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part I

introduction and motivation
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interconnected world

• networks model objects and their relations

• many different network types

– social

– informational

– technological

– biological

– . . .
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Figure 2: Discovered strong edges of 5 ego-networks of KDD innovation award winners. The �rst 5 �gures contain
only strong edges: the colored edges and vertices show 5 topics that were used as input: cluster, classif, pattern,
network, distribut. The last topic consisted of 2 connected components which we used as two separated communities.
The last �gure shows strong and weak edges. Some of the vertices do no belong to any of the communities. Some
edges are strong despite not belonging to any of the communities because we keep edges that do not induce violations.
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impact of network science

• online communication networks and social media

• implications in

– knowledge creation

– information sharing

– education

– democracy

– society as a whole
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research questions in network science

• structure discovery

– communities, summarization, events, role mining

• study complex dynamic phenomena

– evolution, information diffusion, opinion formation, structural prediction

• develop novel applications

• design efficient algorithms
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traditional view

• networks represented as pure graph-theory objects

– no additional vertex / edge information

• emphasis on static networks

• dynamic settings model structural changes

– vertex / edge additions / deletions
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temporal networks

• ability to collect and store large volumes of network data

• available data have fine granularity

• lots of additional information associated to vertices/edges

• network topology is relatively stable, while lots of activity and interaction is taking place

• giving rise to new concepts, new problems, and new computational challenges
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modeling activity in networks

1. network nodes perform actions (e.g., posting messages)
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many novel and interesting concepts
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temporal networks — objectives

• identify new concepts and new problems

• develop algorithmic solutions

• demonstrate relevance to real-world applications
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terminology

• we use term “temporal networks”, but terminology is not standardized

• term “X Y” can be encountered in the literature, where

X :
– temporal
– dynamic
– (time-)evolving
– time-varying
– time-dependent
– evolutionary

Y :
– networks
– graphs
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examples of temporal networks

[Holme, 2015]

• human communication networks

– phone, email, text messages, etc.

• human proximity networks

– recorded by various sensors and devices, e.g., bluetooth, wifi, etc.

– patient-referral networks, i.e., how patients are transferred between wards of
– a hospital system

– sexual contact networks

• animal proximity networks

– obtained via RFID devices

– lifestock or wildlife
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examples of temporal networks — cont’d

[Holme, 2015]

• bibliographic networks

– collaboration and citation networks

• economic networks

– credit card transactions

– trade networks of countries

– bitcoin transcations

• travel and transportation networks

– airline connections, bus transport, bike-sharing systems
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examples of temporal networks — cont’d

[Holme, 2015]

• brain networks

– temporal correlations of the oxygen levels of brain regions as measured by
– fMRI scanning

• biological networks

– genes involved in different interactions that change over time

– current challenges, as one cannot measure precisely when two proteins interact
– with each other, but technology is improving
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part II

models of temporal networks
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representation of temporal networks

1. sequence of interactions

• a temporal network is represented as G = (V ,E )

– with set of nodes V , and set of edges E = {(u, v , t)}, with u, v ∈ V and t ∈ R
– if interactions have duration, then E = {(u, v , t, λ)}

• this is a lossless representation — no information is lost

• also known as sequence of contacts, or sequence of (temporal) edges
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representation of temporal networks

1. sequence of interactions

• visual representation of a temporal network as a sequence of interactions
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time
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representation of temporal networks

2. sequence of static graphs

• sequence G1, , . . . ,GT

– where Gt = (Vt ,Et), with t = 1, . . . ,T

– typically assume that nodes are fixed, i.e., Vt = V

– Et are the edges that occur in time interval t

• advantages: static graph analysis methods can be applied

• disadvantages: the representation assumes quantization into time intervals

– thus, representation depends on quantization parameters, e.g., seconds, minutes,
– hours, days, etc.

– coarse resolution may lead to information loss

– fine resolution may lead to sparse (or even empty) static graphs
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representation of temporal networks

2. sequence of static graphs

• visual representation of a temporal network as a sequence of static graphs

G1 G2 G3
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representation of temporal networks

3. time series of contacts

– a time-series for each pair of nodes in the network

– equivalent representation with sequence of interactions

4. tensor representation

– tensor representing node× node× time information

– can apply powerful tensor-algebra techniques

– a complication is that time is directed, while tensor algebra assumes that indices can
be relabeled (breaking the time ordering)
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representation of temporal networks

[Casteigts et al., 2012]

