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In these notes we describe some very basic computer-science concepts. They are just only a small part of
what we have said in class, and they may contain some additional information. Depending on my available
time, I may update these notes by adding more material. I am sure that there are a lot of errors, so I
welcome any errors that you find, or any other comments that you may have.

1 Binary and Hexadecimal Number Systems

In everyday life, we represent numbers in base 10. For example the number 3051 is the value

1 · 100 + 5 · 101 + 0 · 102 + 3 · 103.

As in computers we use bits, numbers are represented in the binary system. For example:

(01101101)2 = 20 + 22 + 23 + 25 + 26 = 109.

(I put the subscript 2 in the left to make explicit that it is a binary number.) This is how we can convert
a number from binary to decimal. To convert number from decimal to binary there are a couple of ways,
for example, you can do it by keep dividing the decimal number by 2 and looking at the remainder; search
online for the details.

When humans need to work with RAM addresses (rare if you program in Python) the decimal system
is not very convenient and the binary is hard to read. Then we use the hexadecimal system, which has 16
digits: 0 to 9 and the letters A to F , with A corresponding to 10, B to 11, and so on. Then we have:

(F07D)16 = 14 · 160 + 7 · 161 + 15 · 163 = 61566.

The hexadecimal system allows to easily convert from binary to hexadecimal and vice versa. Each hexadec-
imal digit corresponds to 4 binary digits; see Table 1. Using the table, we can easily convert between two
binary and hexadecimal numbers.

(0110111010110001)2 = (0110 1110 1011 0001)2 = (6EB1)16 = 6EB1h.

As you can see, sometimes we add the letter “h” to indicate that a number is written in hexadecimal.
In Python, to represent a binary number we preceed it by 0b (or 0B), and a hexadecimal by 0x (or 0X). For
example the command y=0xABCD assigns to y the value 43981.

2 Representation of Information

Numbers, characters, and so on are represented in memory as a sequence of bits (see the binary number
system in Section 1). Each bit can be either 0 or 1. A sequence of 8 bits is called a byte. With a byte we
can represent 28 = 256 different numbers. A byte was originally used to represent one character but now
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Hexadecimal Binary Hexadecimal Binary
0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

Table 1: Correspondence between digits in the hexadecimal and the binary number systems.

the unicode standard uses more than one bytes per character. A word is a sequence of x bits, where x is
the length of the numbers that the processor works with, so it depends on the architecture of the processor.
Typical values of x are 16, 32, 64, and most processors today have x = 64 (8 bytes).

Let us now see how information is represented in memory without entering into details:

Unsigned integers: Representing nonnegative integers is straightforward: we use the binary represen-
tation. For example, 13 in decimal is represented as 1101 in binary; using Python’s syntax, we can write
10 = 0b1101. Similarly, 143 = 0b10001111. With n bits we can represent 2n different numbers. Therefore,
with 1 byte we can represent numbers from 0 to 255, with 4 bytes 0 to 65, 535, and with 8 bytes from 0 to
264 − 1 = 18, 446, 744, 073, 709, 551, 615.

(Signed) integers: To be able to represent both positive and negative numbers, we use the leftmost bit
as the sign of the number. Assume that we use 8bits to represent numbers, the 0000 0000 to 0111 1111 are
all positive numbers (and zero) and 1000 0000 to 1111 1111 are all negative (the space in between is only
for readability). With n bits we can represent numbers from −2n−1 up to 2n−1 − 1. For positive numbers
we use the binary representation of the number, as we did with unsigned integers. For negative numbers we
use what is called the two’s complement representation. In the two’s complement representation, if we use 8
bits, 1000 0000 represents -128, 1000 0001 is -127, up to 1111 1111 which is -1. We will not explain here the
logic behind two’s complement representation and why we use it, it has to do with the fact that it allows
the processor to perform easily addition and subtraction between positive and negative numbers.1

Floating point: Of course we cannot represent real numbers, which may have infinite number of digits.
However we can represent fractional numbers up to some precision, using the floating-point representation.
To represent them, we use some bits to represent the size of the number and some bits to represent the value.
We will not enter into details about how we do that2 but we will mention that if we use more bits we can
represent numbers with higher absolute value and with higher precision. So, for example, with 32 bits we
have single precision and with 64 bits we have double precision.

