
Social Networks and Online Markets

Homework 1

Due: 9/6/2024, 23:59

Instructions

You must hand in the homeworks electronically and before the due date and time.

The first homework has to be done by each person individually.

Handing in: You must hand in the homeworks by the due date and time by an email to
aris@diag.uniroma1.it that will contain as attachment (not links to some file-uploading
server!) a .zip or .pdf file with your answers.
After you submit, you will receive an acknowledgement email that your homework has been received
and at what date and time. If you have not received an acknowledgement email within 2 days after
you submit then contact Aris.

The solutions for the theoretical exercises must contain your answers either typed up or hand
written clearly and scanned.

If you need any technical help, for Problem 6, you can email Gianluca De Carlo:
decarlo@diag.uniroma1.it. For other questions, email Aris.

For information about collaboration, and about being late check the web page.

Problem 1. Consider the following modification of the Barabassi–Albert preferential attachement
model that we did in class: When a new node arrives at time t again it comes with ℓ edges.
However, this time each edge selects a node v with probability proportional to the degree dv plus
a constant c, that is, the probability equals

dv + c

(t− 1)(2ℓ+ c)
,

where c ≥ −ℓ, as we describe at the end of Chapter 4 in the notes (so for c = 0 this is the Barabassi-
Albert model). Show that the degree distribution that we obtain as t → ∞ is approximately a
power law with exponent 3 + c/ℓ.

Problem 2. We are given the following graph, G = (V,E).

1. Find the densest subgraph using the greedy algorithm we saw in class.

2. Find a minimum cut.

3. Demonstrate (by calculating λ2, ϕ(G), etc.) that Cheeger’s inequalities hold for this graph.

4. Find the cut that satisfies Part 3 (and show that it does).

You may use a computer to compute eigenvalues and eigenvectors, but you must specify in your
solution how (what program and what code/commands you used).

Problem 3. As Aris Gionis mentioned in class, an interesting phenomenon in social networks is
that a random person’s expected degree is smaller than the degree of her peers: “Your friends are
more popular than you are!” Given an undirected graph G = (V,E), select a random node and let
X be the random variable that equals to its degree and Y to be the random variable that equals
the average degree of the node’s neighbors.

1. Prove that E[X] ≤ E[Y].

2. When do we have that E[X] = E[Y]?

Hint. Prove that for any a,b ̸= 0 we have that
a

b
+

b

a
≥ 2.

Problem 4. We are monitoring a graph, which arrives as a stream of edges E = e1, e2, We
assume that exactly one edge arrives at a time, with edge ei arriving at time i, and the stream is
starting at time 1. Each edge ei is a pair of vertices (ui,vi), and we use V to denote the set of all
vertices that we have seen so far.

We assume that we are working in the sliding window model. According to that model, at each
time t only the w most recent edges are considered active. Thus, the set of active edges E(t,w) at
time t and for window length w is

E(t,w) =

{
et−w+1, . . . ,et, if t > w,
e1, . . . ,et, if t ≤ w.

We then write G(t,w) = (V,E(t,w)) to denote the graph that consists of the active edges at time t,
given a window length w.

As an example, given the stream of edges

e1 = (c,e), e2 = (b,d), e3 = (a,c), e4 = (c,b), e5 = (a,b), e6 = (c,d), e7 = (d,e)

the graphs G(5,5), G(6,5) and G(7,5) are shown below:

a b

c d

e

G(5,5)

a b

c d

e

G(6,5)

a b

c d

e

G(7,5)

Notice that for all t ≥ w the graph G(t+1,w) results from G(t,w) by adding one edge and deleting
one edge.

We want to monitor the connectivity of the graph G(t,w). In other words, we want to design an
algorithm that quickly decides, at any time t, if the graph G(t,w) is connected. In the previous
example, the graphs G(5,5) and G(7,5) are connected, while the graph G(6,5) is not connected.

