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Chapter 1

Introduction

A social network is a network where nodes correspond to individuals (usually, although they
may be different entities such as animals, groups, companies, etc.) and links indicate some rela-
tionship between the individuals. The relationship can be one-directional or multi-directional.

There are offline social networks, such as the network of friendships, the network of actors,
networks of professionals for a given professions and so on. Furthermore, we have online social
networks such as facebook or instant messaging software. We will elaborate on both of them.

It is not hard to realize the importance played by social networks. When we search for a job,
our professional contacts are one of the most defining factors (sometimes the most important)
for the type of interviews and even job that we will get. The friends that we have directly
impact our lifestyle; as the old saying goes, “show me your friends and I’ll show you who you
are.” For example, probably the most important factor for teenager smoking is the smoking
by their peers. Viruses spread through social networks, therefore if we wish to prevent large-
scale epidemics we should understand the behavior of spreading through the social networks.
The examples demonstrating the ubiquitousness of social networks and the importance of their
analysis are countless.

Social networks have many structural resemblances to other types of networks that scientists
have studied such as the web graph, computer networks, network of citations, or biological
networks. We call all these types of networks complex networks. While here we are mostly
interested in social networks, we will also study and review results that were obtained for various
types of complex networks; a lot of the empirical observations on those complex networks hold
for social networks as well and some of the models developed for them are also good models for
social networks. In Chapter 3 we will see some of the characteristics shared among all types of
complex networks.

1.1 Offline Social Networks

We all are parts of several offline social networks and they impact a lot our lives. Our friends
form the set of neighbors in the friendship social network. The structure of the network around
us is an indication of what type of lifestyle we have. The same holds for the network of sexual
partners, where a link between two persons indicates that they had a sexual relationship.

The network of professional contacts is another example of a very important network. When
searching for a job our contacts, as well as the contacts of our contacts can have a tremendous
effect in the types of interviews or even job offers that we have.

Another network that we can consider is the network of contacts in a given profession. For
example, lawyers form a social network and someone’s contacts in that network are those that
will recommend her for a particular case. The same is true for doctors. In addition, the social
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network corresponding to a profession can affect the behavior of the professionals, for example
it may impact the adoption of new techniques or the extent to which they will obey to the
governmental policies.

A link on a social network can also mean that a person has communicated with someone.
For example we can think of the network of people and of telephone calls where a link from a
user to another exists if the first one has called the latter in a given time period.

Another type of relationship that a link can represent is the participation of two entities in
the same action. For example we can define the network of collaborations of scientists, where
two scientists are connected if they have coauthored a work together. Or the network of actors
who are connected if they have participated in the same film. Similarly for the network of
musicians who are connected if they have been part of the same band. Or the network of
executives who are connected if they have been part of the same company board. All these are
examples of social networks that scientists have studied and it is those networks that have given
rise to the “Erdős” and the “Kevin Bacon” numbers.1

1.2 Online Social Networks

In the past few years we have been witnesses of what could be called an online social revolution.
There is a large number of online social networks to which we belong and become increasingly
more important to our lives.

Some of them are explicit. As of March 2010 facebook has become the number one social
network with more than 400 million users. It started as a network of college students at Harvard,
it extended to all the US schools and now it has spread throughout the world, and people use
it for performing several tasks that they were previously doing online: catching up, exchanging
birthday wishes, organizing events, sharing photographs, and so on. MySpace is currently the
second largest network and several music groups rely on it for communicating with their fans
to announce new albums, where the next concert is going to be, to distribute their music and
so on. Examples of other popular social networking sites are LinkedIn, Twitter, Orkut and hi5,
and depending on the focus of the network or on the geographical location, one might be more
popular than the other (LinkedIn focuses on professional contacts, Twitter on microblogging,
that is, sharing instantly information with your friends usually using mobile phone for example,
Orkut is the most popular online social network in Brazil, hi5 is very popular in Mexico).

In addition to all those sites whose explicit goal and focus is the maintenance of the social
network, social networks underlie other services as well. Instant messaging services (e.g., MSN
messenger, Yahoo! messenger, Google Talk) form social networks, where a link is a “buddy”
in those systems. Similarly one can define a social network over other communication systems
such as Skype. We can even imagine the social network on top of email: a link from a user to
another might exist if the first user sent an email message to the second during the last year,
for example.

Another class of social networks consists of the networks hidden in several online content
providing systems. YouTube, a service for sharing videos online, supports the notion of friends
and subscribers, which make easier to see when a user has uploaded new material and facilitates
sharing. Similarly for flickr, a photo sharing service. digg and delicious, which are services for

1Someone’s Erdős number is the distance from the mathematician Paul Erdős in the coauthorship network.
For example Andras Sarkozy has an Erdős number of 1 because he has coauthored a paper with Erdős (he has
actually co-authored the highest number of papers, 62). Henryk Iwaniec has Erdős number 2 because he has
coauthored a paper with Sarkozy but not with Erdős directly. Similarly, the Kevin Bacon number is the distance
from the actor Kevin Bacon in the social network where a link corresponds to having participated in the same
movie.
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sharing discovered websites can also be assigned into this category.
We also have social networks that are used for creating new content. Wikipedia is such an

example: users are connected if they have worked on the same article. We could also assign to
this category the Yahoo! answers service, a link between two users exists if they have answered
the same question or if one of them answered the other one’s question.

Yet a network can even be defined on entirely fictional entities. There are several online
games such as Second Life, World of Warcraft, or Age of the Empires, where players create
characters who interact with other characters in the game. The analysis of a social network
that exists in such a game can potentially lead to a lot of conclusions, since games record a lot
of details in characters’ actions which are unavailable in the offline world. To what extent the
conclusions drawn by the study of such a network correspond to the real world remains to be
seen.

1.3 Importance of Online Social Networks

We have hopefully convinced you in Section 1.1 that the social networks to which we belong have
a great importance in our lives, and this has been the case since the beginning of civilization.
In the last 5–10 years, however, with the wide spread of the Internet worldwide and with the
development of all those so called Web 2.0 services, such as those of the previous section, we
have been witnesses of this online social revolution, the effects of which are already present in
our lives. As a concrete example, on December 6, 2008 there was a police-shooting incident in
Greece that lead to the death of a teenager. The shooting took place on a Saturday, at 10.00pm.
Monday morning, slightly more than a day later, there were protests by tens of thousands of
Greek students in most of Greek cities. While there might have presumably been some central
kernels that organized the protests—although even that is not clear, the coordination and the
spread of the message happened through facebook, blog sites, as well as mobile phone messages.
Such a fast collective reaction, would have been unthinkable a few years back.

One effect is that we move a lot of our interactions from offline to online: we send messages
to give wishes than in person, we organize events online, we use instant-messaging software to
remain in touch, we exchange photographs online, these are just some action that we nowadays
do more and more online as opposed to just a few years ago. It is then expected that sociologists
want to understand what effects can this have to the functioning of society.

