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introduction
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signed networks

graphs with edge signs

either positive or negative
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signed networks: motivation

human interactions

friendly or antagonistic

Image source: pxfuel.com
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signed networks: motivation

online social media
▶ X, facebook, etc.
▶ users may like or dislike

the content of each other
▶ can be used to study

online polarization
Image source: iStockphoto.com
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signed networks: motivation

groups of humans
▶ examples: tribes, political parties,

countries, etc.
▶ relations of countries during war

New Guinea highland tribes graph Read (1954)
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signed networks: motivation

human language
▶ graph between words that

captures synonyms / antonyms

“happy”

Image source: thesaurus.com
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signed networks: motivation

molecular biology
▶ graph between proteins
▶ one protein activates or inhibits

the function of another

Image source: commons.wikimedia.org
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signed networks: motivation

finance
▶ graph between securities

(tradable assets)
▶ a security correlates

positively / negatively with another
▶ “correlate” means the joint

movement of price Image source: vecteezy.com
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theory of signed networks
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outline

we will discuss:

▶ balance
▶ spectrum
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signed networks

signed networks (or graphs): each edge labeled + or −

definitions:

▶ G = (V ,E+,E−),

▶ G = (V ,E , σ), σ : E → {−,+}

adjacency matrix: A = AE+ − AE−

+ +

-

7→




0 1 1
1 0 −1
1 −1 0
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expressiveness of signed graphs

signed networks can be quite expressive

example: star graph

▶ number of possible graphs: 2|E |

▶ number of non-isomorphic graphs: |E |
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differences in signed networks
shortest paths

signed networks can be quite different . . . consider e.g., shortest paths;
how do we even define path length in signed networks?

proposal: distinguish positive and negative paths (by product of edge signs)

+

+
+

-

+

positive path

+

+
+

-

+

negative path

finding shortest simple signed paths
between a source and all other vertices
is NP-complete problem

if repetitions are allowed, problem can be
solved in time O(|E | log log D

d )

(Hansen, 1984)



17

differences in signed networks
shortest paths

signed networks can be quite different . . . consider e.g., shortest paths;
how do we even define path length in signed networks?

proposal: distinguish positive and negative paths (by product of edge signs)

+

+
+

-

+

positive path

+

+
+

-

+

negative path

finding shortest simple signed paths
between a source and all other vertices
is NP-complete problem

if repetitions are allowed, problem can be
solved in time O(|E | log log D

d )

(Hansen, 1984)



18

differences in signed networks
shortest paths

signed networks can be quite different . . . consider e.g., shortest paths;
how do we even define path length in signed networks?

proposal: distinguish positive and negative paths (by product of edge signs)

+

+
+

-

+

positive path

+

+
+

-

+

negative path

finding shortest simple signed paths
between a source and all other vertices
is NP-complete problem

if repetitions are allowed, problem can be
solved in time O(|E | log log D

d )

(Hansen, 1984)



19

differences in signed networks
densest subgraph

densest subgraph problem in unsigned graphs:

max
x∈{0,1}n

xT Ax
xT x

polynomial-time solvable (Goldberg, 1984)

densest subgraph problem in signed graphs:

max
x∈{−1,0,1}n

xT Ax
xT x

NP-hard ! (Bonchi et al., 2019; Tsourakakis et al., 2019)
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balance
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motivation

balance in social networks (Harary, 1953)

“The friend of a friend is a friend” (or “the enemy of a friend is an enemy ”).

+ +

+

- -

+︸ ︷︷ ︸
balanced

+ +

-

- -

-︸ ︷︷ ︸
not balanced

the four possible non-isomorphic signed triangles
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balance applies to cycles of any length

+

-

+
-

+

+

(+)× (-)× (+)× (-)× (+)× (+) = +

definition of balanced cycle
a cycle is balanced if the product of its signs is positive
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characterizations of balance
a graph G is balanced if and only if
▶ there are no negative (unbalanced) cycles

▶ there exists a sign-compliant partition: V = V1 ∪ V2 such that
all + edges are within sets and all - edges are between sets

▶ all paths between any pair u, v have same sign

some balanced graphs

- +



25

characterizations of balance
a graph G is balanced if and only if
▶ there are no negative (unbalanced) cycles
▶ there exists a sign-compliant partition: V = V1 ∪ V2 such that

all + edges are within sets and all - edges are between sets

▶ all paths between any pair u, v have same sign

some balanced graphs

- +



26

characterizations of balance
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measures of partial balance

how can we measure partial balance?

