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Mixed equilibria

• Mixed equilibrium: A profile of mixed strategies such that each player 
maximizes its expected utility, given the strategies of the other 
players

• Every pure equilibrium is also a mixed equilibrium

– Every pure strategy can be seen as a probability distribution over 
all strategies that assigns probability 1 to this one pure strategy

Theorem [Nash, 1951]

Every finite strategic game of 𝑛 players has at least one mixed 
equilibrium



Matching Pennies: mixed equilibria

• Even player selects heads with probability 𝑥 and tails with 1 − 𝑥

• Odd player selects heads with probability 𝑦 and tails with 1 − 𝑦
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• Even player selects heads with probability 𝑥 and tails with 1 − 𝑥

• Odd player selects heads with probability 𝑦 and tails with 1 − 𝑦

• 𝑝(heads, heads) = 𝑥𝑦

• 𝑝 heads, tails = 𝑥(1 − 𝑦)

• 𝑝(tails, heads) = 1 − 𝑥 𝑦

• 𝑝(tails, tails) = (1 − 𝑥)(1 − 𝑦)
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Matching Pennies: mixed equilibria

• 𝔼𝑝 𝑢e
= 𝑥𝑦 ∙ 1 + 𝑥 1 − 𝑦 ∙ −1 + 1 − 𝑥 𝑦 ∙ −1 + 1 − 𝑥 1 − 𝑦 ∙ 1
= 4𝑥𝑦 − 2𝑥 − 2𝑦 + 1
= 𝒙 𝟒𝒚 − 𝟐 − 𝟐𝒚 + 𝟏
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Matching Pennies: mixed equilibria

• 𝔼𝑝 𝑢e
= 𝑥𝑦 ∙ 1 + 𝑥 1 − 𝑦 ∙ −1 + 1 − 𝑥 𝑦 ∙ −1 + 1 − 𝑥 1 − 𝑦 ∙ 1
= 4𝑥𝑦 − 2𝑥 − 2𝑦 + 1
= 𝒙 𝟒𝒚 − 𝟐 − 𝟐𝒚 + 𝟏

• 𝔼𝑝 𝑢o
= 𝑥𝑦 ∙ −1 + 𝑥 1 − 𝑦 ∙ 1 + 1 − 𝑥 𝑦 ∙ 1 + 1 − 𝑥 1 − 𝑦 ∙ −1
= 𝒚 𝟐 − 𝟒𝒙 + 𝟐𝒙 − 𝟏
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• The expected utility of each player is a linear function in terms of her 
corresponding probability 
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Matching Pennies: mixed equilibria

• 𝔼𝑝 𝑢e = 𝑥 4𝑦 − 2 − 2𝑦 + 1

• 𝔼𝑝 𝑢o = 𝑦 2 − 4𝑥 + 2𝑥 − 1

• The expected utility of each player is a linear function in terms of her 
corresponding probability 

• To analyze how a player is going to act, we need to see whether the 
slope of the linear function is negative or positive

• Negative: the function is decreasing and the player aims to set a small 
value for the probability

• Positive: the function is increasing and the players aims to set a high 
value for the probability
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Matching Pennies: mixed equilibria

• 𝔼𝑝 𝑢e = 𝑥 4𝑦 − 2 − 2𝑦 + 1

• 𝔼𝑝 𝑢o = 𝑦 2 − 4𝑥 + 2𝑥 − 1

• It must be 𝒚 = 𝟏/𝟐

• Following the same reasoning for the odd player, we can see that it 
must also be 𝒙 = 𝟏/𝟐

• For these values of 𝑥 and 𝑦 both slopes are equal to 0 and the linear 
functions are maximized

• The pair (𝑥, 𝑦) = (1/2, 1/2) corresponds to a mixed equilibrium, 
which is actually unique for this game
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• Two players with two possible strategies A and B

• If both players select A, they get one point

• If both of them select B, they get two points

• If the select different strategies, they get zero points
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Unbalanced coordination

• Two players with two possible strategies A and B

• If both players select A, they get one point

• If both of them select B, they get two points

• If the select different strategies, they get zero points

• Easy to verify that (A, A) and (B, B) are pure equilibria

• Are there any other mixed equilibria?
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Unbalanced coordination

• row player selects A with probability 𝑥 and B with 1 − 𝑥

• col player selects A with probability 𝑦 and B with 1 − 𝑦

• 𝑝(A, A) = 𝑥𝑦

• 𝑝 A, B = 𝑥(1 − 𝑦)

• 𝑝(B, A) = 1 − 𝑥 𝑦

• 𝑝(B, B) = (1 − 𝑥)(1 − 𝑦)

