), the second one the F1 score for T2 (PolitiFact for (a), GossipCop
for (b)), and the third one for T3 (GossipCop for (a), PolitiFact for (b)).

continual learner is to learn new tasks without encountering catastrophic forget-
ting of the previous ones. To validate this approach, we compare the performance
of knowledge distillation (KD) with respect to EWC and transfer learning.

In Figure 2, we show the performance of all the strategies in terms of F1 score.
In Figure 2(a) we train first on MediaEval (T1), and then on PolitiFact (T2) and
GossipCop (T3). In Figure 2(b) we switch GossipCop (T2) and PolitiFact (T3).
From both figures, we can see that the performance of the knowledge-distillation
approach remains more or less constant on T1 during all the training sessions.
For concreteness let us look at Figure 2(a). EWC’s performance on this task is
more or less comparable, although it suffers a more pronounced drop in F1 score
when we switch from PolitiFact (T2) to GossipCop (T3). In the case of transfer
learning, we notice a substantial drop in performance with the arrival of new
tasks. This is absolutely justifiable because, in transfer learning, we do not im-
pose to the model to perform the well also in the previous tasks. In the second
plot, where we evaluate with respect to the dataset T2 = PolitiFact, we can
observe a similar behavior. Knowledge distillation and EWC have more or less
similar performance, with a small drop (about 10%) in F1 score from T2 to T3,
and with a high drop in the case of transfer learning. Finally, in the last training
session, transfer learning outperforms the other strategies, whereas knowledge
distillation and EWC again have comparable performance. The results generally
suggest greater robustness of continual learning methods compared to transfer
learning. Although knowledge distillation and EWC obtain comparable perfor-
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mance in all training sessions, the former is more robust on the oldest task (T1),
guaranteeing superior stability on all learning sessions.

Table 5 shows the average accuracy and forgetting of all methods on the
three tasks after the last training session. In all settings, transfer learning attains
the worst results regarding average accuracy and forgetting. As for EWC and
knowledge distillation, these achieve comparable accuracy values with a slight
advantage of knowledge distillation. In terms of forgetting, however, knowledge
distillation achieves the best performance, confirming the considerations made
in the previous section. The only case that the continual-learning approaches
give an inferior score compared to transfer learning is in the evaluation of the
third training session (T3), but even there the difference is small (see the two
bottom plots in Figure 2).

Method ACC BWT
Transfer learning 0.6520 0.2002
EWC 0.7294 0.0576
Knowledge distillation 0.7401 0.0475

a T1: MediaEval, T2: PolitiFact, T3:
GossipCop.

Method ACC BWT
Transfer learning 0.6314 0.2092
EWC 0.7151 0.0681
Knowledge distillation 0.7277 0.0399

b T1: MediaEval, T2: GossipCop, T3:
PolitiFact.

Table 5: Average accuracy (ACC ) and forgetting (BWT ) of the continual-leaning
approaches on the three datasets. For ACC a higher value is better, for BWT a
lower value is better.

For a more detailed report of the performance of the three strategies after the
last training session, we report the results in terms of F1 score in Table 6. For
each task, we report the best results in bold. We also mark with ∗ the strategy
that achieves the best performance on a given task. As also mentioned in the dis-
cussion of Figure 2, transfer learning achieves the best performance only in the
last task (T3). However, knowledge distillation is shown to be the most robust
method on the first task (T1), followed by EWC. Compared to Table 4, we can
see that although the performance degrades slightly on all tasks compared to
standard training, continuous-learning strategies still achieve acceptable perfor-
mance on all three tasks. Moreover, comparing the results with those of Table 4,
we can even notice that with continual-learning strategies, we achieve a higher
performance compared to training all three datasets in a single session.