For example, one of the results is that it increases the number of contacts that we can keep
track of. In the early 1980s anthropologist Robin Dunbar suggested that the number of peers
that a primate can keep track of is proportional to the size of the neocortex, a part of the
brain [4]. After analyzing several data he concluded that for humans this number should be
around 150, and that it is higher than that of other primates. Furthermore, the structure of our
society is more complex and this might be caused by this mere fact, to some extent. Later data
from other areas seem to indicate that this number of 150 is fairly accurate. With online social
networks we are currently able to keep track of many more contacts. facebook, for example,
not only allows us to find out recent details about a given contact if we want, it actually gives
it to us automatically through the news feed. On the other hand, while indeed we can have
many contacts online, it is not clear whether we as humans actually do keep track of all or most
of them, or whether we are actually confined to a much smaller number of really close friends.
Time will show which is actually the case.

Another big change that social networks have brought is the redefinition of the notion of
privacy. Parts of our lives that we considered private before the existence of social networks are
now exposed online. To give a few examples, the list of our friends, our political or religious
views, relationship status, photographs from last week’s party, all those are often available to
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our contacts or even to a larger circle. This has changed our mindset and we are currently
willing to expose a lot of details about our lives. Again, time will show if and what the effects
are in the long term.

Another novelty of online social networks is that they may change the way that we look for
information. While when we want to search for information online most of us refer to a search
engine, for some types of information we might have better results if we use a social-networking
service. Wikipedia, thanks to the collaborative effort is an organized source that can cover a
large fraction of our informational needs. For some more personalized types we might be better
off using a service such as Yahoo! answers. A query of the type “what is a good vegetarian
restaurant to take my inlaws in San Francisco” is much more probable to be answered well
using such a service, than a search engine. In the search of websites, for some types of queries a
service such as delicious, and the use of the underlying social network is preferable. The same
holds for image or video search where one can take advantage of the flickr and YouTube social
networks. Finally, there has been discussion and theoretical work about directing our queries
to our social network as opposed to a search engine, and it seems that Twitter may provide a
such a search service, which several journalists have rushed to argue that this will be the next
revolution in search. Once again, time will show if this assessment is correct.

For social scientists, online social networks are a large source of data for the study of human
behavior. Before, the standard way to obtain data was through surveys, thus the size of data
was rather limited; it usually consisted of a few hundreds, in the best case a few thousands
individuals. Furthermore users would provide a limited amount of information through a specific
set of questions. Instead, social networking sites log information about all user actions while
they are using the service, thus we can obtain a much more fine-grain and probably less biased
view of human behavior. In addition, the number of users can be up to hundreds of million or
even higher, and this can allow for data mining that can lead to more robust results and to the
discovery of patterns and trends that have very low probability to be present if the user sample
is significantly smaller.

1.4 Complex Networks

Until now we have been talking about all different types of offline and online social networks.
For some of their aspects we often study them in the more broader context of what are called
complex networks. Roughly, complex networks are all the different networks that we find in
various different areas, that are usually created through a complicated and decentralized process
that somehow creates networks with some similar structural characteristics.

Apart from social networks, other examples are the Internet (nodes are hosts and edges are
connections between the hosts), the phone network, the electricity power grid, the world-wide
web (nodes are web pages and edges are hyperlinks), citation networks (nodes are scientific
papers and edge exists if a paper references another one), the airline schedules (nodes are cities
and edges are flight connections), and several types of networks that appear in biology, such as
neural networks.

What might be initially surprising is that while a lot of these seem to be completely unre-
lated, they apparently share a lot of common characteristics, some of which we describe later in
Chapter 3. Therefore a lot of the study, on the structure of social networks, is performed in the
more general context of complex networks. We will see that some of the rules that govern the
evolution of social networks govern the creation of those other as well (such as the rich-get-richer
phenomenon) and this creates a lot of the structure similarities.
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Chapter 2

Graph Theory and Other
Mathematical Preliminaries

In this chapter we start by giving some basic definitions from graph theory. This will serve as a
refresher and will establish notation for the rest of the text. We then give some definitions that
are important for the analysis of social networks. Finally we describe the power-law distribution
as it appear in several occasions in social-network analysis.

2.1 Graph Theory for Social Networks

In this section we first give some basic definitions of graph theory. We assume that the reader
knows basic graph theory and this section is only for reference of the terms and to define
notation. Then we define some of the terms that are often used in social network analysis.

A graph G = (V,E) consists of a set of nodes V , and a set of edges E ⊂ V × V . Unless
specified otherwise, we assume that |V | = n and that |E| = m. Depending on the literature,
a node is also called vertex, site, actor, or agent. An edge is also called bond, link, connection,
or tie. A graph can be directed or undirected. For simplicity, for the rest of the section we deal
with undirected graphs, although the definitions can be extended to directed graphs as well.
If graph G is undirected then an edge (u, v) is considered an unordered pair, in other words
we assume that (u, v) and (v, u) are the same edge. If G is directed then (u, v) and (v, u) are
different edges.

If an edge e = (u, v) ∈ E we say that nodes u and v are adjacent or neighboring, and that
nodes u and v are incident with the edge e. Informally, we will often call two adjacent nodes
friends, or peers, or neighbors.

A loop is an edge from a node to itself: (v, v). Two or more edges that have the same
endpoints (u, v) are called multiple edges. The graph is called simple if it does not have any
loops or multiple edges. We will be dealing almost exclusively with simple graphs.

A path of length k is a sequence of nodes (v0, v1, . . . , vk), where we have (vi, vi+1) ∈ E. If
vi 6= vj for all 0 ≤ i < j ≤ k we call the path simple. If, vi 6= vj for all 0 ≤ i < j < k and
v0 = vk the path is a cycle. A path from node u to node v is a path (v0, v1, . . . , vk) such that
v0 = u and vk = v.

A subgraph G′ of a graph G = (V,E) is a graph G′ = (V ′, E′) where V ′ ⊂ V and E′ ⊂ E.
For an undirected graph, the degree of a node v (sometimes called connectivity in the soci-

ology literature) is the number of edges incident with v and is denoted by dv. For a directed
graph we have the indegree, d−v , which is the number of edges that go into node v, and the
outdegree, d+v , which is the number of edges that go out of node v.
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A triangle or a triad in an undirected graph is a triplet (u, v, w), where u, v, w ∈ V such
that (u, v), (v, w), (w, u) ∈ E.

Two nodes u and v are connected if there is a path from u to v. A graph G is connected
if each pair of nodes is connected, otherwise we say that the graph is disconnected. Any graph
can be decomposed into a set of one or more connected components, where each connected
component is a maximal connected subgraph of G.

A simple graph that does not contain any cycles is called a forest. A forest that is connected
is called a tree. A tree has n − 1 edges. Actually any two of the following three statements
imply that the graph is a tree (and thus they also imply the third one):

1. The graph has n− 1 edges.

2. The graph does not contain any cycles.

3. The graph is connected.

A shortest path (sometimes also called geodesic path, or degree of separation) between nodes
u and v is a path from u to v of minimum length. The distance d(u, v) between nodes u and v is
the length of a shortest path between u and v. If u and v are in different connected component
then d(u, v) =∞.

The diameter D of a connected graph is the maximum (over all pairs of nodes in the graph)
distance. If a graph is disconnected then we define the diameter to be the maximum of the
diameters of the connected components. In other words we define

D = max
(u,v):u,v are connected

d(u, v).