Characters: Characters are also represented as sequence of bits. The most common standard to represent
characters was the ASCII encoding, where each character was represented as one byte and there was a
mapping from each byte to a symbol (see Figure 1). This allowed to represent 256 different characters, which
was enough to represent upper and lower english characters, characters with accents, numbers, punctuation
points and in addition some “control characters” and some other symbols. You may still come across the
ASCII endocing when working with text. However 256 slots were not enough for representing characters in
all languages in the world, so recently we have started using the Unicode standard, where each character

1Check https://en.wikipedia.org/wiki/Two’s_complement if you are interested.
2Check https://en.wikipedia.org/wiki/Floating-point_arithmetic.
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Figure 1: The ASCII table. For example, “L” is represented as 76 = 4Ch.

can be represented with more than one byte.3 In Unicode its character has a code and then some encoding
scheme is used to represent it. Python 3 uses Unicode and it supports a variety of encoding schemes, such
as UTF-8 and UTF-16.4

3 Super Basic Computer Architecture

A computer has multiple components required to function. Here we give a high-level description of the basic
ones, which is required to understand the material of this text.

Central processing unit (CPU): The CPU (or simply processor), is the component that performs all
the arithmetic and logical operations. It reads information from the memory into its internal variables called
registers and it performs the operations on these registers. A processor is characterized by the dimension of
its registers, which determine the magnitude of numbers that it performs operation on and the dimension
of the memory that it processor can address. Thus we talk about processors of 16 bits, 32 bits, and 64
bits, with 64-bit being the most common nowadays (both on PCs and on smartphones). Another important
characteristic is the frequency it runs at (e.g., the Intel® Core i7-9700K Processor has a speed of 3.60 GHz).
Over the years, processors have had multiple enhancements, for example, multiple cores, which allow to
perform operations in parallel and cache which is some small memory inside the CPU chip, which allows to
load information from the main memory and then work on it fast without having to fetch the data from the
main memory for every single operation.

3You can find a nice article describing Unicode at a high level at https://www.joelonsoftware.com/2003/10/08/

the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/.
4A quick article on the topic can be found at https://realpython.com/python-encodings-guide/.
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Internal memory (RAM): Random-access memory (RAM), often called main memory or just memory
is where the data that the processor operates on reside. When a program is loaded, then its instructions
are loaded into the memory. Variables also created during the execution of the program are also in memory.
Then the processor reads the instructions from the memory and executes them, operating on data that it
also reads from the memory. The main memory is also temporary: data are expected to be replaced when
they are not needed any more and data are lost once the computer is switched off. The main memory is
limited (typically some gigabytes), so the operating system and programs often need to resort to external
memory while they are running.

External memory: External memory (typically hard disks or hard drives) are being used to store perme-
nently information. It is also used to store data while a program is executed, if there is not enough space in
the RAM. External memory is much larger than RAM and it is a permanent storage (i.e., data do not get
erased when the computer power is off) but it is much slower. Therefore, programs should try to use it as
little as possible for temporal storage. Traditional hard disks are based on magnetic metal disks (hence the
name), however newer hard drives are based on solid-state technology and are much faster.

3.1 A View of Memory

Assume that we have a 64-bit CPU. This means that in the CPU registers can store numbers up to 264 −
1, so when the CPU uses registers to access memory it can access up to 264 locations, from 0h up to
FFFFFFFFFFFFFFFFh; see Figure 2(a). This means that, theoretically, a 64-bit CPU could support RAM
of size up to 264 bytes, but it is not needed, so most processors support less (e.g., 252 bytes = 4 petabytes).

