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Abstract

Epistatic interactions of gene loci often determine complex trait phenotypes and may indicate the underlying molecular mechanisms of traits and
diseases. Yet, the inference of epistatic interactions and gene—-gene networks remains challenging. Neural networks have become successful in
classifying complex data, revolutionizing various fields. However, their complexity does not reveal how they combine input features, and this lack
of interpretability limits their use with genetic data. We thus introduce EPIDETECT, a novel framework for discovering interactions between input
features (single-nucleotide polymorphisms—SNPs—in our setting). EPIDETECT neural-network-based classifiers detect interactions in systolic,
diastolic, and pulse pressure genome-wide association datasets. Central to EPIDETECT is EPICID, a novel explainability algorithm for neural
networks. Using EPICID, we identified a network of highly interactive SNPs, performed centrality analysis to pinpoint central SNPs and genes,
and outperformed established epistatic-interaction-detection algorithms. Moreover, pathway analysis uncovered well-known and novel pathways
that could play a significant role in blood pressure traits, opening up new research directions.

Introduction

Recent advances in genome-wide association studies
(GWAS) [1] and the significant increase of the available
samples have helped identify thousands of robustly disease-
associated loci (DNA positions where genes or genetic
markers are located) and have provided novel insights about
biological pathways underpinning complex diseases and
traits. GWAS use the complete DNA set of individuals to
determine whether the presence of a mutated gene correlates
with a disease. Typically, this analysis is conducted with
statistical instruments [2] using large-scale databases. Among
genetic mutations, we find single-nucleotide polymorphisms
(SNPs), which are substitutions of single nucleotides in a
given locus. Nucleotides, which are adenine (A), cytosine
(C), guanine (G), and thymine (T), are the basic building
blocks of DNA. SNPs may be involved in the mechanisms of
diseases or determine specific traits. Despite the increase of
this kind of studies, the extent to which potential epistatic
(i.e. SNP-SNP or gene-gene) interactions [3] contribute to
complex networks that dictate the molecular mechanism
underlying phenotypes remains an area of ongoing investi-
gation. Epistatic interaction (or epistasis) is the phenomenon

where different genetic loci contribute to a given pheno-
type in a cumulative nonadditive manner, and it refers to
the modification of the effect of an allele exerted by other
alleles. An allele is a version of a gene or DNA sequence at
a given locus. An individual inherits two alleles, one from
each parent, which will determine the genotype, which can
be homozygous (same allele) or heterozygous (different
alleles). In epistasis, interactions between genes influence the
expression of a phenotype in a way that cannot be predicted
solely based on the individual effects of each gene. It is a
common occurrence in genetics and can have significant
implications for understanding the genetic basis of complex
traits and diseases that are not only governed by the mutation
of one single gene. In this regard, resources such as OLIDA
have catalogued hundreds of curated digenic and oligogenic
variant combinations, mostly in the context of rare inherited
diseases [4]. However, the extent to which such interactions
contribute to the polygenic architecture of complex human
traits remains unresolved, partly because studying epistatic
interactions is particularly challenging given the large number
of potential gene combinations and the complexity of the
underlying genetic networks.
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Researchers have developed several approaches to exam-
ine epistatic interactions in genetics [5]. One of the most
known and effective interaction detection methods is Multi-
factor Dimensionality Reduction (MDR) [6]. It constructs a
single attribute from variables, reducing data dimensionality.
Genotypes at different loci are pooled into high- and low-risk
groups. This reduces the dimensionality by creating a multilo-
cus genotype variable, which can predict the disease status and
assess the joint effect of the merged genotypes. Unfortunately,
MDR suffers from a high computational cost caused by the
elevated number of possible genotype combinations. Another
approach, BOolean Operation-based Screening and Testing
(BOOST) [7], relies on a logistic-regression model that con-
siders both marginal and pairwise interaction effects. Relying
on an efficiently processed Boolean representation of the data
for computational efficiency, this method can detect epistatic
pairs quickly. Other proposed models are based on random
forests and Bayesian networks [8-10].

A caveat of these approaches is that they are influenced sig-
nificantly by marginal (or main) effects. Those indicate the
effect a single genetic variant alone has on the trait under con-
sideration. Marginal effects can confuse the models and make
them believe that a merely additive phenomenon caused by
two high marginal effects can be a nonadditive (epistatic, so
nonlinear) interaction. Marginal effects can be tricky because
they may lure algorithms into believing that a nonlinear in-
teraction exists, whereas it may just be the product of two
additive effects that act independently. Indeed, algorithms for
which the presence of additive effect is problematic will output
interaction rankings in which a single SNP appears as interact-
ing with a large number of other SNPs, which is not very likely.
This is a significant limitation, as it can lead to the presence of
false positives in the interactions. We argue that methodolo-
gies able to detect epistatic effects without being influenced by
marginal effects will output a more diversified set of interac-
tions, which is more biologically plausible; see the “Results”
section. As we show, by analyzing the output results, our ap-
proach achieves exactly that.

To address the aforementioned problems, in this paper we
develop a framework based on neural networks, enriched with
an explainable artificial intelligence (XAI) component.

Despite their superior performance in various applications,
neural networks have a significant drawback, which limits
their use in genetics [11]: the complicated, highly nonlinear
functions they learn make it difficult to understand how they
operate. Thus, they are almost always used as black boxes.
Whereas this usage is acceptable for most applications, such as
image classification or text generation, it is unsuitable when it
is needed to know why a particular output has been produced,
as in medical and genetic applications. Even though neural
networks, being used as black boxes, are not inherently in-
terpretable (as simpler tree-based models, for instance), there
is some line of work on explainability techniques that aim at
unveiling the relationship between input and output. This can
be achieved by looking for input features that have a heavier
weight in the prediction [12, 13] (feature selection/importance
problem) or by trying to assess whether there are groups of
features whose joint interaction is responsible for the values
of the output (feature interaction detection) [14]. Our method
focuses on the latter, as this kind of explainability approach
can help model and determine epistatic interaction effects.

With this spirit, this work introduces EPIDETECT, a new
framework for discovering potential epistatic interactions.

The core element of EpiDeTECT is EriCID (Epistatic Co-
sine Interaction Detection), a neural-network-based algo-
rithm that opens the black box and leverages the power of
neural networks to discover complicated and hidden inter-
actions between input SNPs, actually explaining the neural
network predictions. EPICID is a method specialized at di-
rectly detecting purely interacting input features without rely-
ing on the marginal effect that a single SNP may have on the
trait under consideration. Our method is designed to deliver
global explanations. In contrast with most XAI methodolo-
gies, which are local, instance-based explainers that discover
critical features for specific predictions [15], EriCID deter-
mines the effect (in terms of interaction strength) that pairs
of features have globally on the behavior of the model. Given
the presence of consistent GWAS studies in the field, we se-
lected blood pressure regulation as a case study [16].

Materials and methods

In this section, we will describe the data processing steps
and the EPIDETECT framework, which can be divided into
three main components. The first one, EP1CID, takes a trained
neural network as input and outputs interacting pairs of
SNPs/genes. The second component, the network analysis, re-
trieves central genes in the epistatic network. The third com-
ponent, the enrichment analysis, looks for pathways or on-
tologies associated with the disease or trait under study.