The average diameter of graph G is the average distance between all the connected nodes
of G. Some authors use the term diameter to call this quantity but we avoid that here.

The effective diameter is the smallest distance that is larger than 90% of the distances
between connected nodes. In other words, it is computed according to the following process:
compute the distances between all connected nodes in G, ignore the 10% largest distances, and
look at the maximum distance left. This is a quantity often used instead of the diameter as it
is more robust with respect to outliers.

Another notion important in the analysis of social networks is the correlation coefficient,
which is a measure of transitivity, that is, a measure of how much do friends of friends tend to
be friends. There are a few different variations of the correlation coefficient that capture this
concept, but the most commonly used is the following. We define the clustering coefficient of
node v Cv to be the ratio of all the edges that exist between the friends of v over all the edges
that could possibly exist between the friends of v (see Figure 2.1). Formally, let us define d̂v
to be the number of nodes different than v that are adjacent to node v; note that for a simple
graph d̂v is just the degree dv. Then the clustering coefficient (recall that we consider the graph
to be undirected) is defined as

Cv =
|{(u,w) ∈ E : u,w are adjacent to v}|(

d̂v
2

) .

Note that if the graph is simple then the denominator equals
(
dv
2

)
, and we have

Cv =
2 |{(u,w) ∈ E : u,w are adjacent to v}|

dv(dv − 1)
.
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The clustering coefficient of graph G is denoted by C and is the average clustering coefficient
among all the nodes:

C =
1

n

∑
v∈V

Cv.

u3

u1

u2

v

u5

u4

Figure 2.1: Clustering coefficient of node v. Node v has 5 neighbors and there are 4 edges
between those neighbors (the bold edges). Therefore the clustering coefficient of node v is
Cv = 4

(52)
= 0.4.

2.2 The Power-Law Distribution

A very interesting phenomenon observed in the study of networks is that a lot of the quantities
measured follow the power-law distribution. In this section we briefly describe it.

We say that a random variable follows a power law distribution with exponent γ > 0 if the
probability that it obtains a value x is proportional x−γ . Note that the probability to obtain
a given value goes down only polynomially in the value and thus the power-law distribution
belongs to the class of what are called heavy-tail distributions, which are the distributions for
which the density function decays slower than that of the exponential distribution as x increases.
The parameter γ specifies the “heaviness” of the tail: the larger it is the faster the probability
decreases and the thinner is the tail; for example, as we see later, the variance decreases as γ
increases.

In Figure 2.2 we see the distribution function of the exponential distributions, while in
Figure 2.3 we can see the distribution function of the power-law distribution.

The power-law distribution can be discrete, where the probability of obtaining a value x is

Pr(X = x) = C · x−γ ,

for a normalizing constant C, or continuous (as we depicted in Figure 2.3), where now the
density function is given by

p(x) = C · x−γ ;

in our case we are mostly interested in the discrete case. Note that since for x = 0 the expression
C · x−γ becomes infinite, the power-law distribution is defined for values of x bounded away
from 0. For simplicity we assume that x ≥ 1. For the continuous version, and for γ > 1, the
constant C is given by solving∫ ∞

1
C · x−γdx = 1 =⇒ C =

1∫∞
1 x−γdx

=
1

1
1−γx

1−γ
∣∣∣∞
1

= γ − 1.
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Figure 2.2: Density function for the exponential distribution

For γ ≤ 1 the integral diverges. We can, however, still define it if we assume that x can take
values in [1,M ] for some finite number M , which is what we did in Figure 2.3.

For the discrete version, we just replace the integral with summation:

C =

( ∞∑
x=1

x−γ

)−1
.

The expectation equals
∞∑
x=1

xCx−γ = C
∞∑
x=1

1

xγ−1
,

and notice that it is finite only for γ > 2.1 For the continuous version we have∫ ∞
1

xCx−γdx = C

∫ ∞
1

1

xγ−1
dx =

C

γ − 2
=
γ − 1

γ − 2
,

for γ > 2. Similarly, the second moment equals

∞∑
x=1

x2Cx−γ = C

∞∑
x=1

1

xγ−2
,

or for the continuous case

C

∫ ∞
1

1

xγ−2
dx,

which is finite for γ > 3. More generally, the kth moment is finite only for γ > k+1. Of course,
all the moments are finite if we are dealing with the truncated version (where x ∈ [1,M ]).

For the continuous distribution, we can compute the variance in a closed form. If X follows
a power law we have

Var[X] = E
[
X2
]
− (E[X])2 =

γ − 1

γ − 3
−
(
γ − 1

γ − 2

)2

=
γ − 1

(γ − 2)2(γ − 3)
.

1The sum
∑∞

i=1
1
xγ is finite only for γ > 1.
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Figure 2.3: Density function for the power-law distribution

Notice that as γ increases the variance (and the various moments) decreases. This is expected
since the tail becomes thinner and the probability mass moves towards smaller values.

Consider now the density function p(x) = Cx−γ . If we take the logarithm we obtain

ln p(x) = −γ lnx+ lnC,

so the logarithm of the density function is linear to the logarithm of x. This means that if we
plot the density function in a log-log scale the graph is a straight line, whose slope equals −γ.
Similarly for the exponential distribution, whose density function is p(x) = θe−θx, we obtain

ln p(x) = −θx+ ln θ.

We can see that the logarithm of the density function is linear this time directly with x. Thus,
if we plot the exponential distribution with only the y axis scaled logarithmically the graph is a
straight line. These facts are shown in Figures 2.4 and 2.5. When we examine real data, if we
plot then using those two scales we can obtain an idea about whether the data seem to follow
a power-law or an exponential distribution.

The power-law distribution is also known as scale-free or scale-invariant distribution, be-
cause its density function is a scale-free function. A function f is called scale free if it is the case
that f(ax) = bf(x), for a, b independent of x. Note that for the power-law density function we
have

p(ax) =
C

(ax)γ
=

1

aγ
C

xγ
=

1

aγ
p(x).

The power-law distribution is the only distribution satisfying this property, therefore the terms
power law and scale free are equivalent.

The power-law distribution appears in a lot of seemingly unrelated instances. As we will see
the distribution of the degrees of most complex networks follows follows a power law. Other
examples include the populations of cities, the number of citations of publications, the number
of occurrences of words in texts, name frequencies, and people’s net worth [8]. On of the
explanation for this universality is the rich-get-richer phenomenon: the most more money you
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Figure 2.4: Density function for the exponential distribution in logarithmic scales.
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Figure 2.5: Density function for the power-law distribution in logarithmic scales.

have the more likely you are to obtain more; the more one’s paper is cited the more likely get
new citations, as more people are becoming aware of it.
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Chapter 3

Structure of Social Networks

An important element in understanding the functionality of social networks is their structures.
How many friends do people have on average? How much does this vary? Oftentimes we say
“what a small world!” when we meet someone randomly and we happen to have common
friends; how probable is that? How are we organized, do we form communities? What are the
consequences of that? How many connections separate a random person from Jim Carey? How
about from a random person of the opposite part of the world?