1, 1 0, 0

0, 0 2, 2

A B

A

B

col player

row player



Unbalanced coordination

• 𝔼𝑝 𝑢r
= 𝑥𝑦 ∙ 1 + 𝑥 1 − 𝑦 ∙ 0 + 1 − 𝑥 𝑦 ∙ 0 + 1 − 𝑥 1 − 𝑦 ∙ 2
= 𝒙(𝟑𝒚 − 𝟐) + 𝟐 − 𝟐𝒚

• 𝔼𝑝 𝑢c
= 𝑥𝑦 ∙ 1 + 𝑥 1 − 𝑦 ∙ 0 + 1 − 𝑥 𝑦 ∙ 0 + 1 − 𝑥 1 − 𝑦 ∙ 2
= 𝒚 𝟑𝒙 − 𝟐 + 𝟐 − 𝟐𝒚
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• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 < 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is negative 

⇨ the function 𝔼𝑝 𝑢r is decreasing in 𝒙

⇨ row player sets  𝒙 = 𝟎 to maximize 𝔼𝑝 𝑢r

⇨ the slope 3𝑥 − 2 = −2 of 𝔼𝑝 𝑢c is negative 

⇨ the function 𝔼𝑝 𝑢c is decreasing in 𝒚

⇨ column player sets 𝒚 = 𝟎 to maximize 𝔼𝑝 𝑢c



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 < 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is negative 

⇨ the function 𝔼𝑝 𝑢r is decreasing in 𝒙

⇨ row player sets  𝒙 = 𝟎 to maximize 𝔼𝑝 𝑢r

⇨ the slope 3𝑥 − 2 = −2 of 𝔼𝑝 𝑢c is negative 

⇨ the function 𝔼𝑝 𝑢c is decreasing in 𝒚

⇨ column player sets 𝒚 = 𝟎 to maximize 𝔼𝑝 𝑢c

• (𝑥, 𝑦) = (0, 0) is a mixed equilibrium 

• We already knew that: it corresponds to the pure equilibrium (A, A)



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 > 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is positive



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 > 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is positive

⇨ the function 𝔼𝑝 𝑢r is increasing in 𝒙



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 > 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is positive

⇨ the function 𝔼𝑝 𝑢r is increasing in 𝒙

⇨ row player sets  𝒙 = 𝟏 to maximize 𝔼𝑝 𝑢r



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 > 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is positive

⇨ the function 𝔼𝑝 𝑢r is increasing in 𝒙

⇨ row player sets  𝒙 = 𝟏 to maximize 𝔼𝑝 𝑢r

⇨ the slope 3𝑥 − 2 = 1 of 𝔼𝑝 𝑢c is positive 



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 > 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is positive

⇨ the function 𝔼𝑝 𝑢r is increasing in 𝒙

⇨ row player sets  𝒙 = 𝟏 to maximize 𝔼𝑝 𝑢r

⇨ the slope 3𝑥 − 2 = 1 of 𝔼𝑝 𝑢c is positive

⇨ the function 𝔼𝑝 𝑢c is increasing in 𝒚



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 > 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is positive

⇨ the function 𝔼𝑝 𝑢r is increasing in 𝒙

⇨ row player sets  𝒙 = 𝟏 to maximize 𝔼𝑝 𝑢r

⇨ the slope 3𝑥 − 2 = 1 of 𝔼𝑝 𝑢c is positive 

⇨ the function 𝔼𝑝 𝑢c is increasing in 𝒚

⇨ column player sets 𝒚 = 𝟏 to maximize 𝔼𝑝 𝑢c



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• 𝒚 > 𝟐/𝟑

⇨ the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is positive

⇨ the function 𝔼𝑝 𝑢r is increasing in 𝒙

⇨ row player sets  𝒙 = 𝟏 to maximize 𝔼𝑝 𝑢r

⇨ the slope 3𝑥 − 2 = 1 of 𝔼𝑝 𝑢c is positive

⇨ the function 𝔼𝑝 𝑢c is increasing in 𝒚

⇨ column player sets 𝒚 = 𝟏 to maximize 𝔼𝑝 𝑢c

• (𝑥, 𝑦) = (1, 1) is a mixed equilibrium corresponding to the pure 
equilibrium (B, B)



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• For 𝒙 < 𝟐/𝟑 and 𝒙 > 𝟐/𝟑 we will reach to the same conclusion 



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• For 𝒙 < 𝟐/𝟑 and 𝒙 > 𝟐/𝟑 we will reach to the same conclusion 