5. time-varying graphs defined as G = (V ,E ,T , p, λ), where

– V : set of nodes

– E ⊆ V × V : set of edges

– T : a time domain

– p : E × T → {0, 1} : a presence function

– λ : E × T → R : a latency function

• general definition that can be used to model graph datasets in different applications

– transportation networks, communication networks, social networks
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temporal networks vs. dynamic graphs

• dynamic graphs is a standard model typically studied in theoretical computer science

– e.g., [Henzinger et al., 1999, Thorup, 2000]

• dynamic graphs are represented as a sequence of edge additions and/or edge deletions

• G0 is the initial graph, and Gi is the graph resulting after the i-th edge addition/deletion
operation

• objective: efficient maintenance of graph properties

– e.g., connectivity, shortest paths, spanners, etc.
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temporal networks vs. dynamic graphs

• in studies of dynamic graphs, the properties of interest refer to individual graph
snapshots Gi , not considering the whole graph evolution

• emphasis on computational efficiency

– computation time per operation

– e.g., cost of maintaining a minimum spanning tree per edge additions/deletions

– or, cost of maintaining a data structure that allows to answer short-path queries

• dynamic graph model captures topological changes, not interactions

– e.g., dynamic graphs can be used to model friendship additions/deletions in a
– social network, but not discussions or other interactions
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temporal networks vs. dynamic graphs

• dynamic graphs resemble sequence of interactions model

• main difference lies on which graph properties we study

• for dynamic graphs we typically consider properties on graph snapshots

– i.e., minimum spanning tree on the current snapshot

• for temporal graphs we typically consider properties that span a time interval

– i.e., a temporal pattern

• note : here we focus more on temporal networks, not so much on dynamic graphs
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graph streams

• setting inspired by data streams [Muthukrishnan et al., 2005]

• recall the data-stream model:

– data are presented as a sequence of data items (potentially infinite)

– assume a small number of passes typically constant or just one pass

– assume small memory compared to data size, e.g., poly-logarithmic

– assume fast computation per data item processed, e.g., constant or poly-logarithmic



28

graph streams

• a graph stream is a graph dataset in the data-stream model

– it can be either a sequence of interactions (temporal network)

– or sequence of edge additions/deletions (dynamic graph)

• thus, a graph stream is not a representation model, instead it refers to the underlying
computational model

• thus, we can study questions of mining temporal networks in the graph-stream model



29

dynamic graph algorithms on streaming model

• well-studied model

• extensive survey by [McGregor, 2014]

• different settings considered

– node/edge additions (incremental)

– node/edge additions/deletions (fully-dynamic)

– updating weights/labels is a special case of the fully-dynamic model

– sliding-window setting: consider only edges from latest interval of fixed length

– algorithms can be deterministic or randomized
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time-respecting paths
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time-respecting paths

• a fundamental concept in analysis of temporal networks

– used in studies of information propagation, or epidemics spreading

• a time-respecting path is a sequence of temporal edges, such that

– consecutive edges share a common node, and

– time stamps of temporal edges are non-decreasing

• intuitively, a piece of information (or disease) can propagate in the network
only over time-respecting paths
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time-respecting paths — example

a
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d
e

1 2 3 4 5 6 7

time

(c , e, 2), (e, d , 5), (d , b, 6) is a time-respecting path from e to b

(c , b, 3), (b, a, 1) is not a time-respecting path
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static expansion of a temporal network

• a transformation of a temporal network to a directed (static) network so that
time-respecting paths in the temporal network correspond to directed (static) paths
in the directed (static) network

• how to create such a transformation?

1. create a copy of each node for each time instance

2. create a directed edge from the (t − 1)-th copy of u to the t-th copy of u,
– for all nodes u, and all time instances t

3. create directed edges for the temporal edges
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static expansion of a temporal network

• a transformation of a temporal network to a directed (static) network so that
time-respecting paths in the temporal network correspond to directed (static) paths
in the directed (static) network

• how to create such a transformation?

1. create a copy of each node for each time instance

2. create a directed edge from the (t − 1)-th copy of u to the t-th copy of u,
– for all nodes u, and all time instances t

3. create directed edges for the temporal edges
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static expansion of a temporal network

example
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static expansion of a temporal network

example
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static expansion of a temporal network

example
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(a) representation of a temporal network
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reachability, connectivity, and connected components

• defined as in static graphs, but using time-respecting paths

• reachability :

– used to study infection spreading and information cascades

• connectivity : as in directed (static) graphs is not symmetric

– distinguish strong and weak connectivity

– in addition, we can define transitive connectivity:
– a subgraph is transitively connected if time-respecting paths from u to v

