
Social Networks and Online Markets

Homework 1

Due: 21/6/2022, 23:59

Instructions

You must hand in the homeworks electronically and before the due date and time.

The first homework has to be done by each person individually.

Handing in: You must hand in the homeworks by the due date and time by an email to
birbas@diag.uniroma1.it that will contain as attachment (not links to some file-uploading
server!) a .zip or .pdf file with your answers.
After you submit, you will receive an acknowledgement email that your homework has been received
and at what date and time. If you have not received an acknowledgement email within 2 days after
the deadline then contact Georgios.

The solutions for the theoretical exercises must contain your answers either typed up or hand
written clearly and scanned.

For questions you can email Georgios Birmpas: birbas@diag.uniroma1.it.

For information about collaboration, and about being late check the web page.

Problem 1. Consider the following setting that we have also seen in the class: We have a set N
of n agents, and a set M of m items. Each agent i, has an additive valuation function vi(·) over
the items. Our goal is to produce an allocation A = (A1, . . . ,An) of the items to the agent. Recall
that an allocation is basically a partition of the set of items, i.e., ∀i,j ∈ {1, 2, ..., n} where, i 6= j,
we have that Ai ∩Aj = ∅, and in addition ∪{1,2,...,n}Ai = M .

The designer, desires a mechanism that produces fair allocations. So he thinks of the following
fairness concepts:

Definition 1 An allocation A = (A1, . . . ,An) is envy-free, if for every i, j ∈ N , vi(Ai) ≥ vi(Aj).

Definition 2 An allocation A = (A1, . . . ,An) is an EFX (envy-free up to any good) allocation, if
vi(Ai) ≥ vi(Aj \ {g}) holds for every pair i, j ∈ N , with Aj 6= ∅, and for every g ∈ Aj.

Definition 3 An allocation A = (A1, . . . ,An) is an EF1 (envy-free up to one good) allocation, if
for every pair of agents i, j ∈ N , with Aj 6= ∅, there exists an item g ∈ Aj, such that vi(Ai) ≥
vi(Aj \ {g}).

The idea that he has for designing a fair mechanism is based on the notion of the envied agent.
An agent i is envied by an agent j, if agent j has more value for the bundle of items of agent i than
he has for his own. With that in mind he proposes the following mechanism:

1. The agents are ordered in an arbitrary way

2. The items are ordered in an arbitrary way

3. For every agent i, set Ai = ∅

4. Find an agent i that is not envied by anyone, and give him the item with the lowest index
from the set of available ones (as long as there is one). This item will be included now to Ai

and will no longer be considered available.



5. If every agent is envied by someone, then this means that there are cycles of envy. I.e.,
there are cycles of agents k1 → k2 → k3 → ... → kl → k1, where ∀i ∈ [l] we have that
vki(Aki) < vki(Aki+1

) (and the last agent in the sequence envies the first). Such cycles can
be eliminated by reallocating the current bundles in the following manner: ∀i ∈ [l], give to
agent ki the bundle of items of agent ki+1 (the bundle of the agent that he envies). By doing
so, the value of each agent involved in the cycles increases, something that guarantees that
cycles will be eliminated in the end (as the value of an agent cannot increase indefinitely),
and thus there will be at least one agent that is not envied by anyone after the re-allocations.
Therefore, in this step we eliminate the cycles and we return to step 4.

6. Return the final allocation.

Prove that:

1. This mechanism does not always produce envy-free allocations.

2. This mechanism does not always produce EFX allocations.

3. This mechanism always produces EF1 allocations.

4. Consider instances where all the agents have the same ordinal preference over the items (i.e., if
they order the items according to how they value them, all of them have the same ordering).
Modify the above mechanism and show that for such instances it actually produces EFX
allocations. (Hint. Modify the second step of the mechanism, i.e., the way the items are
ordered.)

Problem 2. Consider the following problem: There is a set of N players and one single digital
good. Each agent has a value for the digital good that describes how much he wants it. Since
the good is digital, it can be provided to any number of players. However, there is a cost for the
provision of the good that is equal to 1 (this is the same regardless of the number of the players
that get the good in the end).

The designer wants to design a mechanism that is truthful, covers the cost created due to the
provision of the good, and is also economically efficient. So he thinks as follows: Let the players
declare their values, and then set the price of the good to p = 1

n . If the value of every player is
more than 1

n , then everyone will get the item and the procedure terminates. However, if there are
some players, say k in number, that have value less than 1

n , then they are removed from the game
and they do not get the digital good. If something like this happen, the price of the digital good is
updated to p = 1

n−k , and the same procedure is followed again with the new price and the new set
of players (the set of players that remain). This goes on, until either we end up with a set of players
where everyone has a value higher than the current price (this will be the set of the winners), or we
end up with an empty set of players. The designer calls this mechanism, the sharing mechanism.