Data sources and processing

For our study, we retrieved individuals’ genotype and phe-
notype information from UK Biobank [17, 18], a large
population-based cohort in the UK that includes around half
a million volunteers aged 40 to 69 years. For our analysis,
we selected SNPs that were found to be robustly associated
with systolic (SBP), diastolic (DBP), and pulse pressure (PP),
taking into account genome-wide significant signals for those
traits derived from the largest GWAS on blood pressure [16]
(more details on SNP selection in Supplementary data). This
allows us to narrow down the pool of possible epistatic SNPs,
reducing the complexity associated with those studies. Thus,
we ended up having 264 SNPs for SBP, 342 for DBP, and
283 for PP, with no overlap among the three sets. We cre-
ated three datasets, one for each trait, in which an array of
SNPs describes each individual, and the target variable is the
blood pressure value of interest. For each patient, we calcu-
lated the mean SBP, DBP, and PP values from two automated
or, wherever needed, manual measurements, as reported in the
UK Biobank dataset. We further performed quality control,
excluding individuals with >10% of missing genotype. After
the quality control, we ended up with 456 057 individuals.
Every patient in the three datasets is described by an array of
SNPs. The SNPs were encoded in a one-hot encoding fashion
to be suitable to be fed to a neural network model. Each SNP
is a three-element vector in which the one-valued element in-
dicates the genotype:

* [1,0,0]: homozygous for the major allele.
e [0,1,0]: heterozygous.
* [0,0,1]: homozygous for the minor allele.

The major allele is the most frequent in the population,
whereas the minor is the least occurring. For details on fea-
ture vector distributions, see Supplementary Fig. S7.
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Figure 1. The workflow of the EPIDETECT framework. The numbers in the blocks indicate the three components of the pipeline. A neural network is
trained and explained with EPICID (block 1) to find interacting pairs that are mapped to genes and used to build an epistatic network and perform
centrality analysis (block 2). The central genes are used for enrichment analysis (block 3), which determines associated ontologies, pathways, and

diseases.

EpiDetect framework

Given the genotype (SNPs) and phenotype (blood pressure
value) of the subjects (patients), our system identifies SNPs
correlated with the phenotype expression based on SNP-SNP
epistatic interactions. To do that, we designed three regression
models based on a multilayer perceptron (MLP) [19] for de-
tecting systolic SBP, DBP, and PP values, and we evaluated the
weights of the layers inside the neural networks and the effect
that these weights have on the final output (the blood pres-
sure value). The use of this simple type of neural network is
aligned with the necessity in genetics to develop simple and ex-
plainable models rather than complex and obscure ones [20].
For each pair of SNPs (our method can also be extended to
subsets of more than two SNPs), we obtained an interaction
score, which captures the strength of the interaction between
the two SNPs of the pair, as well as the effect that this inter-
action has on the final regression function. Then, each SNP is
mapped to the corresponding gene. Subsequently, we identi-
fied the genes/SNPs with the most interactions by creating a
network and connecting those with a high interaction score.
From this network, we identified the most central genes that
significantly affect SBP, DBP, or PP. This allowed us to discover
potentially novel pathways that affect blood pressure and car-
diovascular risk.

As mentioned, EPIDETECT consists of three main compo-
nents: (i) the EPICID neural-network explainability module
that detects candidate epistatic pairs, (ii) the design of a gene—
gene network and centrality analysis, and (iii) enrichment
analysis. The last is a method that aims at identifying genes
that are over-represented in biological pathways, gene ontolo-
gies, or disease networks, and that can have associations with
specific phenotypes. We will now describe each component in
detail, and a graphical representation of the workflow of our
approach is shown in Fig. 1.

Neural-network model and training

Our methodology is based on the use of an MLP. Our net-
work is composed of two fully connected layers with 200 and

50 neurons, followed by a dropout layer (probability of
dropout set to 0.3). For each blood-pressure trait (SBP, DBP,
and PP), the network was trained for 40 epochs using the
Adam optimizer [21] with a learning rate of 10~ and a batch
size of 16, generating three different models. The three blood-
pressure datasets were split into training (70%) and test sets
(30%). The average mean absolute error with standard de-
viation over five independent runs, measured in mmHg (the
unit of measurement for blood pressure), was 14.83 £+ 0.03,
8.04 +0.02, and 8.79 £ 0.03 for SBP, DBP, and PP, respec-
tively (details in Supplementary Fig. S8). The trained neural
network is the base for the explanation phase. As a note, even
though the regression error may seem high, it is important to
point out that, with this study, we are capturing only the ge-
netic components of blood pressure regulation without taking
into account other important factors, such as patients’ habits
and lifestyles, which significantly affect the traits.

Epistatic Cosine Interaction Detection

The core of EPIDETECT is the Epistatic Cosine Interaction De-
tection algorithm (Ep1CID). Our idea is that to find interacting
pairs of input features, it is possible to consider their correla-
tion in the vector space. Thus, one possible metric to use for
measuring feature correlation is cosine similarity. From this
follows the need to represent a feature as a vector, using a sort
of “feature vector of a feature.” This vector should describe
how the feature is represented and seen internally by the neu-
ral network. It can be thought of as a fingerprint or embed-
ding of the feature itself. We can build this vector by using the
weights that the neural network learned during its training. To
construct this vector, we consider the first-layer weights (the
ones connecting the input with the first-layer neurons) and the
influence that hidden units exert on the output. The latter can
be taken into account using the concept of aggregated weight
introduced in Neural Interaction Detection (NID) [14]. This is
computed by cumulative matrix multiplications of the abso-
lute values of weight matrices and indicates the influence that
hidden units have on the output. The aggregated weights of
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the units at layer £ are defined as
20 = T W W[

where w? are the weights at the output layer, W(/) is the weight
matrix at the ;™ hidden layer, L is the network depth (i.e. the
number of hidden layers), and || denotes elementwise absolute
values. Thus, each element zg) indicates the aggregated weight
at unit k of layer £. As demonstrated [14], this definition is
an upper bound of the gradient magnitude. It can be used as
an approximation of the importance of the hidden units, as
gradients have been commonly used as importance measures
in neural networks [12, 22, 23]. Now that we have all the
elements needed, we can define the neural feature vectorg"”
for input feature 7 as follows:

£ = 'ng)’ oz, (2)

where © indicates the Hadamard (elementwise) product of
two vectors, Wl(.l) is the vector of the weights between feature
i in the input and the first hidden layer units, and z!) is the
aggregated weight vector at the first hidden layer, as defined
in Equation (1). Every element Eli” is given by the product be-
tween the connection weight from feature  to unit k of the first
hidden layer and the aggregated weight at the unit. The vector
defined above is an embedding of the feature, a hidden repre-
sentation created by the network during the learning process,
implicitly considering its contribution to the output through-
out the network.

Cosine Interaction Strength

Now, we know how to represent a feature in the vector space

as embedded by the neural network. We can exploit this to

compute the interaction strength between two or more fea-

tures. We decided to consider the correlation of the feature in

the vector space as a measure of interaction importance using

the cosine similarity measure, defining the cosine interaction
strength between features i and j as

(1) | &(f)
Bli, ) = cos(g?, 8 = S
Hg(x) ’ HEm

where €7 and &) are the neural feature vectors describing
features i and j. Notice that ¢(i, j) € [0, 1] since “;'IL') >0 and

. (3)

é,i’) > 0 for every k, as per Equations (1) and (2). The ratio-
nale behind this measure is that a high cosine similarity be-
tween two neural feature vectors indicates that two features
interact in the network. However, this measure alone does not
capture the real magnitude of the interaction, but it is only
able to detect if an interaction is present. Early experiments
showed that this measure could find interacting pairs of fea-
tures but failed to determine the interaction strength properly.
For this reason, we improved the definition of cosine interac-
tion strength, defining a more appropriate one that was able
to differentiate between weak and strong interactions.