Recall that bytes can be grouped into words (Figure 2(b)). Typically the values are not stored anywhere
in RAM, but they are aligned. This means that if we want to store some value, we will store it in memory
locations that are multiples of the word size (number of bytes per word, 8 in Figure 2). Thus, often we
represent memory as a collection of words, as in Figure 2(c), and memory addresses will be multiples of the
word size. Of course, if we want to store values that occupy less than 8 bytes, we also write inside a word;
for example we can use one 8-byte word to represent 8 ASCII characters. Fortunately, the programming
language takes care of all these issues.

4 Python Types and Memory

We are familiar with different types of values, which we can assign to a variable; for example, integer, floating
point, string, tupple, list, dictionary, and so on. When we assign a value then Python creates an object. An
object consists of the data that it contains, along with additional information that Python uses to handle
these data. For example the object for the list [1, 2, -9] contains the numbers 1, 2, and −9 as well as
information about the length of the list (three in this case), and information about functions that are tied
to this object (e.g., append(8), which will add 8 to the list).

Therefore, an object that we create has a given type. Python has some built-in types (e.g., integer, string,
etc.) and we can also create new types by using classes.

In Table 2 we see the most common built-in types that Python has, along with the name that Python
uses for that type.

Let us see now in more detail, how Python stores these data in memory. When a Python (or some other
language) program is executed it uses the memory (1) to store its code, which will be executed, (2) to store
information required while the code is being executed, and (3) to store variables.

Briefly, the first part refers to the commands that the programmer has written (e.g., if, for, print
statements) as well as code stored in the libraries that the program uses. The CPU reads the code from
the memory and executes it. The second part refers to information that is being stored while the program
runs and is required to run properly. For example, it uses it to store the arguments that are passed when a
function is called. The third part refers to the memory that is created when the programmer defines some
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Figure 2: Three views of the memory of a 64-bit CPU architecture: just as a seaquence of bytes, separated
into words, and aligned into words. Words have length of 8 bytes.

Name Python name
Integer int

Floating point float

Boolean bool

Tuple tuple

List or array list

String str

Dictionary dict

Set set

Table 2: Some of them most used Python built-in data types.
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Figure 3: In the left we see the dictionary mapping the variable names to memory locations and on the
right a part of the memory. When we do the assignment x = 5347, Python first creates an integer object
and stores it into some location in the memory. In this example it occupies the locations 1E6AD0h up to
1E6AE7h (note that the last word consists of the bytes at 1E6AE0h to 1E6AE7h). The integer object
contains internal information needed to Python, as well as the number 5347. Of course, the dictionary is
also stored in the memory in some other location.

variables. The rest of this section refers to this last part, which is important to understand because it will
allow us to do more informed choices when we use variables.

First of all, to handle variables, Python creates a type of a dictionary where each dictionary key is a
variable name, and the dictionary value is the memory address where the value assigned to the variable is
stored. Actually, Python has more than one such dictionaries, one for the global variables (variables defined
outside all functions) and one for each new fuction that is called. In this way, a variable x used inside a
function is different from a variable x defined in another function or a global variable x. This is captured
by the concept of namespace and we will not discuss about it here. For the rest, let us assume that we talk
about global variables, variables defined outside any function.

We now consider some types and we see how Python stores them internally. Knowing this, will allow
us to understand whether an operation that we perform can be performed fast or not, and make the right
choice of how to store the data. I want to make two comments first:

• The exact details depend on the particular Python interpreter5 and actually change over time as the
language evolves. For example, the exact way that information is stored in Python 2.7 may be different
from that of Python 3.8. Nevertheless, the high-level procedure is typically the same.

• Most of what we say does not hold only for Python, but also for most other programming languages.
The biggest difference of Python from many other languages is that it represents integers and other
basic data types as objects. We discuss later about this when we talk about lists.

Integers. Consider a Python assignment such as x = 5347. This command does two things.6 See Figure 3.

1. It creates an integer object at some free location in the memory, where it stores the value 5347. Except
for this value, the integer object has some more internal information that are useful to Python.