If a player is a winner (gets the digital good) then his utility is ui = vi − p, while if he is
removed from the game (he does not get the item) his utility is ui = 0. Finally, as mentioned in
the beginning, the mechanism has to be efficient, so the objective in this case is to minimize the
harm to the society which is defined as follows: HS = C(S) +

∑
i∈N\S vi, where C(S) is the cost

of the provision of the good to set S (the set of winners). In case S = ∅, then C(S) = 0.

1. Prove that the allocation rule of the sharing mechanism is monotone, and that the sharing
mechanism is truthful.



2. Prove that the sharing mechanism cannot provide an approximation to the harm to society
that is better than log |N |.

3. Consider the version of the problem where now there is a set K of k digital goods, and the
provision of each of them has a cost that is equal to 1. In this version of the problem, each
agent i has now a valuation function that is defined as follows: vi(R) = min{

∑
j∈R vi(j), Bi},

i.e., the value that agent i has for a set R ⊆ K of digital goods that he wins, is the minimum
between the sum of his values for the digital goods in R, and a positive number Bi. In this
scenario, the designer decides to do the following: He asks every agent to submit the value
that they have for each digital good, and then runs the sharing mechanism for each digital
good separately. Prove that under this procedure, it is not always the best strategy for an
agent to truthfully report his values. (Hint: This can be shown with a simple example of
instances with only 2 agents and 2 digital goods.)

Problem 3. Consider the following games:

• We have a set N of n agents and a set M of m of companies that resolve tasks. Each agent
i ∈ N has a task of weight wi that wants to complete. To do so, he can choose a company,
and assign his task to it. Now each company is associated with a function that denotes
its load of work, given the tasks that it has to complete. In particular, given a strategy
profile s = (s1, s2, . . . , sn) with the strategies of the agents, the load function of company j
is lj(s) =

∑
i:si=j wi. On the other hand, each agent i is associated with a cost that depends

on the load of the company that he chooses. Specifically, given the strategy profile s of the
agents, the cost of agent i is ci(s) = lsi(s). The goal of each agent i is to minimize his cost.
Prove that

φ(s) =
1

2

m∑
j=1

lj(s)2

is a potential function, thus this game has a pure Nash equilibrium.

• Consider the following graph game. Given a graph G = (V,E), each agent i is assigned
to a node, and each edge e = (i, j) has a weight we. An agent i can choose between two
strategies, in particular for every i, we have si ∈ {−1,1}. Finally, given a strategy profile
s = (s1, s2, . . . , sn), the utility of agent i is defined as ui =

∑
e=(i,j)∈E we · si · sj . Prove that

φ(s) =
∑

j<i∈V
we · si · sj

is a potential function, thus this game has a pure Nash equilibrium.

Problem 4. Answer the following questions:

• Give examples of preference profiles for which Borda and Veto can be manipulated. Ex-
plain how the manipulation results in a preferable outcome for the voter who misreports her
preference ordering.

• Consider the cardinal social choice setting, in which there is a set of voters N , a set of
candidates M (possibly infinite) and each voter has a valuation function vi : M → R assigning
a numerical score to the candidates. Assume that a mechanism takes the numerical scores



that the agents declare, and outputs a single candidate as the winner. Show that the Gibbard-
Satterthwaite theorem extends to the cardinal social choice setting (Hint: Show that every
deterministic truthful mechanism is ordinal, i.e. it only uses the orderings induced by the
valuation functions.)

Problem 5. Consider the following setting. A set of n people in a room are trying to decide
the temperature of a conference room. Each person i has a most preferred temperature ti and her
displeasure from a chosen temperature t is defined as ci = |t − ti|, i.e. her displeasure increases
linearly as the chosen temperature moves away from her ideal temperature.

We consider two objectives, the total displeasure
∑n

i=1 ci and the maximum displeasure maxn
i=1 ci

that we are trying to minimize.

• For each objective, what is the temperature (with respect to the variables ti) that minimizes
the objective?

• Prove that the approximation ratio of Dictatorship is at least n− 1 for the total displeasure
and at least 2 for the maximum displeasure.

• Give a deterministic truthful mechanism (social choice function) that achieves an approxi-
mation ratio of 1 for the total displeasure. Your answer should prove that the mechanism is
truthful and that it guarantees an optimal outcome always.

• Prove that no deterministic truthful mechanism can have an approximation ratio smaller than
2 for the maximum cost (Hint: Use a profile with only two people and argue by contradiction
that such a truthful mechanism exists. This implies something for the choice of the temper-
ature. Consider a deviation of one of the two people to that chosen temperature and argue
that it would violate truthfulness).

• Consider the following randomized mechanism: With probability 1/4 output the smallest
among most preferred temperatures t`, with probability 1/4 output the largest among most
preferred temperatures tr and with probability 1/2 output the (tr − t`)/2.

– Show that the mechanism is truthful-in-expectation, i.e. no person can decrease her
expected displeasure by misreporting her true preferred temperature.

– Show that that the expected maximum displeasure of the mechanism is within 3/2 of
the optimal maximum displeasure.