To do that, we take into consideration where the interac-
tion is formed, namely, between the input and the first hidden
layer. Inspired by NID, given features 7 and j, we consider their
connection weights to the first hidden layer units. Differently
from Equation (2), in which the effect of a single feature on
the network is considered, we now analyze the joint effect of
the two features on the first hidden layer. For each first-layer
unit k, we apply the min averaging function to the absolute

values of the weights connecting k to 7 and ;. The choice of
this function is justified by previous work [14], which demon-
strated its effectiveness in detecting feature influence in neural
networks. Then, we sum over all the units to obtain what we
define as the first-layer interaction influence:

ni, j) =Y, min(W1 W), (4)

The rationale behind the choice of the minimum is that an in-
teraction is strong (at the first hidden layer) when its 7 is large.
When the minimum of the two weights is large (i.e. when both
weights have a high value) for a consistent number of hid-
den units, n will be high, indicating the rise of strong inter-
action. Conversely, the previously defined ¢ in Equation (3)
helps understand how the interaction evolves when passing
throughout the network until the output: an interaction may
start strong at the first hidden layer but lose its importance to-
ward the output layer, or a mild interaction may preserve its
strength, having a considerable effect on the prediction. Given
those observations and merging Equations (3) and (4), we ob-
tain the new definition of cosine interaction strength:

(i, j) = nli, /)i, ). (5)

The measure defined in Equation (5) can describe the interac-
tion completely and coherently, from its rise from the input to
the first hidden layer and considering its evolution toward the
output through the network.

Finally, in our application, given that an SNP is represented
by a three-element one-hot-encoded vector, it follows that it
is described by three different neural feature vectors (one for
each feature), which need to be aggregated before computing
the interaction strength. We merge them into a single one by
performing an element-wise sum of the vectors. The same ag-
gregation is used for the first-layer weights to compute the
first-layer interaction influence of a SNP. Once we have the
vectors, it is possible to obtain the cosine interaction strength
for a pair of SNPs as in Equation (5). Notably, EP1CID can be
extended to sets of more than two SNPs. A visual representa-
tion explaining the Ep1CID algorithm is shown in Fig. 2.

Network and centrality analysis

After training the MLP three times (once for each trait: SBP,
DBP, and PP) and applying Er1CID, we obtain a ranked list
of highly interacting (as measured by Er1CID) pairs of SNPs.
We next map these SNPs to genes, obtaining a ranking of in-
teracting genes. The mapping is performed via the following
steps:

(1) We map an SNP to a protein-coding gene according
to the Consensus Coding Sequence Project (CCDS)
[24], which provides very high-quality annotations for
protein-coding genes.

(2) If no reference in CCDS is found, we map it using
Genecode [25].

In cases where an SNP is annotated in a genome region with
more than one gene present, we follow the process:

(1) We map to a coding gene if present.

(2) If more than one coding gene is present, we choose a
mapping already appearing in the literature.

(3) If no coding genes are present, we look up different
sources, such as dbSNP [26] and Ensembl [27], to
choose the most suitable mapping.
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o)

(a) First-layer interaction influence 7(%, 7).

(b) Neural feature vector ¢(%).

(¢) Cosine interaction strength ®(%, 7).

Figure 2. Graphical representation of the EPICID algorithm steps. (a) Computation of the first-layer interaction influence n(i, j), which evaluates the joint
effect of two features on the first hidden layer by applying the min function to their connection weights and summing over all units. (b) Construction of
the neural feature vector E"’, which represents feature 7 in the vector space by combining the first-layer weights and aggregated weights through an
element-wise product. (¢) Calculation of the cosine interaction strength ®(/, j), which combines the first-layer interaction influence (i, j) and the cosine
similarity ¢(/, j) of the neural feature vectors to quantify the interaction strength between two features. For clarity, the superscript (1) indicating the first

hidden layer is omitted in the figure.

In both cases, whenever we do not find a mapping, we as-
sign the SNP to the closest gene according to Genecode, giving
a preference for coding genes.

This mapping ensures that we do not discard any SNPs to
avoid losing important information for the traits and miss pos-
sible interactions between coding and noncoding genes, as the
latter may contain regulatory elements that are of paramount
importance in complex traits [28].

We use the interactions identified by EpiCID to create an
epistatic interaction gene—gene network for each of the three
blood pressure traits and discover the most central genes by
studying the top 1000 interactions [29, 30]. For compari-
son purposes, to investigate the effectiveness of the proposed
methodology, we also analyzed the central networks obtained
by using other algorithms for epistatic interaction detection.
We choose the central genes, that is, those with a degree higher
than the average degree in the top-1000 network, for enrich-
ment analysis. The degree, corresponding to the number of
direct neighbors to a given node, allows an immediate evalu-
ation of the regulatory relevance of a node and can be used
to validate centrality in different kinds of networks, such as
signaling and metabolic networks [31].

Enrichment analysis

We perform enrichment analysis for central genes of the
epistatic networks using the Enrichr online tool [32-34]. This
is among the most reliable, robust, and popular tools for this
task, thanks to the large amount of data sources it uses for
its analyses. In our study on blood pressure, we compared
gene sets from the different algorithmic approaches to the
datasets available in the databases of the Gene Ontology Con-
sortium [35], DisGeNET discovery platform [36-38], GWAS
Catalog [39], and UK Biobank [17, 18], to understand the bi-
ological relevance of the epistatic networks obtained for the
three blood pressure traits.

Even though Enrichr models monogenic interactions, its re-
sults remain highly relevant in interpreting the functional im-
plications of genes involved in epistatic effects. Performing
pathway analysis allows us to determine whether these genes
converge to common biological processes relevant to the com-
plex traits under study. Moreover, enrichment analysis helps
us understand potential collective biological roles, providing
an important biological context for interpreting our findings.

By leveraging Enrichr, we aim to determine whether our iden-
tified genes are overrepresented in key biological functions rel-
evant to complex traits.

Point penalty score

To quantify and evaluate the coherence of the retrieved
epistatic networks with the traits of interest and compare them
with one another, we defined a point penalty score, which pe-
nalizes the approaches that perform the worst, considering the
ranking among the proposed strategies. The method ranking
the trait higher than the others is awarded 0 penalty points, the
second method receives 1 point, and so on (ties are awarded
the same penalty points). This is done for all the traits and the
data sources considered. Eventually, the scores are summed to
obtain the final point penalty score. A lower score is better.
No penalty is assigned if no method ranks the trait among the
top 10 enriched terms. We introduced this metric to be able
to evaluate the epistatic networks retrieved by different algo-
rithms in a comparative manner.

