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Solution concepts



Choosing a strategy...

* Given a game, how should a player choose his
strategy?

— Recall: we assume each player knows the other players
preferences but not what the other players will choose

’

 The most fundamental question of game theory

— Clearly, the answer is not always clear

* We will start with 2-player games



Prisoner’s Dilemma:
The Rational Outcome

Let’s revisit prisoner’s dilemma

Reasoning of pl. 1: C D

— If pl. 2 does not confess, then cl| 3,3 0,4
| should confess

— If pl. 2 confesses, then D| 4,0 1,1
| should also confess

Similarly for pl. 2

Expected outcome for rational players: they will both confess,
and they will go to jail for 3 years each

— Observation: If they had both chosen not to confess, they would go to jail
only for 1 year, each of them would have a strictly better utility



Dominant strategies

Ideally, we would like a strategy that would provide the best
possible outcome, regardless of what other players choose

Definition: A strategy s, of pl. 1 is dominant if

uy(s;, t;) 2 uy(s, t)
for every strategy s’ € S* and every strategy t e S?
Similarly for pl. 2, a strategy t; is dominant if

u,(s;, ;) 2 uy(s, t')

for every strategy t’ € S? and for every strategy s, € S*




Dominant strategies

Even better:

Definition: A strategy s, of pl. 1 is strictly dominant if

u, (s, t;) > uy (s, t)
for every strategy s’ € S* and every strategy t e S?
Similarly for pl. 2

In prisoner’s dilemma, strategy C (confess) is strictly dominant

Observations:

There may be more than one dominant strategies for a player, but
then they should yield the same utility under all profiles

Every player can have at most one strictly dominant strategy
A strictly dominant strategy is also dominant



Existence of dominant strategies

Few games possess dominant
strategies

It may be too much to ask for
E.g. in the Bach-or-Stravinsky game,

there is no dominant strategy:
— Strategy B is not dominant for pl. 1:

If pl. 2 chooses S, pl. 1 should choose S

— Strategy S is also not dominant for pl. 1:
If pl. 2 chooses B, pl. 1 should choose B

In all the examples we have seen so far,
only prisoner’s dilemma possesses
dominant strategies



Back to choosing a strategy...

Hence, the question of how to choose strategies still
remains for the majority of games

Model of rational choice: if a player knows or has a
strong belief for the choice of the other player, then he
should choose the strategy that maximizes his utility

Suppose that someone suggests to the 2 players the
strategy profile (s, t)

When would the players be willing to follow this profile?
— For pl. 1 to agree, it should hold that
u,(s, t) 2 u,(s’, t) for every other strategy s’ of pl. 1
— For pl. 2 to agree, it should hold that
u,(s, t) = u,(s, t’) for every other strategy t’ of pl. 2



Nash Equilibria

Definition (Nash 1950): A strategy profile (s, t) is a
if no player has a unilateral incentive to
deviate, given the other player’s choice

This means that the following conditions should be
satisfied:

1. uy(s, t) 2 uy(s’, t) for every strategy s’ € S?
2. U,(s, t) 2 u,(s, t’) for every strategy t’ € S?

One of the dominant concepts in game theory from 1950s till
now

Most other concepts in noncooperative game theory are
variations/extensions/generalizations of Nash equilibria



Pictorially:
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In order for (s, t) to be a Nash equilibrium:
* x must be greater than or equal to any x, in column t
° y must be greater than or equal to any y;in row s



Nash Equilibria

 We should think of Nash equilibria as “stable” profiles of a
game

— At an equilibrium, each player thinks that if the other player does
not change her strategy, then he also does not want to change his
own strategy

* Hence, no player would regret for his choice at an
equilibrium profile (s, t)

— If the profile (s, t) is realized, pl. 1 sees that he did the best
possible, against strategy t of pl. 2,

— Similarly, pl. 2 sees that she did the best possible against strategy s
of pl. 1

* Attention: If both players decide to change
simultaneously, then we may have profiles where they
are both better off



Strategic games in general
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Strategic games in general

A set of players
Each player has a set of possible strategies (actions)
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Strategic games in general

A set of players
Each player has a set of possible strategies (actions)

Each state of the game (defined by a strategy per player) yields a
payoff (or utility) to each player

Given the strategies of the other players, each player aims to select its
strategy in order to maximize its utility