– and v to w imply a time-respecting path from u to w
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minimum temporal paths

different notions of minimum temporal paths rely on time-respecting paths

• earliest-arrival path : a path from x to y with earliest arrival time

• latest-departure path : a path from x to y with latest departure time

• fastest path : path from x to y with minimum elapsed time

• shortest path : fastest path from x to y in terms of overall traversal time required on edges

[Wu et al., 2014]
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diameter, network efficiency

• diameter : shortest latency of time-respecting paths over connected pairs
[Chaintreau et al., 2007]

– restricted on connected pairs, as real data have many disconnected pairs

• network efficiency : the harmonic mean of latency over all pairs [Tang et al., 2009]

– discussion : what is the motivation for harmonic mean?

– it combines average latency and reachability ratio
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diameter, network efficiency

• diameter : shortest latency of time-respecting paths over connected pairs
[Chaintreau et al., 2007]

– restricted on connected pairs, as real data have many disconnected pairs

• network efficiency : the harmonic mean of latency over all pairs [Tang et al., 2009]

– discussion : what is the motivation for harmonic mean?

– it combines average latency and reachability ratio
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centrality measures

• many centrality measures on static graphs use distances

• closeness centrality : Cc(u) =
n−1∑

v ̸=u d(u,v)

• betweenness centrality : Cb(u) =
∑

v ̸=u ̸=w pu(v ,w)∑
v ̸=u ̸=w p(v ,w)

• for temporal networks we replace distance with shortest latency time-respecting path

• analogues of Katz centrality and PageRank have also been defined

• discussion : how do these centrality measures on temporal networks compare with
their static analogues?

– main difference is that the temporal information becomes relevant

– e.g., betweenness centrality refers to a given node at a given time
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temporal motifs

• temporal motif counting

[Paranjape et al., 2017, Kovanen et al., 2013]:

– temporal motif is a small subgraph with temporally ordered edges
– (and/or interval or delay constraints)
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temporal motifs

δ-temporal motif: a sequence of directed temporally ordered edges which appear within
a time window δ

[Paranjape et al., 2017]
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part III

algorithmic frameworks for temporal network analysis
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frameworks

adopted traditional frameworks

• static expansion graphs

• dynamic graphs

• time-series
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static expansion graphs

• static graph of time-stamped nodes and time-forwarding edges Ge = (Ve ,Ee)

• Ve = {(v , t) | v ∈ V , t ∈ T}, where T is the set of all possible timestamps

• edges Ee : interactions between the temporal nodes Vt

a

b
c

d

t1 42 65 118 12

(a,1)

(b,1)

(c,1)

(d,1)

(a,2) (a,3) (a,13)(a,12)(a,11)(a,8)(a,4) …... …...

(b,2)

(c,2)

(b,3)

…...

(b,13)

(c,13)

(d,13)
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static expansion graphs

• static expansion graph is a directed graph

• standard graph algorithms (BFS, DFS, Dijkstra, Bellman-Ford) can be adopted for finding:

– fastest temporal paths, shortest temporal paths, and weighted combinations

– walks (revisiting of vertices and edges is allowed)

– journeys (revisiting of vertices is allowed, but not edges)

• upstream, downstream reachability sets
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minimum temporal paths

different notions of minimum temporal paths rely on time-respecting paths

• earliest-arrival path : a path from x to y with earliest arrival time

• latest-departure path : a path from x to y with latest departure time

• fastest path : path from x to y with minimum elapsed time

• shortest path : fastest path from x to y in terms of overall traversal time required on edges

[Wu et al., 2014]
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earliest-arrival path

• temporal graph G = (V ,E )

• source vertex x , starting time ts

• array T of size |V | to record arrival times to each node

• T [x ] = ts and T [v ] = ∞, for nodes other than source

• process edges (u, v , t, λ) in temporal order

– if t ≥ T [u] (u is already reached from x)

– check if the edge creates the earliest-seen-so-far path from x to v and update T [v ]:

– T [v ] = min (T [v ], t + λ)

[Wu et al., 2014]
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latest-departure path

• temporal graph G = (V ,E )

• sink vertex x , ending time ts

• same process as for earliest-arrival path, but

– process edges in reverse temporal order

• add new interaction to the path if it does not violate temporal order

[Wu et al., 2014]
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minimum spanning trees

• msta : minimum spanning tree with earliest-arrival times

– each temporal path from the root to the node is the earliest arrival path

– can be solved in linear time

• mstw : minimum spanning tree with smallest total weight

– or with the smallest number of hops: directed Steiner tree

– NP-hard, can adapt approximation algorithm from directed Steiner tree

[Huang et al., 2015]
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applications of temporal paths

