Socilal correlation

« How similar i1s the behavior of connected
users.

* Previous studies:

— Joining LiveJournal communities [Backstrom
et al.]

— Publishing in conferences [Backstrom et al.]
— Tagging vocabulary on flickr [Marlow et al.]
— Adoption of paid VolIP service in IM

— Offline: Smoking habits of teenagers



Joining communities [Backstrom et alj
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Flickr tag vocabulary [Marlow et al.}
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Sources of correlation

« Social influence: One person performing an
action can cause her contacts to do the same.
— by providing information
— by increasing the value of the action to them

 Homophily: Similar individuals are more likely to
become friends

— Example: two mathematicians are more likely to
become friends

 Confounding factors: External influence from
elements in the environment
— Example: friends are more likely to live in the same

area, thus attend and take pictures of similar events,
and tag them with similar tags



Socilal influence

Focus on a particular “action” A.

— E.g.: buying a product, joining a community,
publishing in a conference, using a particular
tag, using the VolIP service, ...

An agent who performs A is called “active”

X has influence over y if X performing A
Increases the likelihood that y performs A.

Distinguishing factor: causality relationship



Causation vs. Correlation

« What we try to do is essentially distinguish causation from
correlation.

« Common mistake, especially by journalists:
— People who drink more coffee live longer
— People who drive red cars create more accidents
— Eating pizza "cuts cancer risk®
— People who go to school, live longer

T USED 0 THINK, THEN I TOOK A | | SOUNDS LIKE THE
CORRELATION Jr’]F‘UED STﬁngr:ﬁ CLASS. Cun'ss HELPED.
CAUSATION. NOow I DON'T, WELL, MHTBE
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ldentifying social influence

 Why is it important?

« Analysis: predicting the dynamics of the system.

Whether a new norm of behavior, technology, or idea
can diffuse like an epidemic

« Design: for designing a system to induce a particular
behavior, e.g.:

— vaccination strategies (random, targeting a
demographic group, random acquaintances, etc.)
— viral marketing campaigns



Influence Model

Graph (static or dynamic)
Edge (u,v): Node u can influence node v
Discrete time:t=0,1,2, ..., T

For each t, every inactive node becomes active
with probability p(a), where a is the # active
contacts

O Inactive
O Active /‘ Active contacts



Model — Influence probability

* Natural choice for p(a): logistic regression
function:

In (ﬁ(;ga)) = alnf@+1) + 3

with In(a+1) as the explanatory variable.
|_e_, e In(a+1)+p

p((l) = 1+ ea:ln(a—l—l)-l—,@

e Coefficient « measures socilal correlation.



Measuring social correlation

Given data, we compute the maximum likelihood
estimate for parameters « and S.

Let Y, = # pairs (user u, time t) where u Is not active
and has a active friends at the beginning of time step t,
and becomes active in this step.

Let N, = ...... does not become active in this step.

Find «, £ to maximize the likelihood function:
f(aa /67 Yaa Na) — Hp(a)ya(l T p(a))Na,
a

For convenience, we cap a at a value R.



Flickr data set

Photo sharing website

Share your photos.“m’

16 month periOd Watch the world.

_
Growing # of users, T/ Aol
final number ~800K é,-lazr o
~340K users who have L0 e W SR
used the tagging feature e
Social network: R —

— Users can specify “contacts”.
— 2.8M directed edges, 28.5% of edges not mutual.
— Size of giant component ~160K
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piazza san marco, venice
This photo has notes

vour mouse over the photo to see them.

vernice

Comments

mac on a mac pro says:

Waonderful!

Posted 7 months ago. ( permalink )

~~ Reza ~~ pro says:

Anice action shotl
Posted 7 months ago. ( permalink )
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Flickr tags

~10K tags
We focus on a set of 1700

Different growth patterns:

— bursty (“halloween” or “katrina™)
— smooth (“landscape” or “bw?)

— periodic (“moon”)

For each tag, define an action

corresponding to using the tag for the first
time.



Frequency

Socilal correlation in flickr

Distribution of o values estimated using maximum
likelihood:
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Distinguishing influence

[

N
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* Recall: graph G, set W of active nodes

* Influence model
— First G Is selected

— Then W is picked from a distribution
depending on G




Distinguishing influence | f~ N
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* Noninfluence models
— Homophily (Similar individuals are more likely to

become friends).

« First W is picked, then G is picked from a
distribution that depends on W

— Confounding factors (External influence from
elements in the environment):

« Both G and W are picked from distributions that
depend on another var X



Distinguishing influence | [~ 5
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« Generally, we consider this correlation
model:
— (G,W) are selected from a joint distribution

— Each agent in W picks an activation time i.1.d.
from a distribution on [0, T]



Testing for influence

« Simple idea: even though an agent’s
probabllity of activation can depend on friends,
her timing of activation Is independent

« Shuffle Test: re-shuffle the time-stamp of all
actions, and re-estimate the coefficient . If

different from original «, social influence can’t be
ruled out.



Testing for influence

« Simple idea: even though an agent’s
probabllity of activation can depend on friends,
her timing of activation Is independent

« Shuffle Test: re-shuffle the time-stamp of all
actions, and re-estimate the coefficient . If

different from original «, social influence can’t be
ruled out.

« Edge-Reversal Test: reverse the direction of all
edges, and re-estimate «.
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Edge-reversal test on Flickr
data
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*  Edges reversed
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Simulations

Run the tests on randomly generated action
data on flickr network.

Baseline: no-correlation model, actions
generated randomly to follow the pattern of one
of the real tags, but ignoring network

Influence model: same as described, with a
variety of («,() values

Correlation model: pick a # of random centers,
let W be the union of balls of radius 2 around
these centers.
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Edge-reversal test, influence
model
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