— Such a strategy is called a best response

A state consisting of best responses is stable, and called a pure Nash
equilibrium: no player would like to deviate and select a different
strategy



Examples of finding Nash equilibria in
simple games



Example 1: Prisoner’s Dilemma

In small games, we can examine all possible profiles and check if

they form an equilibrium C D
* (D, D): both players have an incentive to
deviate to another strategy C 3,3 0,4
 (C, D): pl. 1 has an incentive to deviate
(D, C): Same for pl. 2 D 4,0 1,1

(C, C): Nobody has an incentive to change

Hence: The profile (C, C) is the unigue Nash equilibrium of this
game
— Recall that C is a dominant strategy for both players in this game

Corollary: If siis a dominant strategy of pl. 1, and t is a dominant
strategy for pl. 2, then the profile (s, t) is a Nash equilibrium

19




Example 2: Bach or Stravinsky (BoS)

.0

2,1 0,0

0,0 1,2

2 Nash equilibria:
e (B,B)and (S, S)
 Both derive the same total utility (3 units)
 But each player has a preference for a different equilibrium

20



Example 2a: Coordination games

Variation of Bach
or Stravinsky B

Again 2 Nash equilibria:
« (B,B)and (S, S)
« But now (B, B) is clearly the most preferable for both players

« Still the profile (S, S) is a valid equilibrium, no player has a unilateral
incentive to deviate

 Atthe profile (S, S), both players should deviate together in order
to reach a better outcome
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Example 3: The Hawk-Dove game

The most fair solution (D, D) is not an equilibrium
2 Nash equilibria: (D, H), (H, D)

We have a stable situation only when one population
dominates or destroys the other
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Example 4: Matching Pennies

H T
H 1, -1 -1, 1
T -1, 1 1, -1

In every profile, some player has an incentive to
deviate

There is no Nash equilibrium!

Note: The same is true for Rock-Paper-Scissors

23



Nash dynamics graph

An easy way to graphically find Nash equilibria
Built a graph containing a node per state

A directed edge between two nodes represents the fact that there
exists a player with a profitable unilateral deviation

A node with only incoming edges corresponds to an equilibrium state:
no player would like to deviate from there
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Battle of the sexes

man
sports movie
woman
movie 2,2 6,3
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Battle of the sexes

man
sports movie
sports 3,6 1,1
woman
movie 2,2 6,3
Man improves from 1 to 6
s _
sports, sports sports, movie
Woman improves Woman improves
from 2 to 3 from1to6
movie, sports movie, movie
\ /

Man improves from 2 to 3



Battle of the sexes

man
sports movie
sports 3,6 1,1
woman
movie 2,2 6,3
Man improves from 1 to 6
equilibrium — —
sports, sports sports, movie
Woman improves Woman improves
from 2to 3 from1to6
movie, sports movie, movie
— — equilibrium

Man improves from 2 to 3
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Chicken
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dare 1, -1 -10, -10



Chicken

column-driver

chicken dare
chicken 0,0 -1,1
row-driver

dare 1, -1 -10, -10

column improves from 0 to 1

= "

chicken, chicken chicken, dare
row improves row improves
dare, chicken dare, dare
$\ -

column improves from -10 to -1



Chicken

column-driver

row-driver

chicken dare
chicken 0,0 -1,1
dare 1, -1 -10, -10

column improves from 0 to 1

=

chicken, chicken

row improves
fromOto1l

dare, chicken

equilibrium

~

—

equilibrium

chicken, dare

row improves
from-10to -1

dare, dare

/

column improves from -10 to -1



even

Matching pennies

odd
heads tails

heads 1, -1 -1,1
tails -1,1 1, -1



Matching pennies

odd
heads tails
heads 1, -1 -1,1
even
tails -1,1 1, -1
— "N

heads, heads heads, tails
tails, heads tails, tails

~ I




Mixed strategies in games



Existence of Nash equilibria

* We saw that not all games possess Nash equilibria

* E.g. Matching Pennies, Rock-Paper-Scissors, and
many others

 What would constitute a good solution in such
games?

36



Example of a game without equilibria:
Matching Pennies

H T
H 1, -1 -1, 1
T -1, 1 1, -1

In every profile, some player has an incentive to change
Hence, no Nash equilibrium!

Q: How would we play this game in practice?