2. In the dictionary with the variable names, it stores as value the address where the integer object is
located.

5The interpreter is the program that reads a Python program and converts it into instructions for the CPU.
6Things are a bit different for small integer values ({−5, . . . , 256}), for which Python tries to be more efficient, but let us

ignore this for this discussion. They are also different for very large integer values, where it uses more space.
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Figure 4: In the left we see the dictionary mapping the variable names to memory locations and on the right
a part of the memory. When we do the assignment values = [5347, 3971, 510], Python creates a list
object and stores it into some location in the memory. In this example it occupies the locations 1E6AC8h
up to 1E6B37 h (note that the last word consists of the bytes at 1E6B30 h to 1E6B37 h). The list object
contains internal information needed to Python (e.g., the size, 3), as well as some memory locations where
the numbers are stored. For instance, the memory location 1E6B08 h contains the first element of values:
it has stored the address (1E6AC8h) of the (newly created) integer object where the value 5347 is stored.
The list also contains three empty locations, in case we decide to append some elements.

Floats, booleans, tuples, and strings. These types are stored in memory in a way similar to integers.
For example, when we assign a tuple to a variable, Python will create a tuple object, it will store in it the
values in the tuple, and it will store in the dictionary of variables the memory address of the newly created
tubple Although each of these types has its own details about how it is stored in memory (strings especially),
the high-level procedure is the same.

Lists. Consider a Python assignment such as values = [5347, 3971, 510] See Figure 4. Python first
creates and stores in memory integer objects for each of the three numbers. It then creates e list object, and
it stores the memory addresses of those numbers, along with some internal information that is needed to
Python, such as the size of the list (3 in our example). Also, when the list is created, Python will reserve
some extra memory slots, in case we decide to append some value to the list. In the case that we do a lot of
appends and those slots become full, then Python will allocate some more memory space (e.g., with double
the size), probably in some other memory location, it will copy the old values and then it will continue
appending. The exact details of this depend on the paricular Python implementation and are not important
for us.7

One may wonder why we cannot store directly the numbers 5347, 3971, and 510 inside the memory
reserved for the list and instead Python creates new memory objects. Isn’t this a waste of space and time?
Indeed it is, but it has other advantages; for example it allows to store in the list elements of different
type—here, the second value, instead of 3971 could have been the string "OK", and the only difference would
have been that the memory address in location 1E6B10 h would have pointed to a string object. As a matter
of fact, most programming languages (C++, Java, etc.) have made the choice, differently from Python, to
store directly the numbers. Also the arrays provided by Python’s numpy library store directly the numbers

7This shows why indexing for lists starts at 0 instead of 1: when in our program we try to access the element values[i],
internally Python will translate it to simply performing a lookup at memory location indicated at position 1E6B08 h + 8i
(Figure 4).
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1. Function MaxFind(A)
2. Input: A: Array of size n
3.Output: The maximum among the values in A
4. max ← A[1]
5. for i = 2 to n:
6. if A[i] > max :
7. max ← A[i]
8. end if
9. end for
10. return max

Figure 5: Algorithm MaxFind: Returns the maximum among the elements of list A.

and not memory locations, so I advise you to use numpy if you need to perform a lot of vector operations on
large data.

We can now see why lists are inefficient for some operations. Assume that we want to remove an elements,
for example the second one. Then all the elements from the third one up to the end of the list have to be
copied one position above. Thus, removing an element from the middle of the list requires Θ(n) steps in the
worst case, where n is the current number of elements.8 Similarly, to add an element may require to copy
the entire list to some other memory location, and may require Θ(n) steps. That’s why Python reserves
some extra space when creating a list, or when it increases its size by copying it elsewhere. Finally, searching
or finding the maximum also require Θ(n) steps: we need to go to every single location and examine the
elements. Therefore, if we need to perform a lot of these operations then probably a list is not the best way
to store the data. Luckily there are more complicated data structures that allow to perform these operations
much faster.

Sets and dictionaries. These two types require to be able to access efficiently their keys. To do that,
Python uses a data structre called a hash table, which we will describe later.