• It remains to see what is going on for 𝒙 = 𝟐/𝟑 and 𝒚 = 𝟐/𝟑



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• For 𝒙 < 𝟐/𝟑 and 𝒙 > 𝟐/𝟑 we will reach to the same conclusion 

• It remains to see what is going on for 𝒙 = 𝟐/𝟑 and 𝒚 = 𝟐/𝟑

• For 𝑦 = 2/3 the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is zero and 𝔼𝑝 𝑢r is 

maximized by any choice of 𝑥, including 𝑥 = 2/3



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• For 𝒙 < 𝟐/𝟑 and 𝒙 > 𝟐/𝟑 we will reach to the same conclusion 

• It remains to see what is going on for 𝒙 = 𝟐/𝟑 and 𝒚 = 𝟐/𝟑

• For 𝑦 = 2/3 the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is zero and 𝔼𝑝 𝑢r is 

maximized by any choice of 𝑥, including 𝑥 = 2/3

• For 𝑥 = 2/3 the slope 3𝑥 − 2 of 𝔼𝑝 𝑢c is zero and 𝔼𝑝 𝑢c is 

maximized by any choice of y, including 𝑦 = 2/3



Unbalanced coordination

• 𝔼𝑝 𝑢r = 𝑥 3𝑦 − 2 + 2 − 2𝑦

• 𝔼𝑝 𝑢c = 𝑦 3𝑥 − 2 + 2 − 2𝑥

• For 𝒙 < 𝟐/𝟑 and 𝒙 > 𝟐/𝟑 we will reach to the same conclusion 

• It remains to see what is going on for 𝒙 = 𝟐/𝟑 and 𝒚 = 𝟐/𝟑

• For 𝑦 = 2/3 the slope 3𝑦 − 2 of 𝔼𝑝 𝑢r is zero and 𝔼𝑝 𝑢r is 

maximized by any choice of 𝑥, including 𝑥 = 2/3

• For 𝑥 = 2/3 the slope 3𝑥 − 2 of 𝔼𝑝 𝑢c is zero and 𝔼𝑝 𝑢c is 

maximized by any choice of y, including 𝑦 = 2/3

• (𝑥, 𝑦) = (2/3, 2/3) is a fully mixed equilibrium of the game



The Indifference Principle

• The same idea

• A different approach

• Find MNE in simple games (i.e. 2x2)
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The Indifference Principle

• The same idea

• A different approach

• Find MNE in simple games (i.e. 2x2)

• Assigned probabilities to each player

• These probabilities must not be 0 and 1 for 
their respective strategies
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The Indifference Principle

• These probabilities must not be 0 and 1 for 
their respective strategies

• If so this will be a PNE
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The Indifference Principle

• These probabilities must not be 0 and 1 for 
their respective strategies

• If so this will be a PNE

– Even if only one of the players always plays a 
strategy with probability 1, then there is a best 
response to that

– This means that the other player will also play 
something with probability 1
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The Indifference Principle

• Compute the expected utility of each player 
for each of his strategies
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The Indifference Principle

• Compute the expected utility of each player 
for each of his strategies

• This player must be indifferent between the 
outcomes

– If not then he would choose a strategy with 
certainty (probability 1)
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The Indifference Principle

• Compute the expected utility of each player 
for each of his strategies

• This player must be indifferent between the 
outcomes
– If not then he would choose a strategy with 

certainty (probability 1)

• The expected utilities of a player must be 
equal
– In that way we can compute the probabilities
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Unbalanced coordination

• Two players with two possible strategies A and B

• If both players select A, they get one point

• If both of them select B, they get two points

• If the select different strategies, they get zero points

1, 1 0, 0

0, 0 2, 2

A B

A

B

col player

row player



Unbalanced coordination

• Two players with two possible strategies A and B

• If both players select A, they get one point

• If both of them select B, they get two points

• If the select different strategies, they get zero points

• Easy to verify that (A, A) and (B, B) are pure equilibria

• Are there any other mixed equilibria? Use the indifference principle!