▶ fraction of balanced cycles
(Cartwright and Harary, 1956; Giscard et al., 2017)
▶ fraction of balanced triangles

(Terzi and Winkler, 2011) (example in next slide)

▶ spectral methods (discussed later on)

check Aref and Wilson (2018) for an overview of partial measures of balance
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measures of partial balance
example: fraction of balanced triangles

reminder: counting triangles in unsigned graphs

A =




0 1 0 0 0
1 0 1 1 0
0 1 0 1 1
0 1 1 0 1
0 0 1 1 0




, A2 =




1 0 1 1 0
0 3 1 1 2
1 1 3 2 1
1 1 2 3 1
0 2 1 1 2




, A3 =




0 3 1 1 2
3 2 6 6 2
1 6 4 5 5
1 6 5 4 5
2 2 5 5 2




1 2

3

4

5

A3
ii = 2 ×#(3-cycles adjacent to vertex i)
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measures of partial balance
example: fraction of balanced triangles

reminder: counting triangles in unsigned graphs

A =
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neasures of partial balance
example: fraction of balanced triangles

counting triangles in signed graphs:

A =




0 1 0 0 0
1 0 −1 1 0
0 −1 0 1 1
0 1 1 0 1
0 0 1 1 0




, A2 =




1 0 −1 1 0
0 3 1 −1 0
−1 1 3 0 1
1 −1 0 3 1
0 0 1 1 2




, A3 =




0 3 1 −1 0
3 −2 −4 4 0
1 −4 0 5 3
−1 4 5 0 3
0 0 3 3 2




1 2

3

4

5

-

A3
ii = 2 × (#balanced 3-cycles −#unbalanced 3-cyles),

thus,

Tr(A3) + Tr(|A|3)
2Tr(|A|3) = fraction of balanced triangles

(Terzi and Winkler, 2011)
note: |A| is the adj. matrix of the underlying (unsigned) graph
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spectrum
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spectral theory
review of unsigned spectral theory:

Laplacian: L = D − A L

v1

=




2 −1 −1
−1 2 −1
−1 −1 2







1
1
1


 = 0

▶ λmin(L) = 0 (multiplicity of 0 = number of connected components)
▶ eigenvector v2 gives a “good” partition (Cheeger inequality)

v2 ≈



−0.38
−0.38
−0.38
−0.25
0.25
0.38
0.38
0.38


, λ2(L) ≈ 0.35.
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spectral theory

signed spectral theory:

Laplacian: L = D − A

unsigned signed

L is positive semidefinite

Dii =
∑

j Aij Dii =
∑

j |Aij |

λmin(L) = 0 λmin(L) ≥ 0

+ -

-

L

v1

=




2 −1 1
−1 2 1
1 1 2







1
1
−1


 = 0
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spectral theory

signed spectral theory:

Laplacian: L = D − A

unsigned signed

L is positive semidefinite

Dii =
∑

j Aij Dii =
∑

j |Aij |

λmin(L) = 0 λmin(L) ≥ 0

+ -

-

Lv1 =




2 −1 1
−1 2 1
1 1 2







1
1
−1


 = 0
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spectral theory

consider previous graph;

flip sign of one edge:

v1 =



1
1
1
1
1
1
1
1


λmin(L) = 0

This graph is balanced !

spectral characterizations of balance
1. connected and λmin = 0 (or one zero-eigenvalue per connected component)
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spectral theory

consider previous graph; flip sign of one edge:
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spectral theory

a taste of spectral analysis:

lemma (Hou et al., 2003)
λmax(L(G)) ≤ λmax(L(G−)), where G− is the all-negative graph

the Laplacian L(G−) has all non-negative entries; so,

xT L(G)x =
∑

(vi ,vj )∈E(xi − σ(vi , vj)xj)
2 ≤ ∑

(vi ,vj )∈E(|xi |+ |xj |)2 = xT L(G−)x

lemma (Hou et al., 2003)
λmax(L(G)) ≤ 2(n − 1), where n is the number of vertices