5 Complexity of Algorithms

We will now start seeing algorithms. An algorithm is a sequence of instructions for solving a computational
problem. Often, we describe an algorithm using pseudocode, which is a high-level description of the algorith-
mic steps, and which a programmer can turn into a program written is some programming language. We
will see various pseudocode examples in this text.

5.1 A Simple Example

We start by showing a very simple algorithm, MaxFind, for finding the maximum among a list of elements.
We give the description in pseudocode in Figure 5.

The first thing that we check once we design an algorithm is correctness: whether it gives always the
correct result. Here it is straightforward (one could prove it by induction), although for more complicated
algorithms sometimes we really need to prove correctness formally to be sure of the result.

Just for completeness, let’s see how we could prove correctness formally. Note that here I am being really
pedantic, to show how a proof would go, although in practice we would not go into all these details, in such
obvious cases.

First note that if n = 1 then in line 4 max is assigned the only value in A, A[1]. Lines 5–9 will not be
executed, and thus MaxFind returns the correct value A[1].

8See Section 5.2 for the meaning of Θ(n).
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For n ≥ 2 we will prove correctness by induction. In particular, we will show that for all i ∈ {2, . . . , n},
at the end of the for loop iteration in lines 5–9 corresponding to i, max holds the maximum among the
elements A[1], A[2], . . . , A[i].

Base case: For i = 2, note that this is the first time that we enter the loop 5–9; then lines 6–8 ensure that
at the end of the for loop, after line 9, max = max{A[1], A[2]}, which is the maximum of A.

Induction hypothesis: We assume that the claim is true for i = i′. That is, at the end of the for loop
iteration with value i = i′, we have that

max = max
j=1,...,i′

{A[j]}.

Inductive step: For i = i′ + 1 note that by the inductive hypothesis, when we arrive at line 6 in iteration
i = i′ + 1, we have that

max = max
j=1,...,i′

{A[j]},

which means that max ≥ A[j], for all j ≤ i′. Now there are two cases:

• If A[i′ + 1] ≤ max then line 7 will not be executed and the value of max will remain unchanged.
Then at line 9 we combine this with the induction hypothesis and we have that max ≥ A[j], for
all j ≤ i′ + 1.

• If A[i′ + 1] > max then by the induction hypothesis we have that A[i′ + 1] > max ≥ A[j], for all
j ≤ i′. Then in line 7 we will update the value of max to A[i′ + 1], so at line 9 we will have that
max = A[i′ + 1] ≥ A[j], for all j ≤ i′, which implies that max ≥ A[j], for all j ≤ i′ + 1.

In both cases, when we arrive at the end of loop iteration i′ + 1 we have that max ≥ A[j], for all
j ≤ i′ + 1, or, in other words,

max = max
j=1,...,i′+1

{A[j]},

which proves the inductive step and completes the induction proof.

We proved that at affter we exit the for loop at line 9, max holds the maximum value of A and this value
is returned in line 10. This completes the proof of correctness of algorithm MaxFind.

In Section 5.5 we show a similar proof (but with fewer details) for algorithm BinarySearch, where
correctness is less obvious.

The next thing that we typically need to estimate is the algorithm’s efficiency, its speed. Of course the
running time of a program that implements this algorithm will depend on many factors: the input that we
use, the programming language, how efficient the implementation is, and of course, the machine on which it
will be executed. To be able to evaluate the efficiency of the algorithm in a way that it does not depend on
the particular hardware or on how it is implemented, we instead measure the complexity of the algorithm,
which is the number of steps that it performs, as a function of the input size.

Here our input is an array of n elements, so the input is of size n. Lines 4 and 10 are executed once. The
loop will be executed n− 1 times, so line 6 will be executed n− 1 times. Line 7 depends, it can be executed
from 0 times if (A[1] is the largest element) to n− 1 times (if all the elements are different and A is sorted
in increasing order). Therefore, in the worst case the number of steps is 3(n− 1) + 2 = 3n− 1.