Results

We hereby present the application of the EPIDETECT pipeline.
First, we show the application of EP1CID on synthetically gen-
erated data to evaluate its performance in the presence of a
ground truth. Second, we apply our framework to the three
blood pressure traits (SBP, DBP, and PP). To compare our ap-
proach, we evaluated it against other widely used epistasis de-
tection frameworks such as MDR and BOOST. We also com-
pared it with NID, a methodology specific to neural networks
that we adapted to work with genetic inputs. Our results indi-
cate that our strategy outperformed these methods and mini-
mized the influence of marginal effects. Regarding real-world
blood-pressure data, given that validating epistatic interac-
tions is rather challenging because of the complex nature of
the phenomenon and the absence of consistent ground truth,
we proceed with a three-fold analysis to have a thorough eval-
uation of our methodology. At first, we analyze the Er1CID
output to investigate its reliability and robustness, mainly fo-
cusing on marginal effects and interaction distributions. Then,
we describe the network and centrality analysis of the inter-
acting pairs found by Ep1CID and compare the central genes
obtained against the results of other algorithms. Finally, we
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Table 1. Top 20 interactions for the GAMETES additive model (reporting
also marginal effects—ME—for BOOST and MDR)

Rank BOOST BOOST ME MDR MDR ME NID EpiCID
1 MOP1 MOP2 MOP2 MOP1 MOP2 MOP2 MOP1 MOP2 MOP1 MOP2
2 MOP1 N6 MOP2 MOP1 N32 MOP1 N207 N236
3 N24 N40 MOP2 N24 N162 MOP1 N144 N182
4 N68 N101 MOP2 N222 N101 MOP1 N85 N236
5 N163 NO MOP2 N111 N37 MOP1 N206 N236
6 N6 N1 MoOP2 N70 N40 MOP1 N142 N162
7 N222 N2 MoP2 N214 N209 MOP1 N153 N207
8 N103 N3 MoP2 N5 N207 MOP1 N162 Ni8s8
9 N142 N4 MoOP2 N99 N236 MOP1 N32 N110
10 N111 N5 MoP2 N89 N71 MOP1 N162 N236
11 N5 N7 MOP2 N161 N55 MOP1 N162 N207
12 N70 N8 MOP2 N243 N58 MOP1 N236 N251
13 N89 N9 MOP2 N68 N59 MOP1 N44 N236
14 N102 N10  MOP2 N196 N130 MOP1 N22 N236
15 N243 N11 MoOP2 N119 N32 MoP2 N22 N209
16 N166 N12 MoOP2 N228 N125 MOP1 N30 N162
17 N214 N13 MoP2 N103 N37 MOP2 N162 N197
18 N55 N14 MoP2 N179 N70 MoP1 N40 N207
19 N175 N15 MoP2 N181 N246 MOP1 N117 N236
20 N196 N16 MoP2 N110 N188 MOP1 N151 N242

The names of the SNPs are the ones generated by GAMETES; SNPs named
MOP1 and MOP2, marked in yellow for convenience, are the interacting pair,
and SNPs named Nxxx are randomly generated with no effect on the trait.

analyze the output of the entire framework, which is rep-
resented by the ontologies, pathways, and traits found with
enrichment analysis on the central genes obtained from the
Epr1CID-derived epistatic pairs.

Application to synthetic data

We generated datasets composed of 500 000 individuals (half
cases, labeled 1, and half controls, labeled 0) having 256 SNPs
each. We created multiple datasets by using the GAMETES
software [40] so as to take into account multiple interaction
patterns, including (i) additive, (ii) threshold, (iii) epistatic,
and (iv) purely epistatic interactions, based on previous work
[10]. (i) The additive pattern is a simple linear phenomenon
in which the risk of disease (label 1) increases with the num-
ber of minor alleles; this is not an interaction but an addi-
tive sum of effects, characterized by strong marginal effects
of both SNPs in the pair. (ii) In the threshold model the risk
is given by the presence of at least one minor allele; this is a
step-function effect in which one SNP of the pair has a strong
marginal effect. (iii) In the epistatic pattern the risk of dis-
ease is given by a nonlinear interaction of the SNPs involved.
(iv) Finally, the purely epistatic effect is an extreme epistatic
pattern in which all marginal effects of SNPs are minimized,
in favor only of the nonlinear phenomenon. In the synthetic
datasets, only one pair of SNPs is generated using those pat-
terns, and the rest of the SNPs are noncausal for the trait and
are generated randomly. The use of this type of data allows us
to evaluate the output in the presence of a ground truth. More
details on those patterns and the dataset generation are avail-
able as Supplementary data (see Supplementary Table S3).

Additive, threshold, and epistatic models

The application of EpICID to the additive, threshold, and
epistatic synthetic dataset models yielded analogous results.
Therefore, we report only the rankings obtained on the
additive-pattern dataset in Table 1 and discuss the correspond-
ing findings; results for the threshold and epistatic models are
provided in the Supplementary data.

In the additive scenario, BOOST shows no significant prob-
lems; the additivity is properly found as well as the marginal
effects of the two SNPs. No additional SNPs are reported in
the table for BOOST, because this method does not output
pairs with low interaction scores.

MDR shows a behavior that is expected in the presence
of additive effects. Even though the interaction is properly
detected, the subsequent pairs feature one of the interacting
SNPs. This is because the interaction is created by the addi-
tivity of the marginal effects of SNPs MOP1 and MOP2. MDR
relies on those marginal effects when looking for interactions.
Actually, the interaction scores of pairs ranked from posi-
tions 2 to 20 (and even beyond) featuring SNP MOP2 (MOP2~
Nxxx) are the same score we have for the marginal effect of
SNP MOP2: 0.5685 (see Supplementary Tables S26 and S27 in
file Supplementary Tables S6-S47.xlsx for more de-
tails); this means that the marginal effect determines the whole
interaction score. On the contrary, Er1CID is able to filter out
marginal effects in additive phenomena. With Er1CID we note
that the interaction is properly detected, but the ranking is
not governed by the high marginal effect SNPs. Indeed, from
the second position on, we do not notice any of the two in-
teracting SNPs MOP1 or MOP2, despite their marginal effect
being high. The SNP pairs returned from position two and be-
low are apparently random/nonimportance-related (no effect
on the trait) with a lower and well-separated cosine interac-
tion strength score: pair MOP1-MOP2 has a score of 46.02,
whereas the pairs Nxxx-Nxxx have an average score of 17.17
(see Supplementary Table S28 for the complete ranking with
scores). The NID approach also suffers from the presence of
marginal effects. It first detects the correct pair MOP1-MOP2,
but in the next pairs we see the presence of an MOPx SNP, sug-
gesting the influence of these SNPs on the interaction score.
Even though the scores denote a separation with noninter-
acting pairs (126.65 versus 54.71), the average score of the
pairs involving MOPx SNPs is 65.30, whereas the rest of the
pairs have an average of 54.55, suggesting clear influence of
marginal effects on NID, even if small in magnitude. Analo-
gous results and observations were obtained for the threshold
and epistatic models (see Supplementary Tables S4 and SS).
Overall, we can conclude that Ep1CID manages to filter out
marginal effects and properly retrieve the interacting pair of
SNPs. Check Supplementary Tables $24-S41 for the complete
rankings with scores for the additive, threshold, and epistatic
models.

Purely epistatic model

With the purely epistatic model (Table 2), which is the most
complex one, we observe a different behavior.

Both MDR and BOOST are able to correctly identify the
epistatic pair, although MDR seems to have a bias given by
SNP N8, which repeatedly appears in the interaction ranking
and is the top-ranked SNP in the marginal effect ranking. Ep1-
CID also detects the interacting pair, with no marginal effect
bias (cosine interaction strength of 40.94 against an average of
16.79 of the noninteracting pairs). NID is also able to capture
the epistatic interaction but suffers from marginal effects. Ac-
tually, the SNPs MOPx involved in the interaction are reported
as interacting with all the rest of the SNPs, retrieving many
spurious interactions, showing the sensitivity of NID to even
small marginal effects. The complete rankings are available in
Supplementary Tables S42-S47.