• temporal reachability problems

– diffusion simulation, centrality measures

• directed spanning trees or Steiner trees

– reconstruction of diffusion

• drawback: large size of expansion graph may lead to high computational complexity
and large memory consumption

• challenge: scalable algorithms and approximations
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applications — transportation temporal networks

[Kujala et al., 2018]
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Pareto-optimal journeys

[Kujala et al., 2018]
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dynamic graph algorithms on streaming model

• well-studied model

• extensive survey by [McGregor, 2014]

• different settings considered

– node/edge additions (incremental)

– node/edge additions/deletions (fully-dynamic)

– updating weights/labels is a special case of the fully-dynamic model

– sliding-window setting: consider only edges from latest interval of fixed length

– algorithms can be deterministic or randomized
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dynamic graph algorithms on streaming model

[McGregor, 2014]
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time-series analysis

• view a temporal network as a (multivariate) time series

– calculate temporal profile of nodes, edges, or a whole network

– calculate distance between adjacent snapshots and analyze the resulting time series

• distance: edit distance, node-profile distances, vector-space distance

• applications in change-point detection, anomaly detection, evolutionary pattern mining
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event detection in time series

• given a sequence of graphs Gt

• a function to calculate the vertex affinity matrix S , where sij indicates the influence
vertex i has on vertex j

• a set of time points for detected events is {t ∈ T | d(Gt ,Gt+1) ≥ δ} where

d(Gt ,Gt+1) =

√∑n
i=1

∑n
j=1

(√
S
(t)
ij −

√
S
(t+1)
ij

)2

[Eswaran et al., 2018]
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time-series analysis

• anomaly detection survey [Ranshous et al., 2015]

• approach does not solve all the problems, as it does not capture the network topology

• possible work-around: use more topology embeddings metrics

– larger neighborhoods, influence measures, eigenvectors, . . .
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part IV

data mining problems
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data mining problems

• community detection

• event detection

• finding important nodes

• epidemics analysis and influence spreading
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community detection
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community detection in static graphs

• static graphs: extensive survey [Fortunato and Hric, 2016]

• standard community definitions

– a community is a set of nodes, which are closer to each other than to the rest
– of the network

– a community is a dense network subgraph

• general definition [Coscia et al., 2011]

– a community in a complex network is a set of entities that share some closely
– correlated sets of actions with the other entities of the community

• typical problem settings

– a single community vs. network partition

– overlapping vs. non-overlapping communities
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community detection in static graphs

partition measures

• modularity : the difference between the actual number of edges and the expected

• cut : number of edges between a community and the rest of the graph

• ratio cut : cut normalized by the number of edges of community nodes

• ...

single-community measures

• average degree : |E(S)|
2|S |

• density : 2|E(S)|
|S |(|S|−1)

• conductance : cut(S ,S̄)

min{vol(S),vol(S̄)}
• ...
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community detection in temporal networks

temporal information gives rise to several issues

• temporal localization: concise time interval or intervals, whole time history

• behaviour: single-appearance, recurring, persistent, evolutionary patterns, smoothness

• partition of the topology network vs. partition of the time history

• online vs. offline

• application-specific settings



69

temporal communities : temporal assumptions

often assume a prior model, which describes what is the temporal behavior of interesting
community structures, e.g.,

• small/large covering intervals of community interactions

• frequent patterns

• persistent patterns
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evolutionary patterns : vocabulary

evolutionary patterns of communities in the network [Dakiche et al., 2019]

• birth

• death

• growth

• contraction

• merge

• split

• continue

• resurgence
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temporal communities: idea #1

we follow a recent survey on community detection [Dakiche et al., 2019]

• independent community detection and matching

– first detect communities at each timestamp

– then match them across different timestamps
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independent community detection and matching

[Dakiche et al., 2019]
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typical evolutionary patterns

[Sun et al., 2015]
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independent community detection and matching

advantages

• reuse of standard community detection methods

• use existing similarity measures

disadvantages

• instability of community-detection algorithms
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temporal communities: idea #2

• dependent community detection [Dakiche et al., 2019]

detect communities at time t based on

– network topology at t, and

– communities at time t − 1
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dependent community detection

[Dakiche et al., 2019]
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Louvain algorithm

• a fast greedy approach based on modularity optimization

• reminder: the modularity objective

Q =
1

2m

∑
u,v

[
Auv −

dudv
2m

]
δ(cu, cv )