1, 1 0, 0

0, 0 2, 2

A B

A

B

col player

row player



Unbalanced coordination

• row player selects A with probability 𝑥 and B with 1 − 𝑥

• col player selects A with probability 𝑦 and B with 1 − 𝑦

1, 1 0, 0

0, 0 2, 2

A B

A

B

col player

row player



Unbalanced coordination

• 𝔼𝑝 𝑢rA = 𝑦 ∙ 1 + (1 − 𝑦) ∙ 0 =y

• 𝔼𝑝 𝑢rB = 𝑦 ∙ 0 + 1 − 𝑦 ∙ 2 = 𝟐 − 𝟐𝒚

1, 1 0, 0

0, 0 2, 2

A B

A

B

col player

row player

𝑦 1 − 𝑦

𝑥

1 − 𝑥



Unbalanced coordination

• 𝔼𝑝 𝑢rA = 𝔼𝑝 𝑟𝐵

• 𝑦 = 2 − 2𝑦

• 𝑦 = 2/3



Unbalanced coordination

• 𝔼𝑝 𝑢cA = 𝑥 ∙ 1 + (1 − 𝑥) ∙ 0 = 𝒙

• 𝔼𝑝 𝑢cB = 𝑥 ∙ 0 + 1 − 𝑥 ∙ 2 = 𝟐 − 𝟐𝒙

1, 1 0, 0

0, 0 2, 2

A B

A

B

col player

row player

𝑦 1 − 𝑦

𝑥

1 − 𝑥



Unbalanced coordination

• 𝔼𝑝 𝑢cA = 𝔼𝑝 𝑐𝐵

• x= 2 − 2𝑥

• x= 2/3



Unbalanced coordination

• The same result with both techniques!!!!



Multi-player games
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Games with more than 2 players

• All the definitions we have seen can be generalized for multi-
player games
– Dominant strategies, Nash equilibria

• But: we can no longer have a representation with 2-dimensional 
arrays

• For n-player games we would need n-dimensional arrays (unless 
there is a more concise representation)
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Definitions for n-player games

Definition: A game in normal form consists of

– A set of players N = {1, 2,..., n}

– For every player i, a set of available pure strategies Si

– For every player i, a utility function 
ui: S

1 x ... x Sn → R

• Let p = (p1, ..., pn) be a profile of mixed strategies for the 
players

• Each pi is a probability distribution on Si

• Expected utility of pl. i under p =
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Notation

• Given a vector s = (s1, ..., sn), 
we denote by s–i the vector where we have removed 
the i-th coordinate:

s–i = (s1, ..., si-1, si+1, ..., sn)

• E.g., if s = (3, 5, 7, 8), then

– s-3 = (3, 5, 8) 

– s-1 = (5, 7, 8) 

• We can write a strategy profile s as s = (si, s–i)
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Definitions for n-player games

• A strategy pi of pl. i is dominant if
ui (pi, p-i) ≥ ui (e

j, p-i) 
for every pure strategy ej of pl. i, and every profile p-i of the other 
players

• Replace ≥ with > for strictly dominant

• A profile p = (p1, ..., pn) is a Nash equilibrium if for every player i and 
every pure strategy ej of pl. i, we have

ui(p) ≥ ui(e
j, p-i)

– As in 2-player games, it suffices to check only deviations to pure strategies
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Nash equilibria in multi-player games

At a first glance:

• Even finding pure Nash equilibria looks already more 
difficult than in the 2-player case 

• We can try with brute force all possible profiles

• Suppose we have n players, and each of them has m 
strategies: |Si|= m

• There are mn pure strategy profiles! 

• However, in some cases, we can exploit symmetry or other 
properties to reduce our search space
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Example: Congestion games

A simple example of a congestion game:

• A set of network users wants to move from s to t

• 3 possible routes, A, B, C

• Time delay in a route: depends on the number of users 
who have chosen this route

• dA(x) = 5x, dB(x) = 7.5x, dC(x) = 10x, 

● ●s t

A

B

C
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Example: Congestion games

• Suppose we have n = 5 players

• For each player i, Si = {A, B, C}

• Number of possible pure strategy profiles: 35 = 243

• Utility function of a player: should increase when delay 
decreases (e.g., we can define it as u = – delay)

• At profile s = (A, C, A, B, A)
• u1(s) = -15, u2(s) = -10, u3(s) = -15, u4(s) = -7.5, u5(s) = -15 

● ●s t

A

B

C
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Example: Congestion games

• There is no need to examine all 243 possible profiles to find a 
pure equilibrium

• Exploiting symmetry:
– In every route, the delay does not depend on who chose the route but 

only how many did so

• We can also exploit further properties
• E.g. There can be no equilibrium where one of the routes is not used 

by some player

Homework: Find the pure Nash equilibria of this game (if 
there are any)

● ●s t

A

B

C
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Game simplifications:
Strict and weak domination
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Strictly dominated strategies

• In Prisoner’s dilemma, we saw that strategy C is dominant

• Strategy D is “dominated” by C

• Definition: A (pure or mixed) strategy pi of pl. i strictly 
dominates some other strategy p’ if for every profile p-i of the 
other players, it holds that

ui(pi, p-i) > ui(p’, p-i)

• Strategy p’ will be called strictly dominated

• Observation: it suffices to consider only profiles p-i with pure 
strategies
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Strictly dominated strategies