Note that I could have written the pseudocode in a different way, using a while loop instead of a for
loop; see Figure 6. If we measure now the number of steps we obtain 4(n − 1) + 3 = 4n − 1. Even though
the two algorithms are exactly the same, we obtain a different result based on how we describe it. In any
case, the important fact is that in both cases the running time is shown to grow linear in n. Thus we say
that the algorithm is a linear algorithm. If we define T (n) to be the worst-case running time of MaxFind
when the input is of size n, we write that T (n) = O(n), indicating that the order of growth of the running
time is n (linear). We now make a digression to define and explain this notation.
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1. Function MaxFind(A)
2. Input: A: Array of size n
3.Output: The maximum among the values in A
4. max ← A[1]
5. i← 2
6. while i ≤ n:
7. if A[i] > max :
8. max ← A[i]
9. end if
10. i← i+ 1
11. end while
12. return max

Figure 6: Algorithm MaxFind: Returns the maximum among the elements of list A. It uses a while loop
instead of a for loop.

5.2 Big O Notation

To measure the time complexity of algorithms, computer scientists use the big O notation or asymptotic
notation, which allows to look at the growth rate of a function, ignoring the constants. Assume that we are
interested in calculating the growth rate of a function T (n).

We say that a function T (n) is of the order of g(n) and we write T (n) = O(g(n)) if there exist constants
c ∈ R+ and n0 ∈ Z+ such that for all n ≥ n0 we have that T (n) ≤ cg(n). Because we are interested on what
happens when n is sufficiently large, we call this also asymptotic notation.

To understand the definition, let us look at the function T (n) = 7n3+50n2− 10n+4. We will show that
T (n) = O(n3).

• We have the term 7n3

• For n ≥ 50 we have that 50n2 ≤ n3

• For n ≥ 0 we have that −10n ≤ 0

• For n ≥ 2 we have that 4 ≤ n3

Therefore, for n ≥ 50 we have that

T (n) ≤ 7n3 + n3 + 0 + n3 = 9n3,

which means that T (n) = O(n3) (with c = 9 and n0 = 50; note that if we were more precise we could have
obtained a smaller value of c but we don’t really care, we just want to show that there exists some c and
some n0).

Usually, it is easy to compute the growth order of the function, as it equals to the term that grows faster
in n (the term 7n3 in our example). This will eventually dominate.

The following rules allow to handle most of the cases that we see in practice. Here, to make the pre-
sentation simple, I write f(n) ≤ g(n), to indicate f(n) = O(g(n)). a, b, c and d indicate positive constants,
independent of n.

• nc ≤ nd for c ≤ d.

• logc n(= (log n)c) ≤ nd.

• nc ≤ dn, for d > 1.

• More generally, nc ≤ dan
b

, for d > 1.
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import numpy as np
import matp lo t l i b . pyplot as p l t
n = np . arange ( 1 . , 1000 . , 1)
p l t . p l o t (n , np . l og (n ) , ’ k−− ’ , n , n , ’ r−− ’ ,

n , n∗np . l og (n ) , ’ g−− ’ , n , 200∗n∗∗2 , ’b−− ’ , n , n∗∗3 , ’ y−− ’ )
#p l t . y s c a l e ( ’ l o g ’ )
p l t . show ( )

Figure 7: Sample code for plotting function growth.

In the following we order some functions that we may encounter in practice when analyzing algorithms:

1 ≤ log log n ≤ log n ≤ log2 n ≤ √n ≤ n ≤ n log log n ≤ n log n ≤ n
√
n ≤ n2 ≤ n3 ≤ 2n

I invite you to visualize some functions to see visual the difference in the growth. You can find some
sample code to do it with the mathplotlib library in Figure 7.

Note that when we say that T (n) = O(g(n)), then g(n) is an upper bound on the complexity of T (n).
This means, for example, that if g(n) = O(h(n)), then we also have T (n) = O(h(n)). Usually when we
analyze algorithms we want to upper bound its complexity, so we use O().