The questions mentioned above and several others have attracted the interest of several
sociologists in the past years. The answers to those questions might seem sometimes surprising
in the beginning but make sense after some thought and as our understanding of social networks
grows. Thus, scientists have looked into several offline and online social networks and studied
their structural properties. One of the most exciting findings is that for most of the networks
the structure is very similar; they all possess some particular characteristics, whether they are
large or small, those characteristics seem to be present. In this chapter we describe some of
them. As we have already mentioned those structural properties are found in other types of
complex networks, so we will also show some examples from them.

3.1 One Giant Component

The first fact that one notices when looking at a social network is the existence of a giant
connected component. This usually contains a large fraction of the nodes and in some cases
it contains the large majority of them. The second component size is much smaller. Finally
(again depending on the type of social network), there is often a large number of singleton nodes
(nodes with degree 0).

In Figure 3.1 we can see the distribution of the connected components of the MSN instant
messenger communication graph. We can see that the largest component contains more that
108 nodes, the second one less than 1000, and there are about 100K singleton nodes.

3.2 Heavy-Tailed Degree Distribution

The next characteristic that becomes immediately eminent in social and complex networks is
the heavy-tailed degree distributions. As a matter of fact most of the times we observe that the
degrees follow a power law distribution (for information about the power-law distribution see
Section 2.2).

In Figure 3.2 we can see the indegree and the outdegree of the web graph. Notice that the
degrees seem to follow power-law distributions with exponents 2.1 and 2.7. Even in smaller scales
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Figure 3.1: Distribution of the connected components of the MSN instant messenger communi-
cation graph.

we still find power-law distributions. In Figure 3.3 we see the corresponding plot restricted to the
*.brown.edu domain, the domain of Brown University. We can see the power-law distributions
of the indegrees and the outdegrees, and what is even more interesting is the fact that the
exponents are the same as for the entire web.

We can, finally, see the indegree and outdegree of the flickr social network a few years ago
in Figure 3.4. The power-law distribution is again clear.

(a) Indegree. (b) Outdegree.

Figure 3.2: Distribution of the indegree and outdegree of the webgraph in two different time
periods. We can see that both of them follow a power-law distribution with different exponents.
From [2].

3.3 Small World

One of the most surprising, in the beginning, facts about social networks is that two individuals
are not far from each other as nodes in the social network graph. The term six degrees of
separation has been coined to refer to such networks, after a series of experiments by the Yale
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(a) Indegree. (b) Outdegree.

Figure 3.3: Distribution of the indegree and outdegree of the webgraph inside *.brown.edu
(Brown university). Notice that both distributions are power laws and with even the same
exponent as for the entire web graph. From [9].

(a) Indegree. (b) Outdegree.

Figure 3.4: Distribution of the indegree and outdegree of the flickr social network.

sociologist Stanley Milgram, who discovered that the average distance between two people in
the United States is around 6.

Stanley Milgram who is also famous for the so called Milgram experiment, which dealt with
issues of obedience and authority, conducted a series of experiments the most complete of which
is the following study, which he performed along wih Jeffrey Travers [10] in the end of the 1960s.
He selected an individual from Boston, Massachusetts as a “target” who was a stockbroker and
296 individuals as follows:

• 100 were a sample from residents in Boston

• 96 were a sample from Nebraska, about 2, 700km far from Massachusetts

• 100 were a sample of the share-owners in Nebraska

Each of these individuals was given a letter that they were supposed to send it to the stockbroker
in Boston. They were told that he is a stockbroker and that he is situated in Boston, and the
rules for sending the message were the following:
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• If they know the stockbroker in a first-name basis then they send the letter directly to
him.

• If not, then they send the letter to a person that they know in a first-name basis that
they believe is closer to the stockbroker, along with these rules.

The choice of the three groups was in order to determine what difference does the proximity
(geographic or professional) make to the path lengths. In the instructions given to the individ-
uals there were included cards to mail back to Travis and Milgram to keep track of the message
routes and to gather statistics.

From the 296 people, 217 proceeded with the experiment and from them 64 letters (about
30%) arrived at their destination. The lengths of the chains corresponding to letters that were
successfully delivered are shown in Figure 3.5. The average length is about 5.2 and this is what
lead to the term six degrees of separation. Other conclusions of the study were that some people
used mostly the profession to find the target and others the geography and this is the reason for
the bimodality (the two peaks) in Figure 3.5; the paths that were controlled by the geography
were slightly longer due to the fact that the message would arrive to the area but then wander
around until some acquaintance of the target was found.
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Figure 3.5: The lengths of the chains of the letters that reached their destination

An attempt to replicate Milgram’s experiment in a larger scale was performed by Dodds,
Muhamad, and Watts [3]. Their experiment was based on email messages and participants
were trying to reach 18 targets, ranging from a university professor in the US to a policeman
in Australia. About 24 thousand chains were initially created, and finally 384 of them reached
their targets. Among the findings is the conclusion that the typical chain length (median) is
about 7.

Researchers have also studied various other complex networks, all of them confirming that
the average distance and the diameter are small. For example, in the MSN communication
network of about 180 million nodes the average distance was found to be about 6.6 [6] and the
effective diameter (Section 2.1) was about 7.8. If we look at the WWW graph (back in 1999),
where nodes are web pages and an edge from a page to another one exists if there is a hyperlink
from the first page to the second, the average distance between two pages is 16 (6 if links can
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be followed backwards) [2]. Generally all the online and offline networks that we have studied
show reveal a small average distance between two nodes and a small diameter.

3.4 Globally Sparse, Locally Dense

Another universal observation is that social (and complex networks in general) are globally
sparse, yet they are dense locally. Globally sparse means that there are only a few edges
in total, compared with the number of nodes. For example, facebook, as of March 2010 has
more than 400 million users, which means that the total possible number of connections is about
8 ·1016. Yet the average degree is about 120, therefore only 2.4 ·1010 edges exist, or 3 in a billion.
On the other hand, facebook users observe see that many if not most are connected with each
other, that is then chance of an edge in the neighborhood is much larger than 3/1, 000, 000, 000.
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Chapter 4

Graph Models for Social Networks

Throughout the years, scientists have made efforts to create models that generate graphs with
the same characteristics of complex networks. While not all of them have focused particularly
in social networks, for example, a lot of the models proposed have targeted biological networks
or the world wide web, nevertheless they generate some of the statistical properties that social
networks share with all those graphs, presented in Section 3.

First we describe the classical Erdős and Rényi random-graph Gn,p and Gn,m models. While,
as we will see, they are not appropriate models for social networks, they are the easiest to analyze
and they will give us intuition and form the basis for analyzing some of the more complex models.
Subsequently we study the small-world model proposed by Watts and Strogatz, which captures
the idea that most of our contacts are in our neighborhood (geographically, professionally, etc.)
but we also have a few apparently random acquaintances and those actually lead to the small-
world phenomenon that we described in Section 3.3. Finally, we present a simple example of
a random graph process and we show how what is called preferential attachment can lead to
power-law distributions.