λmax(G) = λmax(D − A) ≤ λmax(DG) + λmax(−AG) ≤ n − 1 + n − 1
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subgraph mining
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subgraph mining

goal
find interesting subgraphs in a signed
networks

some definitions of “interesting”:
▶ balanced subgraph
▶ polarized subgraph

US Congress network (Bonchi et al., 2019)
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subgraph mining: balanced graphs vs. polarized graphs

balanced graphs

C1 C2

polarized graphs:
“noisy” edges are allowed

C1 C2

polarized graphs:
more than two groups
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subgraph mining: balanced graphs vs. polarized graphs

balanced graphs
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maximum balanced subgraph (MBS) problem

problem definition
input: a signed graph G = (V ,E+,E−)
output: a maximum-cardinality vertex subset
U ⊆ V such that G(U) is balanced

C1 C2

a balanced graph

▶ an equivalent problem: remove the minimum number of vertices such that the
remaining graph is balanced

▶ solution size of MBS = frustration index
▶ edge-version of MBS: a balanced subgraph with maximum number of edges
▶ all these problems are NP-hard
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problem definition
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spanning-tree heuristic for MBS

notation

▶ negative graph G –: induced subgraph on the negative edges in G
▶ positive graph G +: induced subgraph on the positive edges in G
▶ I (G): any maximal independent set of G

high-level idea (Gülpinar et al., 2004)
1. find a spanning tree T on G

2. find a switch W such that T W is all positive

3. switch G by W , yielding GW

4. return I
(
GW )–
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spanning-tree heuristic: maximal independent set on G –

intuition 1
any maximal independent set on G – is balanced in G

G G – I(G –)

a

b c

a

b c

{a,b, c}

a

b c

a

b c

{a,b} or {a, c}
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spanning-tree heuristic: maximal independent set on G –

quiz: can we solve MBS optimally by maximizing |I(G –)|?

no! a counter-example:

G G – I(G –) of maximum size

a

b c

a

b c

{b, c}

Expected solution: {a,b, c}
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spanning-tree heuristic: switch

intuition 2
switch G to expand size of I(G –)

G

GW ,W = {a}
(
GW )– I(G –) of maximum size

a

b c

a

b c

a

b c

{a,b, c}
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spanning-tree heuristic: switch

intuition 2
switch G to expand size of I(G –)

G GW ,W = {a}
(
GW )– I(G –) of maximum size

a

b c

a

b c

a

b c

{a,b, c}
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spanning-tree heuristic: combining the previous ideas
an equivalent form of MBS

find a switch W sutch that
∣∣I(

(
GW )–

)
∣∣ is maximized an NP-hard problem

a tree is always balanced, i.e., there exists some W such that T W is all positive

G

Switch (either vertex color)

a

b c

d e f g

a

b c

d e f g

quiz: How to find a switch that makes a tree all positive? Hint: use BFS
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spanning-tree heuristic: combining the previous ideas
an equivalent form of MBS

find a switch W sutch that
∣∣I(

(
GW )–

)
∣∣ is maximized an NP-hard problem

a tree is always balanced, i.e., there exists some W such that T W is all positive

G Switch (either vertex color)

a

b c

d e f g

a

b c

d e f g

quiz: How to find a switch that makes a tree all positive? Hint: use BFS



80

spanning-tree heuristic for MBS

algorithm (Gülpinar et al., 2004)
1. find a spanning tree T on G # a tree is an easy case to solve

2. find a switch W that makes T W all positive # expands the solution size

3. use W to switch G, yielding GW

4. return maximal independent set on
(
GW )– # I

(
GW )– is balanced
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polarized subgraph detection

polarized subgraphs as an extension of balanced subgraphs
▶ can have more than two components
▶ permits the presence of noisy edges:

positive edges between C1 and C2

negative edges within C1 or C2

C1 C2

more than two components with “noisy” edges (drawn in thick lines)
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polarized subgraph detection: problem dimensions

▶ what measure of polarization?
▶ how many groups inside a polarized subgraph?

2-way or k -way polarized subgraph?
▶ how many polarized subgraphs to find: one or multiple?
▶ are seed nodes given? local or global community detection?