• two phases repeated iteratively

– initially, each node in network is a community

– then, for each node i , consider its neighbor j and compute the gain of modularity
– of putting i into the community of j

– node i is placed into the community with the largest gain, if the gain is positive

[Blondel et al., 2008]
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Louvain algorithm

• on the second phase, each community is considered as a super-node

– the edges between these super-nodes are contracted and re-weighed by the
– number of edges between them

• the two phases are repeated until there is no improvement in modularity

• the algorithm is extremely fast

[Blondel et al., 2008]
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history-dependent approach

idea

• for two consecutive time steps, there only few edges that affect the community structure

• if the connections of all the nodes in the same community at time step t − 1 keep
unchanged at time step t, they are still in the same community at time step t

• thus, no need to break that super-node

[He and Chen, 2015]
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history-dependent approach

• find all communities in snapshot t = 1

• for t = 2:

– if a node’s connection change, then remove it from its super-node and add as
– single node

– leave all other nodes inside the super-node

– re-weight the edges

[He and Chen, 2015]
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dependent community detection

advantages

• a solution for the problem of instability

• improved computational complexity

disadvantages

• traditional community detection methods are no longer directly applicable
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temporal communities: idea #3

simultaneous community detection on all snapshots [Dakiche et al., 2019]

• construct a static expansion graph

– add edges between instances of nodes in different timestamps

• run a standard community detection on the resulting graph
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simultaneous community detection on all snapshots

[Dakiche et al., 2019]
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simultaneous community detection

costs

• switching cost : each node u incurs cost Csw when changing community affiliation

• false negative cost : two nodes incur cost Cfn when belong to the same community
but do not interact

• false positive cost : two nodes incur cost Cfp when belong to different communities
but do interact

resulting problem

• find a partition into clusters that minimizes the total cost of switching, false negative,
and false positive

[Tantipathananandh and Berger-Wolf, 2011]
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simultaneous community detection on all snapshots

advantages

• provides a solution for the problem of instability

disadvantages

• no possibility to track community evolution in a network evolving in real time
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temporal communities: idea #4

dynamic community detection [Dakiche et al., 2019]

• update previously discovered communities according to network modifications
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dynamic community detection

[Dakiche et al., 2019]
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dynamic community detection

advantages

• provides a solution for the problem of instability

• light-weight methods to track communities

disadvantages

• possibility to drift towards invalid communities



89

event detection
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event detection

• given a network representing some kind of activity

– network of social interactions

– social-media feed

– transportation network

• an event can be generally defined as an activity with some prominent qualitative
or quantitative difference from the background activity

– bursting news about major natural disasters

– abnormally high traffic in the city

– an emerging new discussion topic in social media
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temporal event detection: standard approaches

abnormality score

• the likelihood that an interval contains an event can be estimated by comparing an
abnormality score on the interval

[Heins and Stern, 2014]

predictive models

• learn a predictive model and find intervals and time points whose behavior differ from
the predicted one

[Hunter and McIntosh, 1999, Gensler and Sick, 2017]
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Netsimile

• an event exists in Gj+1, if Gj+1 is very different than Gj

• for each node calculate 7 local and ego-network-based measures

– degree

– clustering coefficient

– average degree of neighbours

– average clustering coefficient of neighbours

– number of edges in the ego-network

– number of edges outgoing from the ego-network

– number of neighbours of the ego-network

• combine into a signature vector and compare

[Berlingerio et al., 2012]
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Netsimile algorithm

[Berlingerio et al., 2012]
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spatiotemporal event detection

detailed survey by [Shi and Pun-Cheng, 2019]

• consider time and the (geo-)location of an event

• sources of spatial data

– GPS devices / smart phones

– geo-tagged messages in online social networks

• typical approaches model the data as a set of geo-locations associated with activity
measurements

• given a set of locations with activity measures, find a subset of locations that are close
to each other and have abnormal activity pattern

• in spatiotemporal setting, one is also interested in finding the time interval (moment)
of an event
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spatiotemporal event detection: scan statistics

• a classic family of methods is spatial and spatiotemporal scan statistics

• scan over the space and time windows to identify regions of data generated by
some process
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spatiotemporal event detection: scan statistics

• a seminal paper : spatial scan statistics [Kulldorff, 1997]

• scan a circular spatial window and test the non-randomness of data against Poisson
or Bernoulli baseline process

• later the approach was extended to spatiotemporal scans with cylindric windows

[Takahashi et al., 2004]
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structural event

• structural event:

– set of interconnected abnormal nodes

• e.g., the edge weights represent similarity of nodes

– similarities between twitter users in preferences, language, visited locations, etc.