The analysis on GAMETES data indicates that Ep1CID was
conceived in the correct way to both filter out marginal ef-
fects and correctly detect epistatic pairs. Despite having simi-
lar architecture to NID, our method addresses the main issue
of NID, which is the sensitivity to marginal effects.
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Table 2. Top 20 interactions for the GAMETES purely epistatic model (re-
porting also marginal effects—ME—for BOOST and MDR)

Table 3. Distributions of the 5 most interacting SNPs in first 1000 inter
actions for SBP (the number of interactions corresponds to the degree in
the top-1000 interaction network) and the total number of interactions in
which they are involved

Rank BOOST BOOST ME MDR MDR ME NID EpiCID
L RN O Rank NP Gene Ineracions
3 N171 N83 N166 N173 N161 MOP1 N175 N217
5 ve [ e e o wom ne wap  DOOST
6 N173 N8  N228 N163 N175 MOP1 N70  N241 1 rs1012089 AC138627.1 226
7 N228 N8 N97 N171 N1 MOP1 NI187 N217 2 1s9667596 OR4A44P 180
X no [N No:  Nas N7 MOPY| nivs Nwe 3 rs7023828 AL358074.1 157
10 N163 N8  N196 N243 N15 MOP1 N17  N46 4 rs10224002 PRKAG2 130
12 noos [ N Nos  nuo [Moma| N5 was O rs1694068 ARL1S 89
13 NT2 N8 | N12 N9 N55  MOP1 N161  N217 Total number of interactions 782
14 N243 N8 N188 N204 N70 MOP2 N82 N144 MDR
15 N201 N8 N30 N153 N19 MoOP2 N5 N226
16 N210 NS N19s N188 N17 MOP2 N55 N175 1 rs17477177 AC004917.1 263
17 N57 N188 N253 N28 N68 MOP1 N70 N217
18 No N8 | N246 N73 N240 MOP1 N17  N70 2 1517249754 ATP2B1 263
19 N153 NS N240 N89 N133 MOP1 N99  N217 3 rs11191548 CNNM2 237
20 N204 N8 N151 N58 N172 MOP1 N54 N217 4 rsl 173771 NPR3 163
The names of the SNPs are the ones generated by GAMETES; SNPs named 5 rs17367504 MTHFR 46
MOP1 and MOP2, marked in yellow for convenience, are the interacting pair, Total number of interactions 972
and SNPs named Nxxx are randomly generated with no effect on the trait. NID
We have also marked with green the SNP N8, which appears in multiple SNP 1 rs77413490 PTEN 163
pairs, indicating some false signal. ) 51126930 PRKAG1 115
3 157331680 CDC16 114
. . 4 rs28621435 GRIN2B 92
Overall, the analysis on synthetic data showed the effec- 5 s139354822  FARP2 91
tiveness of our approach in discovering known interactions in  Total number of interactions 575
different marginal effect conditions, rendering it suitable for ~ EpiCID
usage with real data. Regarding BOOST (and MDR with the 1 1577413490 PTEN 150
exception of the additional interactions in output), we notice g rs%ggi 43182 g;ﬁ:ﬁg}q 16188
that they also perform correctly on synthetic data; yet, as we s
. . . 4 rs7331680 CDCl16 66
will see later, they appear to be less effective on real data. This 5 510437954 ARHGEF25 64
is not surprising, as the GAMETES simulator encodes a single Total number of interactions 466
genetic effect in discrete penetrance tables, where each pos-
sible genotype combination is assigned a fixed probability of
disease. Even the GAMETES additive model is expressed in
this way, with risk increasing stepwise across genotype cat- 550 _Me;hggg
egories rather than smoothly as in real additive effects. This " MDR
discrete, single-interaction setup makes it easy for MDR to == ND
bin genotypes into “high” and “low” risk groups and for 200 1 mm EpiCID
BOOST to detect strong pairwise signals, so both methods s
appear powerful in simulation. In real Biobank data, however, §
effects are typically weaker, more continuous, and influenced £ 1307
by many variants at once, which breaks this neat alignment. 5
[
€ 100
EpiCID output analysis 2
A complete evaluation of our results on real-world blood- 5
pressure data involves the entire pipeline of the EPIDETECT
framework. We begin the analysis by investigating the Ep1-
CID output and detect possible bias in the rankings of the

various algorithms for epistasis detection caused by the pres-
ence of marginal effects. We can notice this bias by looking at
the rankings and examining whether they are dominated by
the influence of a small number of SNPs that appear to inter-
act with an exceedingly high number of other SNPs; such a
result would be quite unusual in a ranking with nonlinearly
interacting pairs [29]. Indeed, epistatic interactions are typi-
cally considered to be distributed across multiple loci rather
than being dominated by a small subset of highly connected
nodes. Whereas certain genes may exhibit higher connectivity,
epistatic networks tend to be more distributed. This assump-
tion is also supported by prior studies [41]. By inspecting the
degree of the 5 most interacting SNPs in the top-1000 interac-
tion network for SBP (Table 3), we notice how in the BOOST
and MDR output only a small number of SNPs are involved
in almost all the top 1000 interactions.

3
SNP rank

Figure 3. Graphical representation of the distribution of the 5
highest-degree SNPs in the first 1000 interactions for SBRP

For BOOST, 5 SNPs are involved in 782 of the top 1000
interactions. This concentration is much more evident with
MDR, with 972 interactions. In contrast, the top 5 SNPs are
involved in 575 interactions for NID and even less for Ep1-
CID (466). Thus, neural-network—based methods, especially
Ep1CID, exhibit more variability in the distribution of the in-
teracting SNPs. This suggests that these methodologies are less
affected by the marginal effects of single SNPs, in line with the
results obtained using synthetic data. We can observe this be-
havior also in Fig. 3.
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Next, we compared the different algorithms with respect to
the distribution of the SNPs with the highest number of inter-
actions at different levels. Figure 4 shows stacked bar charts
visualizing the most interacting SNPs in the top-100, top-500,
and top-1000 interaction networks. In the first 100 interac-
tions, BOOST is characterized by only one SNP interacting
with all the rest of the SNPs, suggesting a presence of bias
toward this particular SNP, presumably caused by a strong
marginal effect (Fig. 4a). MDR has just 3 SNPs dominating
the top 100 interactions, and almost 80 interactions show the
presence of the same SNP. On the contrary, for NID and Epr1-
CID, 5 and 6 different SNPs are involved in the top 100 inter-
actions, respectively. We obtained similar insights from the top
500 interactions (Fig. 4b). For BOOST and MDR, we found
4 top-interacting SNPs, 10 for NID and 14 for Epr1CID. This
is further confirmed by the top-1000 chart (Fig. 4c), which
shows 9 top SNPs for BOOST, only 6 for MDR, 14 for NID,
and 20 for EriCID. Given the tendency of standard algorithms
to be more strongly affected by marginal effects, they may
wrongly detect spurious interactions as pure ones, impinging
on the output and resulting in unusual rankings with small
numbers of SNPs, also reflected in the subsequent centrality
analysis. In particular, it is remarkable how BOOST, despite
performing well on synthetic datasets, seems to fail to cap-
ture more complex interactions inherently present in real data.
This may be attributed to the fact that this methodology strug-
gles when looking for multiple interacting pairs whose corre-
lation with the output follows unknown and complicated non-
linear patterns, as opposed to looking for single pairs with pre-
defined or mathematically generated penetrance functions. On
the contrary, neural-network-based models, especially Epi-
CID, returned a more variable output in the number of in-
teracting SNPs, which is what we would expect in nature,
probably providing a more realistic depiction of several inter-
actions that underlie complex traits [42]. Analogous results
were obtained for DBP and PP, available as Supplementary
data (Supplementary Tables S1 and S2 and Supplementary
Figs S1-S4). Supplementary Tables S6-523 contain the com-
plete rankings with scores for SBP, DBD, and PP for the four
algorithms.