Paper num. num. local / approximation
groups subgraphs global guarantee

Chu et al. (2016) k ≥ 1 global -
Bonchi et al. (2019) 2 1 global

√
n

Xiao et al. (2020) 2 ≥ 1 local
√

OPT
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polarized subgraph detection: single 2-way subgraph
discovering polarized communities in signed networks (Bonchi et al., 2019)

▶ intuition of the polarization measure:
1. in each group, many positive edges
2. between two groups, many negative edges
3. the subgraph is dense in terms of the number of nodes

▶ objective in matrix form:

max
x

xT Ax
xT x

(NP-hard problem)

where x ∈ {−1,0,1}n is used to encode the subgraph

▶ spectral algorithm:
▶ relax x to be continuous
▶ the relaxed problem is solved by finding the leading eigenvector
▶ randomized

√
n-approximation based on rounding the leading eigenvector
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correlation clustering
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data clustering — background

▶ data clustering: a fundamental problem in machine learning
▶ intuitively: we want to partition a dataset into clusters so that similar objects are

assigned to the same cluster
▶ extensively-studied problem, many different settings, objectives, applications
▶ euclidean setting: data are represented as Euclidean points

▶ minimize an objective function such as k -means (
∑

i minj ||xi − cj ||22),
k -median (

∑
i minj ||xi − cj ||2) or k -center (maxi minj ||xi − cj ||2)

▶ graph setting: data are represented as a graph
▶ edges represent affinity, e.g., friends in a social network
▶ often a similarity value is available, e.g., connection strength
▶ optimize an objective function such as normalized edge cut across clusters (minimize)

or edge density within clusters (maximize)
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correlation clustering — motivation

▶ in the graph setting described above, edges are positive
▶ presence of an edge suggests that nodes should be clustered together
▶ absence of an edge suggests that nodes should be assigned to different clusters

▶ in some cases, we may have a local prediction whether two objects should be
assigned to the same cluster or not
▶ positive edge : the two objects should be clustered together
▶ negative edge : the two objects should be assigned to different clusters
▶ no edge : no information

▶ we obtain a signed network !
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correlation clustering — motivation

+

+
++

+

+
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-

-

-
-

--

- -
▶ example: a dataset of images,

e.g., screws of different types
▶ a machine-learning program,

which, given two images, outputs
whether the images depict the
same type of screws

▶ we obtain a signed network
▶ we want to cluster the images so

that same-type screws are
assigned in the same cluster
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correlation clustering — motivation

▶ due to noise in the data and classification errors in the network construction,

we cannot expect to achieve perfect agreement

▶ we need an objective function to capture the consistency of the resulting clustering

with the input signed network
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correlation clustering — edge agreements and disagreements
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correlation clustering — edge agreements and disagreements
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correlation clustering — edge agreements and disagreements

+

+
++

+

+

+

-
-

-

-

-+

within-cluster edge agreement

within-cluster edge disagreement
across-cluster edge disagreement

across-cluster edge agreement
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correlation clustering — problem formulation

given a signed network G = (V ,E+,E−), find a partitioning C = {C1, . . . ,Ck}
of the graph vertices (i.e.,

⋃k
i=1 Ci = V and Ci ∩ Cj = ∅, for all i ̸= j),

so as to

variant 1 : [maximize agreements]

max a(C) =
∑

i,j

I
{
(i , j) ∈ E+

}
I{c(i) = c(j)}+

∑

i,j

I
{
(i , j) ∈ E−} I{c(i) ̸= c(j)}

variant 2 : [minimize disagreements]

min d(C) =
∑

i,j

I
{
(i , j) ∈ E+

}
I{c(i) ̸= c(j)}+

∑

i,j

I
{
(i , j) ∈ E−} I{c(i) = c(j)}

majority of research focuses on the minimization variant
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correlation clustering — number of clusters

an important observation

▶ the problem formulation does not (need to) specify the number of clusters
▶ optimal k depends on input network, and does not have trivial minimizers

e.g.,

k = 1 k = 2 k = n

▶ the optimal solution in each of the above cases is the most intuitive one
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correlation clustering — hardness

both formulations (max-agree and min-disagree) are NP-hard

the min-disagree problem is

▶ NP-hard for complete unweighted graphs Bansal et al. (2004)

reduction from “partition into triangles”

▶ APX-hard for general (un)weighted graphs Demaine et al. (2006)

reduction from multiway cut
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correlation clustering — existing approximation algorithms

overview of results for the min-disagree problem

paper graph approximation deterministic running time
type ratio /randomized

Bansal et al. (2004) complete large constant deterministic O(n2)

Demaine et al. (2006) general O(log n) deterministic LP
Ailon et al. (2005) complete 2.5 randomized LP
Ailon et al. (2005) complete 3 randomized O(m)