1. Propose a streaming algorithm for deciding the connectivity of G(t,w).

Hint: An efficient streaming algorithm takes advantage of the fact that the graph G(t+1,w)
changes very little compared to G(t,w). Therefore, our algorithm should be able to efficiently
update the connectivity of G(t+ 1,w) when a new edge et+1 arrives at time t+ 1, given that
the connectivity of G(t,w) has already been computed.

2. How much space does your algorithm use? There is a simple approach, which uses space
O(n2), and a smarter one that uses space O(n), where n = |V |.

3. What is the update time of your algorithm?

Hint for 2 and 3: The space of your algorithm is the maximum amount of space used at
any given moment. The update time is the time needed to compute the output at time t+1,
given the state at time t and the new edge et+1 that arrives at time t+ 1.

You should provide your answer using the O(·) notation, written as a function of the window
length w and the number of vertices n.

Problem 5. In most opinion-formation models it is assumed that the difference of opinions of
two individuals who interact in the social graph decreases during the opinion-formation process.
In other words, people’s interaction leads to improving agreement. However, in real life, the op-
posite phenomenon is observed: individuals whose initial opinions are sufficiently far apart, tend
to disagree more when they interact with each other. In other words, the difference of opinions of
two individuals who disagree “sufficiently enough” tends to increase even more, during the opinion-
formation process. This is known as the back-fire phenomenon.

Propose an opinion-formation model that incorporates the idea of back-fire. State your assump-
tions and motivate your choices. Argue why the model would lead to back fire.
Extra credit: Perform simulations to illustrate that your model behaves as you expect it to do.

Problem 6. Applying Graph Neural Networks for Node Classification and Link Pre-
diction Using the PubMed Dataset
Dataset Overview:

In this exercise, we utilize the PubMed dataset, a citation network with nodes representing
scientific publications from the PubMed database, primarily in the biomedical field. Edges indicate
citations between these publications. Each node features a TF-IDF weighted word vector from the
publication’s abstract and a class label that denotes the publication’s subject category. You can
otain the dataset by using the Planetoid package: https://pytorch-geometric.readthedocs.

io/en/latest/generated/torch_geometric.datasets.Planetoid.html

Tasks:

1. Node Classification: Construct and train a Graph Neural Network (GNN) to categorize publi-
cations within the PubMed dataset into their corresponding subject categories. Test different
GNN architectures like GCN, GraphSAGE, and GAT.

2. Link Prediction: Build a GNN-based model to predict the presence of citation links between
publications.

Exploratory Data Analysis (EDA):
Conduct an EDA to familiarize yourself with the PubMed dataset’s characteristics. Key aspects

to explore include:

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Planetoid.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Planetoid.html

1. Network Structure: Assess the number of publications (nodes), citation links (edges), average
citations per publication, citation distribution, and clustering coefficient.

2. Node Features: Examine the spread of TF-IDF values and explore potential correlations
between word frequencies and publication categories.

3. Class Distribution: Analyze the quantity of publications within each subject category and
check for any class imbalances.

Evaluation Metrics:

1. Node Classification: Measure the effectiveness of your models using metrics like accuracy,
precision, recall, and F1-score.

2. Link Prediction: Evaluate your model’s proficiency at distinguishing between existing and
non-existing links using metrics such as AUC-ROC, F1-score, and ranking metrics (e.g., MRR,
Hits@K).

Challenge: Aim to surpass these benchmark scores, achieved by Gianluca:

1. Node Classification Accuracy: 80.2%

2. Link Prediction AUC-ROC: 91.0%.

Deliverables:

1. Code Implementation: Submit a Jupyter Notebook or Python script that includes your code,
implementation specifics, and outcomes.

2. Project Report: Provide a succinct report detailing your methodology, discoveries, obstacles
faced, and the results achieved in both tasks.

Help. If you need support for this exercise, you can contact Gianluca: decarlo@diag.uniroma1.it.