We explore more the phenomenon of the complex inter-
actions of real data, by studying the effect of the number of
patients on the performance of EriCID. In particular we study
to what extent we are able to recover the interactions dis-
covered with the full dataset, when using an increasing num-
ber of patients. Whereas even with a much smaller number
of patients (50K), EriCID is able to detect the real interac-
tion using the GAMETES data, in the case of the UK Biobank
data, a small number of patients is able to recover only a
small percentage of the top interactions detected by the full
dataset, and, not surprisingly, increasing the number of pa-
tients leads to more accurate results (Supplementary Fig. S5).
Therefore, the number of patients is of crucial importance,
and we conjecture that, as in the future we will have larger
patient databases, approaches such as EriCID will return
new results. For more details refer to the Supplementary data
(Section 4).

Centrality analysis

After training the neural network on the three traits and ap-
plying Ep1CID to detect interacting SNPs, the top 1000 inter-
actions provided by Ep1CID involved 195, 168, and 185 inter-

acting genes, and subsequent centrality analysis resulted in 49,
48, and 53 central genes for the SBP, DBP, and PP traits, respec-
tively. Next, we looked for common genes among the Er1CID-
derived network and the networks obtained from BOOST,
MDR, and NID (Fig. 5).

Thirty-one out of 49, 33 out of 48, and 37 out of 53 central
genes obtained by EriCID for SBP, DBP, and PP, respectively,
were common to the central genes obtained by at least one or
more other approaches. EP1CID had the most common genes
with NID, compared to other methods, namely 30,29, and 35
for SBP, DBP, and PP, respectively. MDR contained an inter-
mediate but low number of common central genes with Epi-
CID and the other strategies: 3 out of 7, 10 out of 33, and 3
out of 5. BOOST had the least common genes to the other
three approaches; we found 5, none, and 2 common genes
for SBP, DBP, and PP, respectively. EP1CID led to a high per-
centage of common central genes with methodologies adopt-
ing similar architecture (i.e. NID), whereas BOOST and MDR
led to more divergent sets of central genes. The central genes
identified in this phase are used for the subsequent enrichment
analysis.

Enrichment analysis

The final output of our system is provided by the enrich-
ment analysis carried out on the central genes obtained from
the epistatic pairs. Centrality analysis led to a gene set that
contained only a fraction of the total genes of the epistatic
network, which are assumed to play a central role in the
trait/disease network under consideration. A critical question
is which epistatic network may more accurately represent the
affected intracellular pathways that alter organismal physiol-
ogy and lead to a trait/disease. To support the role of cen-
tral genes identified through each epistatic network on blood
pressure, we performed enrichment analysis using the Enrichr
analysis tool [32-34].

In the enrichment analysis, we queried for the traits that
are most significantly associated with each of the sets of cen-
tral genes returned by the four approaches (EptDETECT, NID,
MDR, and BOOST), based on data from DisGeNET [36-38],
the GWAS Catalog 2023 [39], and UK Biobank [17, 18], as a
means to discover which method returns a core network for
each trait. So, we examined whether SBP, DBP, and PP traits
were found as associated traits and, if yes, in which position
in the enrichment ranking; we report the position for the dif-
ferent approaches in Table 4. From the ranking of the En-
richr results, we can observe that the networks obtained by
EPIDETECT can represent core networks on each associated
trait more coherently compared to the other algorithms. With
the exception of the PP trait in DisGeNET and UK Biobank,
where none of the algorithms predicted the trait, EPIDETECT-
associated traits were ranked first in all cases. NID had slightly
lower accuracy, with DBP in UK Biobank ranking third. Fi-
nally, MDR and BOOST had the lowest accuracy among the
methods tested, as the relevant traits were ranked in lower po-
sitions. This difference can be quantified by the Point Penalty
Score that we defined. EPIDETECT scores 0, being always the
top-performing approach able to retrieve gene networks rep-
resentative of the analyzed disease.

Having verified the specificity of EPIDETECT, we next an-
alyzed for enriched gene ontologies (GO Biological Process
databases) found using the central genes of the epistatic net-
works. We performed a ranking of the pathways found, based
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Figure 4. Highest-degree SNPs in the top 100 (a), top 500 (b), and top 1000 (¢) interactions for SBP On the x-axis, we have the method for detecting
interactions, and on the y-axis, the number of interactions in which the most popular SNPs are involved (corresponding to the degree in each top-n

interaction network).

(a) SBP

(b) DBP (c) PP

Figure 5. Common central genes from SNPs associated with SBP (a), DBP (b), and PP (e), following analysis with different algorithms.

Table 4. Association of central genes to the respective trait (N/A: not associated among the top 10 terms

Algorithm Rank Point Penalty Score
DisGeNET GWAS Catalog UK Biobank
SBP DBP PP SBP DBP PP SBP DBP PP
EpriDETECT 1 1 N/A 1 1 1 1 1 N/A 0
BOOST 1 1 N/A 1 1 1 1 N/A N/A 2
MDR N 1 N/A 3 1 N/A 3 1 N/A 4
NID 1 1 N/A 1 1 1 1 3 N/A 1

We also present the results of our framework when we substitute the first component (EpiCID) with BOOST, MDR, and NID for comparison. The rank
indicates the position of the trait in the retrieved ranking of traits/diseases associated with the central genes of each algorithmic approach in each of the three
databases. Each method is presented with its point penalty score. The complete enrichment rankings are available in Supplementary Figs S$9-S11.

on the obtained P-value, following Fisher’s exact test; the top
results are shown in Fig. 6. The enrichment of the SBP net-
work revealed associations with GOs related to the regulation
of synaptic transmission (GO:0050806) and other nervous
system-related ontologies (GO:0014020 and GO:0001843,
among others), in line with the evidence of its connection
with blood pressure regulation [43, 44], as well as estab-
lished associations between hypertension and wound heal-
ing processes (GO:0061045) [45] and plasma membrane ab-
normalities (GO:0120035) [46]. DBP-central genes were en-
riched in MAPKs and MAPK signaling (GO:0051403 and
G0:0031098) pathways known to be associated with blood-
pressure traits [16]. A new finding is that cellular sodium ion

homeostasis (GO:0006883) and similar GOs (GO:0055078
and GO:0030004) were found enriched based on EriDE-
TECT epistatic network genes. In the PP network of central
genes, among the known associations were that of regula-
tion from RNA polymerase II (GO:0045944) [47] and car-
diac muscle fiber development (GO:0048739) [16]. Also, sar-
comere organization (GO:0045214) was found to be enriched
and in line with previous studies [48]. Among others, an
interesting association is that of the Notch signaling path-
way (GO:0008593). In summary, EPIDETECT-derived epistatic
networks provide supporting evidence for known pathways
associated with blood pressure traits, as well as the potential
for discovering new pathways.
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GO Biological Process 2018
positive regulation of synaptic transmission (GO:0050806) 5.93e-04