Chawla et al. (2015) complete 2.06 − ϵ deterministic LP
Giotis and Guruswami (2005)1 complete PTAS randomized combinatorial
Coleman et al. (2008)2 complete3 2 deterministic combinatorial

1 for fixed k ; recall that the problem is APX-hard when k is not fixed
2 for k = 2 (2-correlation-clustering)
3 algorithm applicable to general graphs, but analysis for complete graphs



101

the PIVOT algorithm — example

a complete graph: positive edges shown, negative edges not shown
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The PIVOT algorithm — example

a pivot is selected uniformly at random
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The PIVOT algorithm — example

a cluster is formed with the pivot and all its positive neighbors
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The PIVOT algorithm — example

a new pivot is selected from the remaining of the graph vertices
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The PIVOT algorithm — example

a second cluster is formed with the pivot and all its positive neighbors
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The PIVOT algorithm — example

and the process continues . . .



107

The PIVOT algorithm — example

. . . until the whole graph is consumed.
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correlation clustering — the KWIKCLUSTER (or PIVOT) algorithm

Proof: In this special case, we have that w(e) ∈ {2/3, 1} for all e ∈ Aw, and w(e1) = w(e2) = w(e3) =
2/3 for all t = (e1, e2, e3) ∈ T , therefore w(t) = 2, z(t) = 4/3 and c∗(t) ≥ 4/3. The inequalities can
now be easily verified. !

Theorem 10 follows from Theorem 6 and Lemma 9, using β = 2/5 and γ = 6/5:

Theorem 10 The best of KwikSort on Gw and Pick-A-Perm is an expected 6/5 approximation
for Rank-Aggregation when there are k = 3 voters.

6 Correlation Clustering and Consensus Clustering

In this section, we show how to apply the techniques presented in Section 3 to Correlation-
Clustering and Consensus-Clustering. Recall that our goal is to minimize disagreements. In
Fas-Tournament, we used “bad triangles” in tournaments to charge the disagreements in our so-
lution. In Correlation-Clustering, disagreements in the solution can also be charged to “bad
triplets”, which will be defined shortly. Thus, the bad triplets replace the role taken by the directed
triangles in tournaments. Let (V,E+, E−) be a Correlation-Clustering instance. Our algorithm
KwikCluster, which is an analog of KwikSort, is defined as follows:

KwikCluster(G = (V, E+, E−))

If V = ∅ then return ∅
Pick random pivot i ∈ V .

Set C = {i}, V ′ = ∅.

For all j ∈ V, j $= i:
If (i, j) ∈ E+ then

Add j to C
Else (If (i, j) ∈ E−)

Add j to V ′

Let G′ be the subgraph induced by V ′.

Return C ∪KwikCluster(G′) .

As in the analysis of KwikSort, a pair i, j incurs a unit cost if a third vertex k is chosen as pivot
when the triplet (i, j, k) is in the same recursive call, and there are two “+” and one “−” relations
among i, j, k (doesn’t matter in which order). A triplet (i, j, k) is therefore a bad triplet if it has two
“+” and one “−” relations.4 Let T denote the set of (not necessarily disjoint) bad triplets. For each
t = (i, j, k) ∈ T we define At as the event that all three i, j, k are in the same recursive call when the
first one among them was chosen as pivot. Let pt denote the probability of At. The analysis continues
identically to that of KwikSort.

Theorem 11 Algorithm KwikCluster is a randomized expected 3-approximation algorithm for
Correlation-Clustering.

4A Correlation-Clustering instance with no bad triplets induces a consistent clustering, just as a tournament
with no 3-cycles is acyclic. Our algorithms have an optimal cost of 0 on these instances.

12

▶ the PIVOT algorithm

(Ailon et al., 2005)

+ an elegant randomized algorithm

+ approximation ratio 3

+ running time O(m)