• Strictly dominated strategies cannot be used in any 
Nash equilibrium

• Hence, we can remove them and reduce the size of the 
game

• In some cases, this results in much simpler games to 
analyze
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Iterated Elimination of Strictly 
Dominated Actions 

• Action B of player 1 is 
dominated by T or C

• None of the actions of 
player 2 is dominated

• If player 1 is rational, 
she would never play B

4, 4 4, 1 3, 0

3, 1 3, 4 4, 0

2, 0 2, 0 2, 6

I should not play B

L            M R

T

C

B

84



Iterated Elimination of Strictly 
Dominated Actions 

• If player 2 knows player 1
is rational, he can assume 
player 1 does not play B

– then player 2 should not 
play R

4, 4 4, 1 3, 0

3, 1 3, 4 4, 0

2, 0 2, 0 2, 6

L            M R

T

C

B

So I should not 
play R

I should not 
play B
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Iterated Elimination of Strictly 
Dominated Actions 

4, 4 4, 1 3, 0

3, 1 3, 4 4, 0

2, 0 2, 0 2, 6

L            M R

T

C

B

So I should not play C

So I should 
not play R

I should 
not play B

Unique Nash equilibrium: (T, L)
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Strict domination by mixed strategies

• Attention: It is possible that some 
strategy is not strictly dominated by a 
pure strategy but it is dominated by a 
mixed strategy

• Strategy B of pl. 1 is not strictly 
dominated neither by T nor by C

• But, it is strictly dominated by the mixed 
strategy (1/2, 1/2, 0), i.e., 0.5T + 0.5C:
– Proof: Consider some arbitrary strategy of 

pl. 2 q = (q1, 1-q1)

– u1(B, q) = 2

– u1((1/2, 1/2, 0), q) = 1/2 x q1 x 5 +                
1/2 x (1-q1) x 5 = 2.5 > 2

5, 5 0, 0

0, 0 5, 5

2, 0 2, 0

L R

T

C

B



Strict domination by mixed strategies

• Consider a 2-player game with S1 = {s1, s2,..., sn}, S2 = {t1, t2,..., tm}

• How can we check if the pure strategy si of pl. 1 is strictly 
dominated by some other (possibly mixed) strategy?

• We have to check if there exist probabilities p1, ..., pn such that

– For every tj  S2 (for every column), u1(si, tj) < p1u1(s1, tj) + ... + pn u1(sn, tj)

– also, p1 + p2 + ... + pn = 1, p i ≥ 0 for i = 1, ..., n

• System with linear inequalities, it has a solution iff si is strictly 
dominated



Iterated Elimination of Strictly 
Dominated Actions

• Given: an n-player game

– pick a player i that has a strictly dominated pure strategy 
(dominated either by a pure or mixed strategy)

– Remove one of the strictly dominated strategies of pl. i

– repeat until no player has a strictly dominated pure strategy

• Facts:

– the set of surviving actions is independent of the elimination 
order, i.e., which player was picked at each step

– Iterated elimination of strictly dominated actions cannot destroy 
Nash equilibria
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Weakly dominated strategies
• Definition: A (pure or mixed) strategy pi of pl. i weakly 

dominates some other strategy p’ if for every profile p-i of the 
other players, it holds that

ui(pi, p-i) ≥ ui(p’, p-i)

and for at least one profile p-i we have

ui(pi, p-i) > ui(p’, p-i)

• Strategy p’ will be called weakly dominated
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Weakly dominated strategies

• When we remove weakly dominated strategies, we may lose 
some Nash equilibria

• In the above games:
– Strategy T weakly dominates B

– Strategy L weakly dominates R

– but (B, R) is an equilibrium

• Observation: In the 2nd game, we even have a better value for 
both players when they choose weakly dominated strategies

2, 2 3, 0

0, 3 3, 3

T

B

L R

1, 1 0, 0

0, 0 0, 0

T

B

L R
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Iterated Elimination of Weakly 
Dominated Actions and Nash Equilibria

• The elimination order matters in iterated deletion of weakly 
dominated strategies

• Each order may eliminate a different subset of Nash equilibria

• Can we lose all equilibria of the original game? 

• Theorem: For every game where each player has a finite 
strategy space, there is always at least one equilibrium that 
survives iterated elimination of weakly dominated strategies 
– thus: if we care for finding just one Nash equilibrium, no need to 

worry about elimination order
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Exercise

Execute all the possible ways of doing iterated 
elimination of weakly dominated strategies. Do we 
lose equilibria with this process?

3, 2 2, 2

1, 1 0, 0

0, 0 1, 1

s1

s2

s3

t1 t2
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