4.1 The Erdős-Rényi Random-Graph Models

The Erdős-Rényi random-graph model was studied by the mathematicians Erdős and Rényi
since the late 50s. There are actually two random graph models, which differ slightly with each
other. The most common one is the Gn,p model which is parametrized by two parameters, n
the number of nodes, and some value p ∈ [0, 1] which is the probability that an edge exists; p
can in general be a function of n. In particular, a graph is created according to the following
process. It has n nodes and each of the

(
n
2

)
possible edges exists with probability p, each edge

existing independently of the others. Note that there are 2(n2) possible graphs and if a graph

contains m edges then it has probability pm(1− p)(
n
2)−m to be constructed. For large values of

n we expect the number of edges to be very close to np. In Figure 4.1 we can see how a random
graph might look like.

The second random-graph model is the Gn,m model. A graph created according to the Gn,m
model contains n nodes and exactly m edges, and the process gives to each graph of m edges
the same probability to be created. Note that for given values of n and m the number of graphs
that can be created according to the Gn,m model is equal to((n

2

)
m

)
,

and each of the graphs has the same probability to be created. In most of the cases this random
graph model is a bit harder to work with as there are dependencies among the edges (even
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Figure 4.1: A random graph.

though they are small): if an edge exists, this reduces slightly the probability that some other
edge exists. Therefore we mostly work with the Gn,p model. Note though that usually we are
interested in studying the behavior of the graphs for large values of n and in this case, as we
mentioned, the number of edges that will appear in the Gn,p model will be sharply concentrated
around the expected value np. Therefore, the two models behave very similarly, and one can
prove that properties that hold for one model can be carried to the other. In any case, for the
rest of this section we will consider the Gn,p random-graph model.

4.1.1 Graph Properties and Threshold Phenomena

In general we will be studying properties of random graphs such as connectivity, the size of the
largest component, and so on. We usually fix the value of p to some particular function of n
and then study properties of the graph as n → ∞. We will see that properties hold with high
probability, for example we will see that a if p > lnn/n then the graph is connected with high
probability. When we say with high probability (abbreviated as whp.) we mean that it holds
with probability that tends to 1 as n→∞. We can also say that it holds for almost all graphs
to express the same thing.

Many of the properties that we will study are what we call monotone properties. A property
is monotone if adding edges to the graph does not destroy it. In other words, if it holds for a
graph G = (V,E) then it also holds for a graph G′ = (V,E ∪ E′). An example of a monotone
property is connectivity: if a graph is connected then by adding edges it remains connected.
Another monotone property is the containment of a hamiltonian cycle.

One can see (and it is easy to prove) that if a monotone property hold whp. for Gn,p then it
also holds whp. for Gn,p′ for p′ > p. A very interesting phenomenon that we will observe with
monotone properties is the following: Some property will not hold whp. for small values of p
until some value p∗ (that depends on the property). Then, as soon as p > p∗ the property will
hold whp. In other words we have a sharp threshold at the value p∗. We also say (borrowing
the term from the study of physical systems) that we have a phase transition at the value p∗.
For example we will see that a graph is not connected whp. if p < lnn/n and connected if
p > lnn/n. Similarly, we will see that the size of the largest component is O(lnn) if p < 1/n
while it becomes Θ(n) for p = c/n for a constant c > 1.
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4.1.2 Degree Distribution

The easiest property to study is the degree distribution. A given node v is incident with
n− 1 potential edges, and each of them exists with probability p independently of each other.
Therefore the degree distribution follows a binomial distribution Binomial(n− 1, p):

Pr(dv = k) =

(
n− 1

k

)
pk(1− p)n−1−k.

and therefore the expected degree is (n − 1)p ≈ np. Recall that in Section 3.2 we mentioned
that in social networks we observe heavy-tailed degree distributions. This shows one of the
main problems of the Erdős-Rényi random graph model for modeling social networks. In other
words in the Erdős-Rényi model the nodes are very similar to each other; instead in reality we
observe that nodes can be very different from each other.

4.1.3 Connectedness and Giant Component

An interesting and important property to study is the size of the largest component as the value
of p increases. In all the following statements hold whp. We will focus on a few ranges for p.

• p < 1/n,

• p ∼ 1/n,

• p = c/n, where c > 1, and

• p = c lnn/n, where c ≥ 1.

When p < 1/n the graph has a lot of small connected components. They are all trees, or
trees with and additional edge. The size of the largest component is O(lnn).

At the value of p ∼ 1/n we have a phase transition. Suddenly we have the emergence or a
large connected component of size n2/3. The rest of the components are of size O(lnn).

When p = c/n the size of the largest component becomes linear Θ(n), where the constant
hidden in the Θ notation depends of course on c.

At the value p = lnn/n, we have another phase transition. When p = lnn/n there is a giant
component that contains all but a constant number of isolated nodes. Finally, for p = c lnn/n,
where c > 1 the graph becomes connected.

4.1.4 Diameter

The small diameter, even when the probability p is small, is one of the attractive properties of
this model. The main result is that the diameter is always bounded by O(lnn), more precisely
it is of the order of lnn

lnnp .
To get an intuition of the proof for that, we consider a node u and we want to show that

in a small number of steps we can reach all the nodes in the graph. Node u is expected to be
connected to np other nodes. Similarly, each of them is connected to about np other nodes so
there are about (np)2 nodes of distance 2 from u. More generally there are about (np)t nodes
at distance t. When (np)t ≈ n it will have covered all the nodes. Solving for t we get that in
about

lnn

lnnp

steps it can reach all the nodes, and since this holds for each node the diameter is of the order
of lnn/ lnnp.
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There are two hand-waving parts in the above argument. First it assumes that there are
no overlaps in the nodes that we find. For example, there are slightly less than (np)2 nodes at
distance 2 from u since the neighbors of u might share some neighbors. However if p is small
enough the overlap is small. Second, during step t, when we have seen ` ≥ (np)t nodes the
number of potential new nodes are not n but n− `. However, if we continue this argument as
long as ` ≤ n/2 there is always a sufficient number of new nodes and in Θ(lnn/ lnnp) steps
node u can reach half of the graph. But the same holds for every other node, so the diameter
is at most double the quantity that we computed previously.

4.1.5 Clustering Coefficient

The clustering coefficient is easy. Consider a node v with degree dv. There are
(
dv
2

)
potential

links between the dv neighboring nodes and in the Gn,p model each of them exists with prob-
ability p. Therefore, for any degree dv the clustering coefficient of v is Cv = p. Therefore, the
clustering coefficient of the graph is C = p. Since p is usually small the clustering coefficient
is also small which is another problem of this model since in reality networks are much more
clustered. This motivates the model that we study next.

4.2 The Watts-Strogatz Small-World Model

The Erdős-Rényi random graph model is clearly not a good model for social networks: in reality
the probability for a link to a person in the neighborhood is much higher than the probability of
a link to a person on the other side of the world. Usually we have several links to people that we
are close with (geographically, jobwise, etc.) but we also have some few additional “long-range”
contacts, for example a person we met while traveling, the friend of a friend of a friend that we
met at a party, and so on.

This is what motivated Duncan Watts and Steven Strogatz to come up with their model in
1998 [11]. On one hand we tend to be parts of communities and so our friends tend to be friends
with each other. (This leads to a large clustering coefficient.) However a completely clustered
network has long diameter: to reach to a person that is far one has to move from cluster to
cluster and this might require a large number of steps.