– it assumes a complete graph

– it assumes an unweighted graph
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weighted signed networks

w+i j

<latexit sha1_base64="YY7ohTTOTCSKhwi2iXdqxfbosVY=">AAACEnicbVDLSsNAFL3xWeur6tLNYBEEoSRS0WXBjcsK9oFtLJPJtB07mYSZiVJC/qJb/RB34tYf8Dv8ASdtFrb1wMDhnPua40WcKW3b39bK6tr6xmZhq7i9s7u3Xzo4bKowloQ2SMhD2fawopwJ2tBMc9qOJMWBx2nLG91kfuuZSsVCca/HEXUDPBCszwjWRnp4eUzO017CntJeqWxX7CnQMnFyUoYc9V7pp+uHJA6o0IRjpTqOHWk3wVIzwmla7MaKRpiM8IB2DBU4oMpNphen6NQoPuqH0jyh0VT925HgQKlx4JnKAOuhWvQy8T+vE+v+tZswEcWaCjJb1I850iHKvo98JinRfGwIJpKZWxEZYomJNiHNTcpkI7pJtsSnig1EWjQpOYuZLJPmRcWpVi7vquVaO8+rAMdwAmfgwBXU4Bbq0AACAibwCm/WxHq3PqzPWemKlfccwRysr1/+058g</latexit>

w�i j

<latexit sha1_base64="EyECllLPT1ogYeYRiU6WhVIe7es=">AAACEnicbVBLTsMwFHzhW8qvwJKNRYXEhipBRbCsxIZlkehHtKFyHLc1dZzIdkBVlFt0Cwdhh9hyAc7BBXDaLGjLSJZGM+/n8SLOlLbtb2tldW19Y7OwVdze2d3bLx0cNlUYS0IbJOShbHtYUc4EbWimOW1HkuLA47TljW4yv/VMpWKhuNfjiLoBHgjWZwRrIz28PCbnaS9hT2mvVLYr9hRomTg5KUOOeq/00/VDEgdUaMKxUh3HjrSbYKkZ4TQtdmNFI0xGeEA7hgocUOUm04tTdGoUH/VDaZ7QaKr+7UhwoNQ48ExlgPVQLXqZ+J/XiXX/2k2YiGJNBZkt6scc6RBl30c+k5RoPjYEE8nMrYgMscREm5DmJmWyEd0kW+JTxQYiLZqUnMVMlknzouJUK5d31XKtnedVgGM4gTNw4ApqcAt1aAABARN4hTdrYr1bH9bnrHTFynuOYA7W1y8COJ8i</latexit>

i

<latexit sha1_base64="OXdstD+rT8gxM196+LlMGLZ1BHg=">AAACCXicbVDLSsNAFL2pr1pfVZdugkVwVRJRdFlw47IF+4A2lMnkph06mYSZiVBCv6Bb/RB34tav8Dv8ASdtFrb1wMDhnPua4yecKe0431Zpa3tnd6+8Xzk4PDo+qZ6edVScSoptGvNY9nyikDOBbc00x14ikUQ+x64/ecz97gtKxWLxrKcJehEZCRYySrSRWmxYrTl1ZwF7k7gFqUGB5rD6MwhimkYoNOVEqb7rJNrLiNSMcpxVBqnChNAJGWHfUEEiVF62OHRmXxklsMNYmie0vVD/dmQkUmoa+aYyInqs1r1c/M/rpzp88DImklSjoMtFYcptHdv5r+2ASaSaTw0hVDJzq03HRBKqTTYrk3LZiF6WLwlQsZGYVUxK7nomm6RzU3dv63et21qjV+RVhgu4hGtw4R4a8ARNaAMFhDm8wps1t96tD+tzWVqyip5zWIH19Qt/oJsN</latexit>

j

<latexit sha1_base64="SzsvwlCRYglzIRS7DKdUf3UQfnE=">AAACCXicbVDLTsJAFL3FF+ILdemmkZi4Iq3B6JLEjUtI5JFAQ6bTC4xMp83M1IQ0fAFb/RB3xq1f4Xf4A06hCwFPMsnJOfc1x485U9pxvq3C1vbO7l5xv3RweHR8Uj49a6sokRRbNOKR7PpEIWcCW5ppjt1YIgl9jh1/8pD5nReUikXiSU9j9EIyEmzIKNFGaj4PyhWn6ixgbxI3JxXI0RiUf/pBRJMQhaacKNVznVh7KZGaUY6zUj9RGBM6ISPsGSpIiMpLF4fO7CujBPYwkuYJbS/Uvx0pCZWahr6pDIkeq3UvE//zeoke3nspE3GiUdDlomHCbR3Z2a/tgEmkmk8NIVQyc6tNx0QSqk02K5My2Yhemi0JULGRmJVMSu56JpukfVN1a9XbZq1S7+Z5FeECLuEaXLiDOjxCA1pAAWEOr/Bmza1368P6XJYWrLznHFZgff0CgUWbDg==</latexit>

we want to extend the methods to weighted signed networks
G = (V ,w+,w−)