• scan extension to graph model [Liu et al., 2016]

• scan through a graph neighborhood — a set of interconnected nodes

• dense subgraph detection

– e.g., [Charikar, 2000, Khuller and Saha, 2009]
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finding important nodes
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PageRank

• classic approach for measuring node importance

• listed in the top-10 most important data-mining algorithms [Wu et al., 2008]

• numerous applications

– ranking web pages

– trust and distrust computation

– finding experts in social networks

– . . .



100

static PageRank

• graph G = (V ,E )

• corresponding row-stochastic matrix P ∈ Rn×n

• personalization vector h ∈ Rn

• PageRank is the stationary distribution of a random walk,

with restart probability (1 − α)

π(u) =
∑
v∈V

∞∑
k=0

(1 − α)αk
∑

z∈Z(v ,u)
|z|=k

h(v)Pr[z | v ]

where, Z(v , u) is the set of all paths from v to u

and Pr[z | v ] =
∏

(i ,j)∈z P(i , j)
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motivating example
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Fig. 1: (a) A static graph, in which hubs a and e have the highest static PageRank
score; (b) and (c) represent two di↵erent temporal networks: in (b) the temporal
PageRank score of nodes a and e are expected to be stable over time; in (c)
node e becomes more important than a as the time goes by, and the temporal
PageRank scores of a and e are expected to change accordingly.

and it has inspired a family of fixed-point computation algorithms, such as,
TopicRank [6], TrustRank [8], SimRank [11], and more.

PageRank is defined to be the steady-state distribution of a random walk.
As such, it is implied that the underlying network structure is fixed and does
not change over time. Even though numerous works have studied the problem of
computing PageRank on dynamic graphs, the emphasis has been given on main-
taining PageRank e�ciently under network updates [12, 19], or on computing
PageRank e�ciently in streaming settings [22]. Instead there has not been much
work on how to incorporate temporal information and network dynamicity in
the PageRank definition.

To make the previous claim more clear imagine that starting from an initial
network G we observe k elementary updates in the network structure e

1

, . . . , ek

(such as edge additions or deletions), resulting on a modified network G

0. A
typical question is how to compute the PageRank of G0 e�ciently, possibly by
taking into consideration the PageRank of G, and the incremental updates. Nev-
ertheless, the PageRank of G0 is defined as a steady-state distribution and as
the network G

0 would “freeze” at that time instance.
Our goal in this paper is to extend PageRank so as to incorporate temporal

information and network dynamics in the definition of node importance. The
proposed measure, called temporal PageRank, is designed to provide estimates
of the importance of a node u at any given time t. If the network dynamics and
the importance of nodes change over time, so does temporal PageRank, and it
duly adapts to reflect these changes.

An example illustrating the concept of temporal PageRank, and presenting
the main di↵erence with classic PageRank, is shown in Figure 1. First, a static
(directed) graph is shown in Figure 1(a). Vertices a and e are the hubs of the
graph, and thus, the nodes with the highest static PageRank score. Figures 1(b)

static network temporal network temporal network
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temporal PageRank

• make a random walk only on temporal paths

– e.g., time-respecting paths

– time-stamps increase along the path

a

b

c

g

e

f

hd

a

b

c

g

e

f

hd

1

2
3

4

5

6

7

8

9

10

11

12

a

b

c

g

e

f

hd

1

2

3
4

5
6

7

89

10
11

12

(a) (b) (c)

Fig. 1: (a) A static graph, in which hubs a and e have the highest static PageRank
score; (b) and (c) represent two di↵erent temporal networks: in (b) the temporal
PageRank score of nodes a and e are expected to be stable over time; in (c)
node e becomes more important than a as the time goes by, and the temporal
PageRank scores of a and e are expected to change accordingly.

and it has inspired a family of fixed-point computation algorithms, such as,
TopicRank [6], TrustRank [8], SimRank [11], and more.

PageRank is defined to be the steady-state distribution of a random walk.
As such, it is implied that the underlying network structure is fixed and does
not change over time. Even though numerous works have studied the problem of
computing PageRank on dynamic graphs, the emphasis has been given on main-
taining PageRank e�ciently under network updates [12, 19], or on computing
PageRank e�ciently in streaming settings [22]. Instead there has not been much
work on how to incorporate temporal information and network dynamicity in
the PageRank definition.