One of the nice properties of the Erdős-Rényi random graph model, as we saw in Section 4.1.4
is that it creates graphs with small diameter. These random links suffice to bring the diameter
to about lnn. However, they do not create the clustered structure and this is demonstrated by
the small clustering coefficient, as we mentioned in Section 4.1.5

The Watt-Strogatz model tries to get the best of both worlds. In high level it creates a graph
by taking a structured graph such as a ring or a grid and then with some small probability replace
each edge with a random one. To be more concrete, the simplest way is to start with a ring
where a node is connected with the k closest nodes in the ring, k/2 in each side (see the left
graph in Figure 4.2). Then each node u considers its k/2 edges on the left and with probability
p it replaces the edge with a random edge with u as an endpoint. Note that duplicated edges
are forbidden. In Figure 4.2 we see three realizations of this procedure for p = 0, for p = 1,
and for a value of p between them. For p = 0 no edge is being rewired so the final graph is the
initial regular graph that we started with. For p = 1 all the edges are being rewired, so we have
a random graph (note though that this is not an Erdős-Rényi random graph as, for example,
here each node has at least k edges something not guaranteed in the Erdős-Rényi model; the
behavior, however, is similar). Note that this procedure might lead to a disconnected graph so
to avoid that we assume that k � lnn � 1, in which case the graph will be connected with
high probability. Later on we see a slight variation of this model that avoids this problem.
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Figure 4.2: The Watts-Strogatz model as p varies from 0 to 1.

Let us look now at the structure of the graphs and in particular let us measure the diameter
and the clustering coefficient. For p = 0 it is not hard to compute that the diameter is D = n/k
and the clustering coefficient approaches 3/4 as n, k → ∞. On the other hand, for p = 1 the
diameter can be shown to be Θ(lnn/ ln k) (similarly to the diameter of the Erdős-Rényi model
with the same average degree) while the clustering coefficient is k/n. Thus in both cases we see
that a large diameter goes with a large clustering coefficient, while a small diameter goes with
a small clustering coefficient. One therefore might wonder whether this is always the case as
p ∈ (0, 1) or whether we can achieve a large clustering coefficient and a small diameter at the
same time, as we observe in reality. It turns out that the answer is yes. If we take a value of p
that is small, then the clustering coefficient does not change a lot: only a few edges are rewired,
therefore most of the links between a node’s neighbors will continue to exist. On the other
hand, however, this small number of random links suffices to reduce the diameter significantly.
For example if k = Θ(lnn) and p is some small constant, each node will have at least Θ(lnn)
random links and thus the diameter will be O(lnn), as we saw in Section 4.1. This argument
is of course hand waving, for example we are not dealing exactly with the Erdős-Rényi model,
it conveys however the right intuition.

In Figure 4.3 we can see how the diameter and the clustering coefficient change as p varies
from 0 to 1. Notice that the x axis is in a logarithmic scale and that even for small values of p
the diameter drops immediately while the clustering coefficient remains high.

Figure 4.3: The change of the clustering coefficient and the diameter as p increases from 0 to 1.
From [11].

A similar model that researchers have looked at is when instead of rewiring the edges the
underlying structured graph remains as it is but in addition we add some shortcuts. In particu-

20



lar, each edge is shortcuted with an appropriate probability so that at the end the graph has an
expected number of Lpk/2, similarly to the original model (therefore every edge is shortcuted
with probability pk/(L − k − 1); why is that?). The advantage is now the network remains
connected, but also that it resembles more the Erdős-Rényi model and thus it is analytically
more tractable.

We also mentioned that the ring is not the only option. For example we can use a grid as
the base model and this is actually what we will do in the next section.

4.3 Navigating in Social Networks

The first striking conclusion from Milgram’s experiment is that we are all close to each other
in a social network. However, another conclusion observed by Jon Kleinberg [5] is that actually
people were able to find the path even though they had to route the message having only local
information. Finding the shortest paths is easy to do if one has complete information of the
entire network, for example by performing a breadth-first search. However, when an individual
receives the letter he did not have global information of the network; instead he has information
about his contacts and maybe some limited information about their contacts; furthermore, he
had some information about the location and the occupation of the stockbroker. Nevertheless,
the letters that arrived, did arrive quickly. Thus, after realizing this fact, a natural question is
the following: Does the Watts-Strogatz model allow for routing algorithms that can route the
message successfully with only local information? And if not, what can be a model that does
allow decentralized algorithms to succeed?

Kleinberg addressed both of these questions. He first showed that the Watts-Strogatz model,
while it create short paths, it does not allow for local routing. Furthermore, he considered a
family of models that generalizes the Watts-Strogatz model and he found the models of this
family for which the diameter is small and also a decentralized algorithm can find a short path
between two nodes.

We now go ahead and describe the model in some detail. We start with a grid as in Figure 4.4
(a) (other structures are possible as well, but for simplicity we consider the grid like the original
paper), and each node adds an additional random node (Figure 4.4 (b)). Note that we assume
that the graph is directed and, in particular, each node’s random connection can be used only
one-way. Similar results hold if the links are undirected, however the analysis would be slightly
more complicated.

(a) Initial grid. (b) A node with the four grid links
an a long-range link.

Figure 4.4: Kleinberg’s small-world model.
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The grid is of size n× n, so it has n2 nodes; let V be the set of nodes. For each node v we
can define its coordinates (vx, vy) in the straightforward way, where the node (0, 0) is, say, the
bottom left. The distance of two nodes u = (ux, uy) and v = (vx, vy) is equal to the `1 distance,
also known as Manhattan distance, on the grid:

d(u, v) = |ux − vx|+ |uy − vy| .

The model is parametrized by some value r ≥ 0 and this gives a family of models. Given r
the probability that the random connection from node u to some other node v is proportional
to d(u, v)−r, which means that it is selected with probability

d(u, v)−r∑
w∈V \{u} d(u,w)−r

.

This means that nodes that are closer have higher probability to be selected, and how much
higher is determined by the parameter r. For r = 0 the probability is uniform and this case
is similar to the Watts-Strogatz small-world model. As r increases the distribution puts more
weight on points that are close to u.

The question that we now ask is for what range of values r does the model allow for a local
routing protocol. To be more precise we consider a source node s and a target node t and we
want to route a message from s to t in as few steps as possible, through a local or decentralized
protocol. We say that a protocol is local or decentralized when each node has only the following
knowledge when deciding how to route a message that it has received:

1. the set of all of its contacts;

2. the location of the target node t;

3. the location of all the neighbors of all the nodes that have come into contact with the
message.

It might seem that the third condition gives too much power to the protocol. However, it is
only used in the lower bounds so it just strengthens the results. In other words, for the values
of r that allow local routing, the protocol that we will present only makes use of the first two
conditions. On the other hand, we will show that for the rest of the values of r no protocol can
route a message efficiently even if it makes use of the entire history of the message.

We are interested in studying the expected distance between a source and a uniformly
selected random target. The expectation is over the selection of the target and over the structure
of the network, in particular, over all the possible placements of the long-range links.