What if we want to lower bound? Then there exists the Ω(), defined analogously:
We say that a function T (n) is T (n) = Ω(g(n)) if there exists constants c ∈ R+ and n0 ∈ Z+ such that

for all n ≥ n0 we have that T (n) ≥ cg(n).
When we analyze algorithms, there are some cases that we want to prove a lower bound on the running

time, that is, we would like to show that no algorithm can achieve a running time smaller than g(n). Then
we would say that we have the lower bound T (n) = Ω(g(n)).

Finally, if we know that the precise order growth of a function is g(n), then we can write T (n) = Θ(g(n)).
Thus we have that a function is T (n) = Θ(g(n)) if it is both T (n) = O(n) and T (n) = Ω(n).

To make these notions clear, for the function T (n) = 7n3 + 50n2 − 10n+ 4 that we saw earlier, we have,
for example:

• T (n) = O(n3), T (n) = O(n4), T (n) = O(2n)

• T (n) = Ω(n3), T (n) = Ω(n2), T (n) = Ω(logn)

• T (n) = Θ(n3)

For your information, there exist also the T (n) = o(n) and T (n) = ω(n), but we will not use them here;
you can find more information online.9

5.3 Back to the Analysis of Algorithms

Let us get back to the MaxFind example of Section 5.1. There we showed that T (n) ≤ 3n− 1, therefore we
have that T (n) = O(n). Note that the big O notation allows to avoid the minor problem we had in comparing
the pseudocodes in figures 5 and 6, in both cases we have T (n) = O(n) (and, of course, T (n) = Θ(n)).

The downside of this notation is that it hides the constants, and sometimes they can be important, that
is, two algorithms may have the same complexity asymptotically, but in practice they may differ a lot because
of the constants. Thus there are cases where we may want to perform a more precise analysis. However, for
the vast majority of the cases, the asymptotic notations is the one that we use, as it allows us to obtain a
good idea of the efficiency of the algorithms, at a theoretical—and often at a practical—level.

9We say that T (n) = o(g(n)) if T (n) = O(g(n)) but T (n) is not Ω(g(n)). In other words if T (n) is strictly smaller that g(n),
meaning that T (n)/g(n) converges to 0 as n → ∞. We can define similarly ω(g(n)).
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1.PrefixSumFunction MaxFind(A)
2. Input: A: Array of size n
3.Output: S: Prefix-sum array of A
4. for i = 1 to n:
5. S[i]← 0
6. for j = 1 to i:
7. S[i]← S[i] +A[j]
8. end for
9. end for
10. return S

Figure 8: Algorithm PrefixSum: Returns the prefix-sum array of array A.

We have shown that our algorithm is correct and we have computed its run-time complexity. The final
step is to see if it is optimal. In other words, is there any other algorithm for finding the maximum with
asymptotic running time less than n? The answer is of course no, because any algorithm must at least read
the entire input and this requires n steps. Thus for any (correct) algorithm that compute the maximum,
if T (n) is its running time, we have that T (n) = Ω(n). Therefore our the MaxFind algorithm is optimal,
asymptotically.

5.4 Prefix Sum

To understand better the concepts of the analysis of algorithms, we turn to another simple problem, that
of computing the prefix sums of an array. The input to the array is an array A of length n and we want to
compute, for each i ∈ [n] the sum A[1] +A[2] + · · ·+A[i], that is we want to compute all the values10

S[i] =

i∑
j=1

A[j].

We call S the prefix-sum array of A.
The most obvious algorithm is to follow the definition. We present the algorithm in Figure 8.
As with MaxFind we want to show correctness and compute the running time complexity. The correct-

ness is straightforward, as we apply directly the definition to compute S[i]. For the running time, we notice
that the step that is executed most of the times is step 7, which is inside the two for loops. How many times
is it executed? For a given i it is executed i times (for j = 1 to i) and i ranges from 1 to n. Therefore the
total number of executions is

n∑
i=1

i =
n(n+ 1)

2
= O(n2).

The next question that we ask is: “Is this algorithm optimal?” In the same way as with MaxFind, we
can argue that the running time is Ω(n): we need to at least read all the values in A. But there is a gap
between the lower bound n and the running time of our algorithm, n2. When there is such a gap, there are
three cases that may happen, maybe more than one at the same time:

1. The analysis of the algorithm is not tight, and the actual running time is lower than the one calculated
(remember that we compute an upper bound).