negative regulation of wound healing (GO:0061045) 1.70e-03

central nervous system development (GO:0007417) 1.95e-03

brain development (GO:0007420) 3.10e-03

negative regulation of epithelial cell migration (GO:0010633) 3.32e-03
regulation of ubiquitin protein ligase activity (GO:1904666) 3.51e-03
cellular response to amino acid starvation (GO:0034198) 4.11e-03
negative regulation of TOR signaling (GO:0032007) 4.32e-03

inositol phosphate metabolic process (GO:0043647) 5.92e-03

polyol metabolic process (GO:0019751) 5.92e-03

GO Biological Process 2021
regulation of plasma membrane bounded cell projection organization (GO:0120035) 2.13e-03

negative regulation of wound healing (GO:0061045) 2.29e-03

primary neural tube formation (GO:0014020) 2.45e-03

tube closure (GO:0060606) 2.61e-03

neural tube closure (GO:0001843) 3.14e-03

negative regulation of epithelial cell migration (GO:0010633) 3.32e-03

central nervous system development (GO:0007417) 4.16e-03

regulation of ubiquitin-dependent protein catabolic process (GO:2000058) 4.76e-03
skeletal system morphogenesis (GO:0048705) 4.76e-03

cellular response to glucose starvation (GO:0042149) 4.98e-03

1 2 3
—logo(p-value)

i 2
—logio(p-value)

(a) SBP

GO Biological Process 2018
cellular sodium ion homeostasis (GO:0006883) 5.81e-04

cellular monovalent inorganic cation homeostasis (GO:0030004) 7.5e-04
sodium ion homeostasis (G0:0055078) 1.77e-03

response to unfolded protein (G0O:0006986) 4.78e-03

peptidyl-tyrosine autophosphorylation (GO:0038083) 5.23e-03

stress-activated MAPK cascade (G0:0051403) 9.73e-03

stress-activated protein kinase signaling cascade (G0:0031098) 1.23e-02

B cell activation (G0:0042113) 1.33e-02

purine ribonucleoside monophosphate catabolic process (G0:0009169) 1.43e-02

morphogenesis of an endothelium (GO:0003159) 1.43e-02

GO Biological Process 2021
cellular sodium ion homeostasis (GO:0006883) 5.81e-04

inorganic cation import across plasma membrane (GO:0098659) 8.38e-04
cellular monovalent inorganic cation homeostasis (GO:0030004) 1.04e-03
negative regulation of intracellular signal transduction (GO:1902532) 1.29e-03
sodium ion homeostasis (G0:0055078) 1.63e-03

stress-activated protein kinase signaling cascade (GO:0031098) 1.91e-03
negative regulation of protein kinase B signaling (GO:0051898) 4.15e-03
response to unfolded protein (G0:0006986) 6.17e-03

neuron migration (GO:0001764) 6.42e-03

stress-activated MAPK cascade (G0:0051403) 9.73e-03

1 2
—logo(p-value)

1 2
—logio(p-value)

(b) DBP

GO Biological Process 2018
regulation of cellular protein metabolic process (G0:0032268) 3.15e-04

positive regulation of transcription from RNA polymerase Il promoter (GO:0045944) 3.51e-04
cardiac muscle fiber development (GO:0048739) 4.47e-04

glomerular visceral epithelial cell differentiation (G0:0072112) 5.27e-04

regulation of Notch signaling pathway (GO:0008593) 8.49e-04

positive regulation of transcription of Notch receptor target (GO:0007221) 9.13e-04

positive regulation of neuron apoptotic process (G0:0043525) 1.14e-03

regulation of protein oligomerization (GO:0032459) 1.68e-03

regulation of neuron apoptotic process (G0:0043523) 1.7e-03

positive regulation of cellular metabolic process (G0:0031325) 1.87e-03

GO Biological Process 2021
sarcomere organization (GO:0045214) *5.49e-05

positive regulation of pri-miRNA transcription by RNA polymerase Il (GO:1902895) *9.92e-05
myofibril assembly (G0:0030239) *2.01e-04

regulation of pri-miRNA transcription by RNA polymerase Il (GO:1902893) *2.30e-04
regulation of cellular protein metabolic process (G0O:0032268) *2.97e-04

glomerular visceral epithelial cell differentiation (G0:0072112) 4.47e-04

positive regulation of transcription of Notch receptor target (GO:0007221) 9.13e-04
actomyosin structure organization (G0:0031032) 1.08e-03

regulation of Notch signaling pathway (GO:0008593) 1.39e-03

positive regulation of cholesterol efflux (GO:0010875) 1.68e-03

1 2
—logio(p-value)

1 2
—logio(p-value)

(c) PP

Figure 6. Gene Ontology Biological Process enriched terms (databases 2018 and 2021) in EPIDETECT central genes from SBP (a), DBP (b), and PP (c)
epistatic networks. Every term is statistically significant and reported with its P-value (xsignificant adjusted P-value).

Discussion

Complex traits are typically influenced by multiple genetic fac-
tors, making their analysis challenging. We thereby developed
EPIDETECT, a novel explainable deep-learning—based method,
and we provided a step-by-step protocol to detect epistatic
effects and create epistatic gene networks. Our approach de-
tected epistatic interactions, delivering results that are more
reasonable than the ones of the other approaches that we
compared with (MDR, BOOST, and NID). Clearly, the ob-
servations reported on blood pressure are mostly qualitative,
as there is no clear way to quantify this apart from comparing
the output of the methods and the results of the enrichment
analysis.

EPIDETECT consists of three major components. First, Ep1-
CID, a novel algorithm that calculates epistatic interactions
relying on the inner mechanics of neural networks, properly

unveiled by our explainability scheme. Next, a network anal-
ysis component is used to extract central genes. Finally, we
apply an enrichment analysis process to those central genes.
The framework provides a three-level output: ranked interac-
tions of SNPs, central genes, and pathways/ontologies. This
multilevel output helps provide a more differentiated view of
the results that would be otherwise hard to evaluate given the
complexity of the epistasis phenomenon and the lack of a con-
sistent ground truth.

The first component of the framework identifies purely in-
teracting features, attenuating marginal effects of single SNPs,
which can lead algorithms to detect spurious interactions;
this represents a novelty even in the field of neural-network
explainability. Interaction detection approaches usually rely
on importance metrics of single features to compute interac-
tion scores [49]; this may leave out interactions for which
the main effects are negligible. EP1CID exploits the neural-
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network weights learned and optimized during the training
process and, by extracting representative feature embeddings,
is able to determine how an interaction is created and evolves
in the neural network, and how it affects the output. The result
of the EriCID component is a list of ranked epistatic interac-
tions.