We are now ready to present the main result.

Theorem 1. Consider a network with parameter r.

1. Let 0 ≤ r < 2. The expected delivery time of any decentralized algorithm is Ω(n(2−r)/3).

2. Let r > 2. The expected delivery time of any decentralized algorithm is Ω(n(r−2)/(r−1)).

3. Let r = 2. There is a decentralized algorithm with expected delivery time O((lnn)2).

Note that for r = 0, the case that essentially corresponds to the Watts-Strogatz model, the
theorem gives a lower bound of Ω(n2/3).

Here we will only try to give the main ideas behind the theorem by sketching the proofs for
the case of r = 0 and r = 2. The details and the proofs for all the cases can be found in the
original paper [5].
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Let us begin with the case that r = 0 and show that the expected path length is at least
Ω(n2/3). The main idea is the following: We consider a ball of radius n2/3 around the target t
(see Figure 4.5). If the source is outside the ball and as the message is routed towards t no
long-range links are from the path to a node inside the ball (such as e1 or e2 in Figure 4.5),
then the message must spend at least n2/3 steps since from the time it enters the ball it uses
only the grid links. It turns out that this happens with sufficiently large probability due to the
fact that the ball is small compared to the entire network.

n2/3

s

t

e2

e1B

Figure 4.5: Lower bound for r = 0.

Let us now work out the details. Let B be the set of nodes that have distance at most n2/3

from node t (Figure 4.5); we say that B is a ball of radius n2/3 centered at node t. We will need
an upper bound on the size of B; we omit the details but some thought shows that it is of size
O((n2/3)2), that is

|B| ≤ cn
4
3 , (4.1)

for some constant c ≥ 1. Recall that node t is distributed randomly on the grid and assume for
now that node s is outside of B. For a constant δ to be determined later, we consider the first
a = δn2/3 steps of the route of the message from node s to node t; if the message arrives at t in
less than δn2/3 steps we assume that the routing continues and that at each step from then on
the message visits node t. We will make use of the principle of deferred decisions [7], which is
often used in the analysis or randomized algorithms, and is the following, rather intuitive idea:
although the network has been constructed a priori through the random process in which each
nodes selects the random link, for the sake of the analysis, we may assume that each node that
receives the message creates the random link at the moment that it receives it. This assumption
can allow us to argue only about nodes that are in the route of the message since the links of
the other nodes do not affect the route of the message.

Let us consider a node u that receives the message. Since r = 0 each node in the graph has
the same probability 1/n2 to be the endpoint of the long-range link (recall that the probability
for some node v being the endpoint is proportional to d(u, v)−r and this value is independent
of the distance for r = 0). Therefore, the probability that node u’s long-range link is towards a
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node inside B (such as e1 or e2 in Figure 4.5) is

|B|
n2
≤ cn4/3

n2
= cn−

2
3 ,

by Equation (4.1). By the union bound we can conclude that the probability that one of the
first a = δn2/3 nodes in the path from s to t has a long-range link towards a node inside ball B
is bounded by

δn
2
3 · cn−

2
3 = δc =

1

2
,

if we let δ = 1/2c.
Now we can tie things together. If there are no long-range links towards a node inside B

then even if the path reaches B it can only use the grid links (or it uses a long-range link which
takes it out of B again). We have assumed that s 6∈ B and since we have that δ < 1 we can
conclude that in the first δn2/3 nodes of the path we cannot have reached node t. Therefore,
with probability at least δc = 1/2 the length of the path from s to t is at least δn2/3, in other
words the expected length of the path is at least

δ

2
n2/3. (4.2)

Until now we have assumed that node s 6∈ B. To finish the proof, note that node s is
distributed uniformly at random (by our assumption when we try to compute the expected
length), therefore the probability that s 6∈ B is at least

n2 − |B|
n2

≥ n2 − cn4/3

n2
>

1

2
, (4.3)

for sufficiently large n. We let E be the event that “s 6∈ B” and if we let L to be the length of
the path from node s to node t we have

E[L] = E[L|E ] ·Pr(E) + E[L|Ec] ·Pr(Ec)
≥ E[L|E ] ·Pr(E)

≥ δ

2
n2/3 · 1

2

= Ω(n2/3),

where the last inequality follows from Equations (4.2) and (4.3).
Now we turn to the case that r = 2. First, we need to give the algorithm. It is the

straightforward greedy algorithm: when a node receives the message it sends it along the link
(among the five links starting from the node) that will bring it closer to the target t (with
respect to the distance on the grid). In case of ties any link that minimizes the distance is fine.

The high-level idea of why the algorithm is successful is the following: We consider Θ(lnn)
balls around the target t of increasing radius that cover the entire grid (see Figure 4.6). We then
show that to go from one ball to the immediately smaller we need O(lnn) steps in expectation.
This will be due to the fact that the points between the two balls are sufficiently close, therefore
the probability for a long-range link to go to a point inside the smaller ball is sufficiently large,
Ω(1/ lnn). Therefore in total we can route the message in O((lnn)2) steps in expectation.

Now we give the details. Let Bi be the ball centered on node t and has a radius of 2i. The
number of point in Bi is proportional to (2i)2, so there is a constant c such that

|Bi| ≥ c22i. (4.4)
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t

Figure 4.6: Upper bound for r = 2.

Note that Bi might not be a complete ball as the grid might be smaller, yet the number of points
inside is still Ω(22i). Since the maximum distance between two nodes in the grid is bounded by
2n, the total number of balls needed to cover all the points is bounded by log(2n). Again we
use the principle of deferred decisions. Consider a node u ∈ Bi+1 \ Bi. The probability that u
has a long range link to a node v ∈ Bi equals

d(u, v)−2∑
w∈V \{u} d(u,w)−2

,

so the probability that there is a long-range link from node u to some node inside ball Bi equals∑
v∈Bi

d(u, v)−2∑
w∈V \{u} d(u,w)−2

. (4.5)

We already have a lower bound for the size of Bi (Equation (4.4)), and we will try to lower
bound the numerator and upper bound the denominator. Let us start with the latter. One can
easily show that the number of points in the grid at distance j from a given node is bounded
by 4j (it is equal to 4j before we reach the borders of the grid). Making use of this, we can
compute1 ∑

w∈V \{u}

d(u,w)−2 ≤
2n∑
j=1

4j · j−2 = 4
2n∑
j=1

1

j
≤ 4 ln 2n. (4.6)

For d(u, v)−2 notice that it achieves its minimum when d(u, v) becomes maximum. We have

d(u, v) ≤ d(u, t) + d(t, v) ≤ 2i+1 + 2i < 2i+2,

where the first inequality follows from the triangle inequality. Therefore, we get

d(u, v)−2 ≥ 2−2i−4. (4.7)

1The sum
∑n

i=1
1
i

is called the nth harmonic number and it is denoted by Hn. It satisfies Hn = lnn+ Θ(1).
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Combining Equations (4.4), (4.5), (4.6), and (4.7) we get that the probability that there is a
long range from a given node u ∈ Bi+1 \Bi to some node in Bi is at least∑

v∈Bi

2−2i−4

4 ln 2n
≥ c22i · 2−2i−4

4 ln 2n
=

c

64 ln 2n
= Ω

(
1

lnn

)
.