It is interesting to note a detail that emerges both from the experiments
presented in Table 5, as well as from those of Tables 6 and 3. We can observe a
small difference in terms of performance in the order in which we train the model
on the various tasks, which seems to suggest that it may have an effect at the
model’s capacity to generalize. Training on PolitiFact and then on GossipCop
seems to improve performance in all experiments. This could be because the
topics in GossipCop are very different from those in the other two datasets.



12 L. Maiano et al.

Training Task All news Fake News Real News
Acc/F1 F1-macro Prec. Rec. F1 Prec. Rec. F1

TL
T1 0.722 0.721 0.839 0.656 0.736 0.621 0.818 0.706
T2 0.522 0.521 0.522 0.478 0.499 0.522 0.566 0.543
T3∗ 0.712 0.711 0.703 0.786 0.695 0.719 0.735 0.727

EWC
T1 0.810 0.796 0.801 0.903 0.849 0.828 0.675 0.744
T2∗ 0.717 0.717 0.729 0.687 0.707 0.706 0.747 0.744
T3 0.661 0.658 0.661 0.595 0.627 0.661 0.721 0.689

KD
T1∗ 0.849 0.841 0.845 0.913 0.878 0.857 0.758 0.804
T2 0.698 0.693 0.758 0.578 0.656 0.661 0.817 0.731
T3 0.673 0.673 0.643 0.709 0.674 0.706 0.639 0.671

a T1: MediaEval, T2: PolitiFact, T3: GossipCop.

Training Task All news Fake News Real News
Acc/F1 F1-macro Prec. Rec. F1 Prec. Rec. F1

TL
T1 0.647 0.584 0.650 0.873 0.745 0.633 0.318 0.423
T2 0.512 0.428 0.495 0.937 0.647 0.683 0.123 0.208
T3∗ 0.735 0.734 0.702 0.813 0.754 0.78 0.658 0.714

EWC
T1 0.788 0.771 0.777 0.902 0.835 0.814 0.624 0.707
T2 0.644 0.635 0.589 0.845 0.694 0.765 0.461 0.575
T3 0.712 0.708 0.773 0.597 0.674 0.674 0.826 0.742

KD
T1∗ 0.802 0.791 0.810 0.868 0.838 0.787 0.705 0.744
T2∗ 0.677 0.677 0.636 0.758 0.692 0.731 0.604 0.661
T3 0.707 0.704 0.757 0.607 0.674 0.674 0.807 0.735

b T1: MediaEval, T2: GossipCop, T3: PolitiFact.

Table 6: F1 score of the Tri-Encoder over all tasks after the last training ses-
sion. Bold values indicate the best performance on a task. Tasks marked with ∗
indicate the learning strategy that performed best on those specific tasks.

Consequently, introducing this dataset in the second training session could have a
negative effect on the third session. We leave the exploration of this phenomenon
as future work.

4 Conclusion

In this work, we have introduced a content-based multimodal continual-learning
strategy, which allows to learn from event streams as they become available over
time. This strategy offers the advantage of being able to model the problem of
false-content detection in a more realistic way than what is traditionally done
by the state-of-the-art approaches, in which one works on fixed distributions. In
addition to being more realistic, this paradigm shift still allows for satisfactory
performance and leads to a more than 9% improvement of the average accuracy.
We have shown that not only does the performance of the continual learner
remains high as new tasks arrive, but it can even improve compared to training
on a dataset obtained by concatenating different datasets.

The finding in this work creates a lot of interesting future directions. First of
all, regarding the number of topics, it is necessary to understand how much ev-
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ery single topic can influence the performance of the learning strategy. Thus an
extension of this study to other datasets and measurement of one topic at a time
may provide useful insights. Furthermore, a higher number of training sessions
may reveal more interesting patterns and may raise the question of whether there
are some moments in time where complete retraining may be beneficial. Besides
this, it would be interesting to test other incremental-learning techniques. Fi-
nally, it would be important to evaluate the possibility of integrating human
feedback within the continuous-learning component, for example, by assessing
the possibility of applying reinforcement learning.
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