A: Maybe randomly

37



72 H

% T

Matching Pennies: Randomized
strategies

H T
1,-1|-1,1
1,1 1,-1

Main idea: Enlarge the strategy
space so that players are allowed
to play non-deterministically

Suppose both players play
* H with probability 1/2
* T with probability 1/2

Then every outcome has a probability
of

For pl. 1:

— P[win] = P[lose] =%
— Average utility =0
Similarly for pl. 2

38



Mixed strategies

Definition: A mixed strategy of a player is a probability
distribution on the set of his available choices

IfS=(s,, s,,..., S,) is the set of available strategies of a
player, then a mixed strategy is a vector in the form

p=(py ..., P,), Where
p,20fori=1,..,n, and p,+...+p, =1

p; = probability for selecting the j-th strategy
We can write it also as p;=p(s;) = prob/ty of selecting s,

Matching Pennies: the uniform distribution can be

written as
p=1(1/2,1/2) or p(H) = p(T) =%

39



Pure and mixed strategies

From now on, we refer to the available choices of a player
as pure strategies to distinguish them from mixed
strategies

For 2 players with St={s,, s,,..., s } and

Pl. 1 has n pure strategies, Pl. 2 has m pure strategies

Every pure strategy can also be represented as a mixed
strategy that gives probability 1 to only a single choice

E.g., the pure strategy s, can also be written as the mixed
strategy (1, O, O, ..., 0)

More generally: strategy s; can be written in vector form as
the mixed strategye'= (0,0, ..., 1,0, ..., 0)

— 1 at position i, 0 everywhere else

— Some times, it is convenient in the analysis to use the vector form
for a pure strategy

40



Utility under mixed strategies

* Suppose that each player has chosen a mixed
strategy in a game

 How does a player now evaluate the outcome of a
game?

* We will assume that each player cares for his
expected utility
— Justified when games are played repeatedly
— Not justified for more risk-averse or risk-seeking players

41



Expected utility (for 2 players)

 Consideranxm game

* Pure strategies of pl. 1: St ={s;, s,,..., S}

* Pure strategiesof pl. 2: S ={t, t,,..., t}

* Lletp=(p, ..., p,) be a mixed strategy of pl. 1
andq=(q,, ..., 9,,) be a mixed strategy of pl. 2
e Expected utility of pl. 1:

mn

ui(p.q) = > i q-ui(si,t;) = > > p(si) - qlt;) - ui(si,t;)

i=1 j=1 i=1 j=1

* Similarly for pl. 2 (replace u, by u,)
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B S
2,1 | 0,0
0,0 | 1,2

Example

e Letp=(4/5, 1/5),
q=(1/2,1/2)

* Up,g)=4/5x1/2x2+
1/5x1/2x1=0.9

* Uy(p,q)=4/5x1/2x1+
1/5x1/2x2=0.6

* When can we have an
equilibrium with mixed
strategies?
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Nash equilibria with mixed strategies

Definition: A profile of mixed strategies (p, q) is a Nash
equilibrium if

— U,(p, q) 2 u,(p’, a) for any other mixed strategy p’ of pl. 1

— Uy(p, 9) = u,(p, q’) for any other mixed strategy g’ of pl. 2

Again, we just demand that no player has a unilateral incentive to
deviate to another strategy

How do we verify that a profile is a Nash equilibrium?
— There is an infinite number of mixed strategies!
— Infeasible to check all these deviations
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Nash equilibria with mixed strategies

Corollary: It suffices to check only deviations to pure strategies

— Because each mixed strategy is a convex combination of pure strategies

Equivalent definition: A profile of mixed strategies (p, q) is a Nash
equilibrium if

— uy(p, q) = u,(e', g) for every pure strategy e' of pl. 1
— U,(p, q) = u,(p, €') for every pure strategy e’ of pl. 2

Hence, we only need to check n+m inequalities as in the case of
pure equilibria
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Mixed equilibria

* Mixed equilibrium: A profile of mixed strategies such that each player
maximizes its expected utility, given the strategies of the other
players
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Theorem [Nash, 1951]

Every finite strategic game of n players has at least one mixed
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Mixed equilibria

Mixed equilibrium: A profile of mixed strategies such that each player
maximizes its expected utility, given the strategies of the other
players

Theorem [Nash, 1951]

Every finite strategic game of n players has at least one mixed
equilibrium

Every pure equilibrium is also a mixed equilibrium

— Every pure strategy can be seen as a probability distribution over
all strategies that assigns probability 1 to this one pure strategy