Therefore, the number of steps until the message reaches a node in Bi+1 with a link to Bi
is stochastically dominated by a geometric random variable with probability Ω(1/ lnn), so the
expected number of steps needed to move from Bi+1 into Bi is O(lnn).

Since the total number of balls is bounded by log(2n), as we mentioned previously, we can
conclude that the expected number of steps for the message to reach t from s is O((lnn)2).

4.4 The Barabassi–Albert Preferential Attachment Model

Another graph model that has been studied in parallel with the small-world model, actually an
entire family of models, is the preferential attachment model. As a matter of fact, more than a
simple graph model is what we call a model for network growth because it attempts to model
the process with which the network is created. That is, initially it contains a small number of
nodes and as time goes on new nodes and edges are added to the graph.

As we already mentioned, one of the problems of the Watts-Strogatz model is that it is to
symmetric in the sense that nodes look very similar, especially as n and k grow. In particular,
in the limit each node has about the same degree. The model proposed by Barabassi and
Albert [1] is one of the first ones that tries to avoid this and instead creates graphs where the
node degrees follow a power-law distribution, something that we have observed in practice, as
we said in Section 3.2.

The main characteristic of the model is the so called preferential attachment, which is essen-
tially the following concept: when a new edge is created, the probability to have node v as an
endpoint is proportional to the degree dv of node v. Thus the higher the degree already is, the
higher chance it has to increase. This is what is also called the rich-get-richer phenomenon, and
as we will soon see, it leads to power-law degree distributions. We mentioned in Section 2.2 that
in many phenomena we observe power-law distributions, including the net worth of people, the
number of paper citations, or city populations. If we reflect upon for a while we can see that in
several of these cases we do indeed have a rich-get-richer behavior: the more property someone
has the better investments he can make and the higher chances he has to increase his property;
the more citations a publication has the higher chances it has to become discovered by some
author and the higher is the probability for the author to cite it; cities with higher population
generally offer more opportunities for labor and thus they attract more people. Therefore, this
might be an explanation that many of those quantities follow power-law distributions.

Regarding social networks, we can also imagine a rich-get-richer behavior: The more friends
somebody has, the more new people he potentially meets, thus the higher is the probability that
he obtains more friends. In other words, nodes (people) with high degree (number of friends)
tend to increase their degree more than nodes with smaller degree. It is no surprise then that
in practice we observe power laws in the degree distributions, thus, naturally, scientists have
studied generative models that follow the rich-get-richer principle.

The model proposed by Barabassi and Albert is essentially the following model, in which we
have made some convenient assumptions when dealing with parameters that are left unspecified
in the original paper [1]. We have discrete time steps, t = 1, 2, 3, . . . and a property that we
maintain is that at time t the graph has t nodes and t` edges.

• We start initially with a graph of 2 nodes, v1 and v2, and 2` edges between them.
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• At each time step t = 3, 4, . . .

1. A new node vt is added to the graph.

2. ` new edges are added. For each edge, one endpoint is vt and the other one is selected
with probability proportional to the degree at time t − 1. In particular, node u is
selected with probability

du∑
w∈Vt−1

dw
=

du
2(t− 1)`

.

Vt is the set of nodes at time t, so V2 = {v1, v2} and Vt = Vt−1 ∪ {vt}. To see why the equality
holds, notice that at time t−1 we have (t−1)` edges, so the sum of the degrees of all the nodes
(except for the new node vt) is 2(t− 1)`.

We now show that as t → ∞ the degree distribution is a power law with exponent 3. We
actually give only a heuristic argument to avoid technical details. First we define

• nk(t): mean number of nodes at time t with degree k.

• pk(t) = nk(t)
t : mean ratio of nodes at time t with degree k.

We will try to write a recursive equation for the values pk(t). Notice that when a new node is
created, say at step t+ 1, we have ` new edges, and assuming that no two edges will end on the
same node (clearly, this is not true especially in the beginning; however the probability of this
goes to 0 as t→∞), the probability that a node, say u, of degree k increases to k + 1 is

`
du∑

w∈Vt dw
= `

du
2t`

=
k

2t
. (4.8)

For degrees k < ` we have nk(t) = 0 since every node has degree at least `. For k > ` we
can write

nk(t+ 1) = nk(t) + nk−1(t)
k − 1

2t
− nk(t)

k

2t
. (4.9)

To see why this is the case, note that at time t there are nk(t) nodes of degree k and nk−1(t)
nodes of degree k − 1. By Equation (4.8), at time t+ 1 the average number of nodes that will
increase the degree to k is nk−1(t)

k−1
2t . Similarly, the average number of nodes that will change

their degree from k to k + 1 is nk(t)
k
2t . Now we can rewrite Equation (4.9) to

(t+ 1)pk(t+ 1) = tpk(t) + pk−1(t)
k − 1

2
− pk(t)

k

2
. (4.10)

For k = ` note that at time t+ 1 the number of nodes of degree ` increases by 1 due to the new
node and it decreases, on average, by n`(t)

`
2t . Therefore we have

n`(t+ 1) = n`(t) + 1− n`(t)
`

2t
,

or

(t+ 1)p`(t+ 1) = tp`(t) + 1− p`(t)
`

2
. (4.11)

We want the distribution of pk(t) in the limit as t → ∞, when it has converged to some value
independent of t, say pk. Then we have pk(t + 1) = pk(t) = pk and then we can obtain from
Equation (4.11)

(t+ 1)p` = tp` + 1− p`
`

2
,
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which means that

p` =
2

`+ 2
.

Similarly, Equation (4.10) gives

(t+ 1)pk = tpk + pk−1
k − 1

2
− pk

k

2
,

or, by rearranging the terms,

pk = pk−1
k − 1

k + 2
.

By induction, we can then show that for k ≥ ` we have that

pk =
2`(`+ 1)

k(k + 1)(k + 2)
.

Notice now that the numerator is a constant with respect to k, while the denumerator is approx-
imately k3, for large k. Therefore, the degree distribution follows approximately a power-law
distribution with exponent γ = 3.

There are two obvious limitations of the model. The first is that the degree of each node
is larger than `, a very unrealistic assumption. Secondly, the exponent of the power law is
always 3; in practice we have observed several different exponents. Therefore, we would like
some a parametrized family of models that can be generate graphs with a variety of exponents.
In any case the important characteristic is that the model demonstrates how a natural process
can create graphs with power-law degree distributions. Furthermore, the generative process can
be generalized to create graphs with arbitrary exponents and indeed there has been a large line
of research that studies such generalizations.

One example of the possible generalizations is the following. Assume that the graph is
generated according to the same process but with the difference that a node is selected with
probability that is proportional to its degree plus a constant, that is, for some constant c (where
c ≥ −`), at time t, node u is selected with probability

du + c∑
w∈Vt−1

(dw + c)
=

du + c

(t− 1)(2`+ c)
.

Then a similar analysis as above shows that the degree distribution follows a power-law distri-
bution with exponent 3 + c/`.
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