The second component is a network analysis workflow,
which calculates a gene-gene network based on the top-
ranked SNP-SNP interactions previously obtained. This pro-
cess is in agreement with the concept that a holistic, systems-
biology approach is needed to explain gene-gene interactions,
which explain epistasis and complex phenotypes [50-53]. It
uses centrality analysis to calculate the most significant/central
genes in the EpriCID-derived networks [54]. Central genes
were identified using the degree measure, which was proven
to be effective in the analysis of biological networks. A pro-
tein with a high degree interacts with several other proteins,
suggesting a possible central regulatory role. There is convinc-
ing evidence that proteins with a central regulatory role, or
hubs, have been elucidated to be central oncogenes or tumor
suppressor genes with clinical significance in cancer-related
networks [55-58]. However, our workflow can be perfectly
adapted to use other notions of centrality measures [59] (see
Supplementary Fig. S6 for additional details). We validated the
proposed approach by repeating the workflow using a num-
ber of epistatic analysis algorithms, namely MDR, BOOST,
and NID. The accuracy of our strategy was assessed by com-
paring it with the final central gene networks from the other
methods. In all three traits (SBP, DBP, and PP), Ep1CID had
more common genes with NID, whereas MDR and BOOST
networks featured more unique genes. EPICID resulted in a
large set of shared central genes with the compared strategies.
The fact that Er1CID identified genes that were also found by
other methods highlights its robustness. At the same time, the
discovery of unique genes found using EP1CID may be more
reliable and likely to represent the actual gene networks un-
derlying these traits (confirmed by the subsequent enrichment
analysis). This may indicate that it might depict the underly-
ing regulatory network more accurately, rendering the unique
genes found more reliable. The common as well as the unique
genes found by Ep1CID might have a significant role in the ac-
tual mechanism of pathogenesis. In that sense, the results we
observed with Ep1CID suggest it may represent a more rele-
vant depiction of the “biological truth.”

The third component of EPIDETECT is the enrichment anal-
ysis using Enrichr to explore how accurately our approach de-
picted the core gene regulatory network underlying each trait.
Central genes obtained with EpiCID performed similarly to
NID, whereas MDR and BOOST lacked accuracy in the as-
sociation with the respective traits. Interestingly, the degree of
common genes between EPIDETECT and NID was also infor-
mative of their performance after enrichment analysis. Both
approaches had the best performances. However, EPIDETECT
was slightly more accurate in predicting the associated traits.
These results also indicate the advantage of neural-network
approaches compared to classical statistical methods in pre-
dicting epistatic interactions that lead to complex traits.

Further pathway analysis of EPIDETECT-derived central
genes offered insight into the possible underlying mechanisms
of complex traits. GO analysis revealed both known and novel
pathways associated with SBP, DBP, and PP. Regarding SBP,
we found associations with ontologies related to the nervous
system, such as synaptic transmission, brain development, and

neural tube formation and closure. This is in line with previ-
ous studies with evidence of increased activation of the central
nervous system as a contributor to hypertension [44] and ef-
fect of brain and nervous system development on blood pres-
sure regulation [43]. Further enriched terms are confirmed
by research linking hypertension with delayed wound heal-
ing [45] and plasma membrane defects [46]. MAPK signaling
was found to be associated with DBP central genes. This result
replicates previous studies [16] and provides further evidence
of the significance of stress-associated p38-MAPK signaling
in hypertension in experimental models of hypertensive mice
and rats [60, 61]. A novel finding was that cellular sodium
ion homeostasis was found to be associated with DBP. This
may explain secondary hypertension in individuals suffering
from other pathologies, such as aldosterone-producing ade-
nomas [62] and kidney disease [63]. Regarding PP, regulation
from RNA polymerase II [47] and cardiac muscle fiber de-
velopment [16] are GOs with an established role in PP that
were found to be associated with PP EpIDETECT-derived cen-
tral genes. Moreover, we found sarcomere organization to be
enriched. Indeed, sarcomere gene mutations are the main ge-
netic cause of hypertrophic cardiomyopathy [64], which can
lead to higher PP in patients with an abnormal blood pres-
sure response [48]. Notch signaling pathway was a significant
finding that independently replicated findings of altered Notch
activity during TNFa-induced hypertension [65], as well as
hypoxic pulmonary vasoconstriction [66]. Even though the
SNPs analyzed were already known to be associated with
the three blood pressure traits, the pathway enrichment anal-
ysis aimed at identifying biological processes and molecu-
lar mechanisms that may be relevant to these traits, rather
than merely reaffirming known associations. All the afore-
mentioned data may provide evidence of the biological utility
of EPIDETECT-derived epistatic networks in both replicating
previous findings and potentially discovering novel significant
pathways in complex phenotypes. The effectiveness of Eri-
DETECT might also warrant further investigation of the afore-
mentioned novel pathways.

To maximize the utility of our methodology, we chose to fo-
cus on human data, particularly those from the UK Biobank,
due to the large scale and the rich diversity of phenotype
and genomic data it offers. This focus enables the applica-
tion of EPIDETECT to investigate medically relevant traits,
emphasizing its potential to uncover novel epistatic interac-
tions in human health and disease. As a possible direction
for future work, applying the method to model organism
datasets such as Caenorbabditis elegans could offer a com-
plementary benchmark, especially given the availability of
well-characterized epistatic interactions [67]. Although such
datasets are valuable for method validation, their smaller scale
and narrower trait coverage mean that they address a differ-
ent scope of questions, whereas large human biobanks such as
UK Biobank provide the breadth and complexity of data that
motivated the design of EPIDETECT.

The superior performance of our approach comes with
some limitations. First, regarding the scaling with the input
data, the approach scales very well with the number of pa-
tients, as EPICID is not affected by the number of input sam-
ples (which affects the neural-network training only). How-
ever, the computational complexity depends on the number
of input SNPs. As the number of SNPs increases, the num-
ber of parameters that the network requires to learn increases,
and this has an effect on the requirements of computer mem-
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ory and running time (a characteristic shared among all deep-
learning approaches), as well as the number of pairwise in-
teraction strength computations to be performed. Therefore,
this shows the importance of a prior filter on robust genome-
wide significant signals to reduce the number of analyzed ge-
netic variants. However, the computation time required for
our studies, with the provided datasets described in the “Ma-
terials and methods” section, was more than reasonable. As
an indicative measure for reference, on a machine with an In-
tel Core i7-12700H with 4.70 GHz of maximum clock speed,
an NVIDIA RTX 3060 GPU with 6 GB of dedicated mem-
ory, and 16 GB of RAM, the training of the neural network
took on average 30 min. The EriCID explanation phase re-
quired <9 s (as average on SBP, DBP, and PP traits). BOOST
and NID also ran in a short time, taking on average around
28 and 41 s, respectively. In contrast, MDR took, on average,
28 min. However, because the application is not performed in
a time-sensitive scenario, even longer execution times can be
acceptable in the presence of high accuracy.

The second limitation also comes from the fact that our ap-
proach is based on neural networks. Despite the fact that in
many artificial-intelligence applications neural networks have
superior performance (often significant) compared to more
classic methods, this superiority comes without guarantees
and strong theoretical support. It is current research to under-
stand the theory behind the superiority of neural networks,
but the current results are preliminary and often limited to
shallow models [68, 69]. Thus, as we mentioned in the intro-
duction, those architectures are treated as black boxes. This
also means that the results that our method obtains do not
have some theoretical or statistical justification, but they have
to be evaluated experimentally; first with approaches such as
those used in this paper, and eventually i vitro.

To conclude, complex traits are typically influenced by mul-
tiple genes and environmental factors, making their analy-
sis challenging. By developing the EPIDETECT pipeline and
its core element, the EriCID algorithm, which detects cen-
tral genes and pathways in an epistatic network, we aim to
offer researchers a tool to identify the most influential ge-
netic factors and pathways that contribute to the trait of in-
terest. This information can provide valuable insights into the
underlying biology of the trait, inform the development of
new treatments, and potentially lead to the discovery of novel
drug targets. This approach has the potential to be applied
to a wide range of complex traits, including cardiovascular
diseases, cancer, and neurological disorders, among others.
We provided evidence supporting that our proposed frame-
work may act as a guide to disease-associated experimental
research or an independent approach to validate experimental
observations.
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