To make the previous claim more clear imagine that starting from an initial
network G we observe k elementary updates in the network structure e

1

, . . . , ek

(such as edge additions or deletions), resulting on a modified network G

0. A
typical question is how to compute the PageRank of G0 e�ciently, possibly by
taking into consideration the PageRank of G, and the incremental updates. Nev-
ertheless, the PageRank of G0 is defined as a steady-state distribution and as
the network G

0 would “freeze” at that time instance.
Our goal in this paper is to extend PageRank so as to incorporate temporal

information and network dynamics in the definition of node importance. The
proposed measure, called temporal PageRank, is designed to provide estimates
of the importance of a node u at any given time t. If the network dynamics and
the importance of nodes change over time, so does temporal PageRank, and it
duly adapts to reflect these changes.

An example illustrating the concept of temporal PageRank, and presenting
the main di↵erence with classic PageRank, is shown in Figure 1. First, a static
(directed) graph is shown in Figure 1(a). Vertices a and e are the hubs of the
graph, and thus, the nodes with the highest static PageRank score. Figures 1(b)

c → b → a → c : time respecting

a → c → b → a : not time respecting
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temporal PageRank

• intuition : probability of visiting node u at time t,

– given a random walk on temporal paths

• need to model probability of following next temporal edge

– we use an exponential distribution

• temporal PageRank definition

r(u, t) =
∑
v∈V

t∑
k=0

(1 − α)αk
∑

z∈ZT (v ,u|t)
|z|=k

Pr′[z | t]

ZT (v , u | t) set of temporal paths from v to u until time t
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static vs. temporal PageRank

• computation: simple online algorithm iterating over edges

• temporal PageRank is designed to capture changes in network dynamics and concept drifts

• proposition :

if the edge distribution is stable, then
as T → ∞, the temporal PageRank on G

converges to the static PageRank on GS ,
with personalization vector equal to weighted out-degree

[Rozenshtein and Gionis, 2016]
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diffusion analysis and influence spreading
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diffusion analysis and influence spreading

• propagation models

– used to study disease spreading or information cascade in the network

• activity spreading: virus, information, idea, rumor

• applications: epidemiology, information security, marketing

• why use models?

– facilitate mathematical analysis of propagation processes

– have intuitive interpretation

– proven to be realistic by empirical studies

• extensive survey in the book [Shakarian et al., 2015]
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standard models

• susceptible-infected (SI) model

– SIR, SIRS, other variants

• independent cascade (IC) model

• linear threshold (LT) model

• shortest path (SP) model
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susceptible-infected-recovered (SIR) model

• a popular model to analyze epidemics

• population is divided into three categories

– susceptible: may be infected if comes in contact with an infectious individual

– infectious: infected and capable of infecting susceptible individuals

– recovered: either recovered and become immune, or deceased

• S(t), I (t), R(t): number of susceptible, infectious, recovered individuals at time t

• ordinary differential equations describe the rate of growth of the three populations
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susceptible-infected-recovered (SIR) model

• parameters of the SIR model

– β: average number of contacts, multiplied by the probability of disease transmission

– γ = 1/D, where D: an individual is infectious for an average time period D

– R0 = β/γ: basic reproduction ratio

– λ: largest eigenvalue of stochastic system matrix, if network structure is considered

• model can be used to analyze whether the disease will persist or die out

• exhibits threshold phenomena behavior

• many variants of the basic model
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static models: assumptions

all models have similar implicit assumptions on temporality:

1. uniform time steps

2. interactions happen at each time step and are independent
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drawbacks of static models

• large heterogeneity in the time instances of real interactions

[Barabasi, 2005, Candia et al., 2008, Leskovec and Horvitz, 2008]

– burstiness in communication patterns

– periodic activity changes

– causal relationships between interactions
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temporal propagation models

• intuitive extensions from static graphs to temporal graphs

• add distributions (e.g., Poisson or power-law) of the intervals between interactions

[Vazquez et al., 2007, Min et al., 2011]

• continuous time, partially observed graph

• develop mathematical analysis for novel and generalized models

[Harris, 2002, Fernández-Gracia et al., 2011]
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typical problem formulations

• immunization strategies

• influence maximization

• seed and cascade reconstruction
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static immunization strategies

• how to stop or prevent a viral diffusion?

• main aspects differentiating the research works:

– assumptions about the spreading model

– assumptions about the network structure

– whether the whole network is observable

• both assumptions on the network structure and on the infection propagation are crucial

• results may not hold for any general network and real infection

[Newman, 2003, Pastor-Satorras and Vespignani, 2002a]
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static immunization strategies

• simple model-blind strategies, such as random immunization, perform moderately well
in different scenarios

[Pastor-Satorras and Vespignani, 2002b, Madar et al., 2004]

• better results on real-world networks can be achieved by immunizing nodes with
high connectivity

[Pastor-Satorras and Vespignani, 2002b, Dezső and Barabási, 2002].