▶ w+
ij : weight of positive edge (i , j)

▶ w−
ij : weight of negative edge (i , j)

▶ unweighted case : w+
ij ,w

−
ij ∈ {0,1}

▶ weighted case : w+
ij ,w

−
ij ∈ R≥0

interesting cases :
▶ probability constraints : w+

ij + w−
ij = 1, for all i , j ∈ V

▶ triangle inequality : w−
ik ≤ w−

ij + w−
jk , for all i , j , k ∈ V
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weighted signed networks
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the PIVOT algorithm on weighted signed networks

1. consider a weighted signed networks G = (V ,w+,w−)

2. assume probability constraints w+
ij + w−

ij = 1, for all i , j ∈ V

3. form unweigted Gu = (V ,E+,E−) by taking “majority” on each edge

4. apply PIVOT on Gu

5. return solution of PIVOT on Gu, as the solution for G

theoretical properties of the above algorithm

▶ 5 approximation, with probability constraints
▶ 2 approximation, with probability constraints and triangle inequality
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using PIVOT for LP rounding

LP relaxation (Ailon et al., 2005)

maximize
∑

ij

(
x+

ij w−
ij + x−

ij w+
ij

)

such that x−
ik ≤ x−

ij + x−
jk , for all i , j , k ∈ V

x+
ij + x−

ij = 1, for all i , j ∈ V

x+
ij , x

−
ij ≥ 0, for all i , j ∈ V

▶ notice that if x−
ij ∈ {0,1}, then x−

ij define an equivalence class (clustering)
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Using PIVOT for LP rounding

LP for weighted Fas-Tournament LP for weighted Correlation-Clustering

minimize
∑

i<j(xijwji + xjiwij) s.t. minimize
∑

i<j(x
+
ijw

−
ji + x−

jiw
+
ij) s.t.

xik ≤ xij + xjk for all distinct i, j, k x−
ik ≤ x−

ij + x−
jk for all distinct i, j, k

xij + xji = 1 for all i "= j x+
ij + x−

ij = 1 for all i "= j

xij ≥ 0 for all i "= j x−
ij, x

+
ij ≥ 0 for all i "= j

LP-KwikSort(V, x)
A recursive algorithm for rounding the LP for
weighted Fas-Tournament. Given an LP
solution x = {xij}i,j∈V , returns an ordering on
the vertices.

If V = ∅ then return empty-list

Pick random pivot i ∈ V.
Set VR = ∅, VL = ∅.

For all j ∈ V, j "= i:
With probability xji

Add j to VL.
Else (With probability xij = 1 − xji)

Add j to VR.

Return order

LP-KwikSort(VL, x), i,LP-KwikSort(VR, x)

LP-KwikCluster(V, x+, x−)
A recursive algorithm for rounding the LP for
weighted Correlation-Clustering. Given an
LP solution x+ = {x+

ij}i<j , x− = {x−
ij}i<j,

returns a clustering of the vertices

If V = ∅ then return ∅
Pick random pivot i ∈ V.
Set C = {i}, V ′ = ∅.

For all j ∈ V, j "= i :
With probability x+

ij

Add j to C.
Else (With probability x−

ij = 1 − x+
ij)

Add j to V ′.

Return clustering

{C}∪LP-KwikCluster(V ′, x+, x−).

Figure 1: Standard LP relaxations and their corresponding rounding algorithms.

14

(Ailon et al., 2005)

1. solve the LP relaxation

2. use the PIVOT for randomized
rounding of the LP solution

▶ 2.5-approximation, with probability
constraints

▶ 2-approximation, with probability &
triangle inequality constraints

– expensive; requires solving an LP
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correlation clustering — summary

▶ signed graphs have been studied in theoretical computer science in the context of
correlation clustering

▶ a wealth of theoretical results for different problem settings
▶ several applications, e.g., clustering aggregation
▶ many other problem variants not discussed here

overlapping, on-line, bipartite, chromatic, local, . . .
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conclusions
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conclusions

▶ signed networks differ in terms of basic concepts, properties

and present unique computational challenges

▶ in this lecture we gave an overview of mining signed networks
▶ we discussed some theoretical concepts
▶ we discussed some common applications
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many topics not discussed

▶ graph partitioning and community detection
▶ link prediction
▶ network dynamics
▶ graph embedding and representation learning
▶ node ranking
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