• requires explicit knowledge of the network structure and it is impractical in real applications
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static immunization strategies

• [Cohen et al., 2003] overcomes this drawback by employing acquaintance immunization
strategy:

• immunization of random neighbors of randomly selected nodes leads to immunization of
the most central nodes without knowing any global information about the network
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temporal immunization strategies

• adjust successful static strategies

• e.g., Cohen’s neighborhood vaccination scheme [Lee et al., 2012]

• two vaccination strategies

• recent :

– ask a random individual i to name its most recent contact and vaccinate this person

• weight :

– ask a random individual i to name its most frequent contact since some time t



118

static influence maximization

• how to select the initial set of infected nodes (seeds), such that the speed, size, or
other spread characteristics are optimized

• applications in marketing and network design

• influence maximization problem was introduced by [Kempe et al., 2003] in the IC
and LT models

• find a set of k seed nodes, such that the expected number of nodes activated by
the infection cascade is maximized
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static influence maximization

• NP-hard [Kempe et al., 2003]

• simple greedy algorithm with approximation guarantee

• influence maximization problem was been studied for many different variants of other
models, constraints, and objective functions

• many practical heuristics and approximations

[Chen et al., 2009, Chen et al., 2010, Tang et al., 2014]
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temporal influence maximization

• intuitive approach to capture temporality:

– sequence of graphs (or snapshots)

– each time step of propagation corresponds to propagation over the
– corresponding graph

– all interactions within one time step happen simultaneously

• related papers by [Aggarwal et al., 2012, Zhuang et al., 2013, Gayraud et al., 2015]
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temporal influence maximization

• another approach:

• incorporate time into the diffusion model as distribution of intervals between the
interactions

• different types of models and interval distributions

[Chen et al., 2012, Liu et al., 2012, Rodriguez and Schölkopf, 2012, Du et al., 2013]

• the most realistic approachable setting?

• an interesting research problem:

– infer propagation model parameters from the data

– [Rodriguez et al., 2011, Gomez-Rodriguez et al., 2016]



122

seed and cascade reconstruction

• given some observed data about the infection

– e.g., a small subset of infected nodes,

the goal is to find the most probable seed nodes

• other versions:

– find the most probable cascades

• the order of infection (who got infected from whom)

• these works are data-driven:

– it is essential that the assumed propagation model matches the actual infection
– flow in the network
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seed and cascade reconstruction

• applications:

– epidemiology (who was the patient zero?)

– influencer discovery (who was the source of information?)

• a number of different approaches

– find a single source under the SI model [Shah and Zaman, 2011]

– multiple seeds [Prakash et al., 2012]

– k seeds under the IC model [Lappas et al., 2010]

– take advantage of the recorded infection order [Sefer and Kingsford, 2016]

• the above papers are pre-covid, so hugely obsolete now
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temporal reconstruction

• the problems formulated in this setting tend to be either

– oversimplified versions of static reconstruction or

– become too hard or ill-posed

• knowing the history of interactions allow to reconstruct feasible paths of infection
and prune unfeasible

• any noise or missing information adds uncertainty

– typically need more assumptions about the noise and missing information

• the knowledge of the diffusion model in crucial

• see survey paper by [Holme, 2015]
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history reconstruction

[Sefer and Kingsford, 2016]
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agenda

part I : introduction and motivation

part II : models of temporal networks

part III : algorithmic frameworks

part IV : data mining problems

part V : conclusions and future challenges
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part V

conclusions and future challenges
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temporal community detection: challenges

• large number of problem formulations and variants

• lack of fundamental theoretical treatment

– most of the approaches are heuristics

– many are combinations of several ideas and algorithms

– require many parameters and attention to implementation details

• hard to compare methods and choose one for a specific application

– few datasets with ground-truth temporal communities

– synthetic generators are built on various assumptions

– no standard benchmarks

• a large number of quality metrics to calculate and compare

• may be misleading if a method is not designed for that particular community definition
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event detection: challenges

• actively evolving area, application- and data-oriented

• families of problems and methods are considered only for the specific sources of data

– e.g., a large body of research is focused on the analysis of Twitter data

[Atefeh and Khreich, 2015]

• no unified classification for problem settings, research questions, and data requirements

• speed and quality:

– online streaming event-detection techniques are demanded for nearly real-time
– event detection

– quality: both false events and missed events may have a high price

• methods should rely more multi-modal data, e.g., combining network structure with text
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