2. There exists a faster, asymptotically, algorithm.

3. The lower bound is not tight and one could show a stronger (higher) lower bound.

10We define [n] = {1, 2, . . . , n}.
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1. Function PrefixSumFast(A)
2. Input: A: Array of size n
3.Output: S: Prefix-sum array of A
4. S[1]← A[1]
5. for i = 2 to n:
6. S[i]← S[i− 1] +A[i]
7. end for
8. return S

Figure 9: Algorithm PrefixSumFast: Returns the prefix-sum array of array A in linear time.

The area of analysis of algorithms if full of problems for which we have a gap between the best lower bound
that we have proven and the best algorithm that we have designed, and researchers try to close this gap by
attacking all three fronts:

1. Here there are two paths: (1) We try to make the analysis more precise, more tight as we say, and
decrease the complexity upper bound that we prove, or (2) we try to find some input instance for which
the running time required matches the one that we have computed; in that case our analysis is tight.

2. We try to design a better algorithm. Sometimes this may be relatively easy by combining techniques
that work on other similar problems, but other times it requires ingenuity, a deep understanding of the
problem, and probably the necessity to invent new algorithmic techniques.

3. We try to improve the lower bound, that is, we try to show a higher upper bound. Sometimes we can
do this by simple combinatorial arguments, but other times we may need to use tools from information
theory, probability, communication complexity, and other more advanced tools.

The more one works on algorithms, the more intuition she develops to guide her towards which direction
to follow, and often, pursuing one direction may show that we should attack another one. For example,
while trying to design a better algorithm we may not succeed and this may allow us to understand that the
problem is harder than we thought and guide us toward showing a better lower bound. On the other hand,
there have been some problems that have been open for years before some researchers come up with a new
idea and do some progress.

In any case, the prefix-sum problem is easy. Clearly there is a faster algorithms that we can design: we
don’t need to compute the summation all the time form scratch, but we can notice that S[i] = S[i−1]+A[i].
This gives the algorithm PrefixSumFast, shown in Figure 9.

The correctness of PrefixSumFast is again straightforward (one could prove it with induction on n).
Its time complexity is of course Θ(n).

5.5 Recursion

Recursion is a technique that, although not strictly necessary, it sometimes makes the description of algo-
rithms and the corresponding programs much more natural and easy. In recursion, we define a function that
may call itself. (More generally, a function may call another function, which may call another function, an so
on, until we call the original function, closing the cycle. Here however we only deal with the most common
type of recursion, a function calling itself.)

Let us consider the problem of computing the factorial of a given number: n! We can define the recursive
function to compute it, shown in Figure 10. The function starts by checking in line 4 if the input is 0, in
which case it returns a value. Every recursive function needs to check a boundary condition, otherwise it will
keep calling itself for ever. If the input is greater than 0 then it will continue and it will return n · (n− 1)!,
where (n− 1)! is calculated, recursively, by calling the same function Factorial.

The algorithm obviously returns the correct result, given that n! = n · (n− 1)!. Let us now compute the
running time, T (n). Here the input is only one value, n, but we notice that the running time depends on the

13



1. Function Factorial(n)
2. Input: n: Nonnegative integer
3.Output: n!: The factorial of n
4. if n = 0:
5. return 1
6. end if
7. return n · Factorial(n− 1)

Figure 10: Algorithm Factorial: Given n it computes n!.

value n (and not on the number of input elements, as was the case for the previous problems). Therefore,
we let T (n) be the running time when Factorial is called with input value n.

Of course we cannot compute T (n) as before; its running time depends on itself! But we can write a
recursive definition:

T (n) =

{
2, if n = 0,

T (n− 1) + 3, otherwise.

To see why this is the case, note that we first perform 1 operation (line 4) and if n = 0 we perform 1 more
(line 5), instead if n > 0, in line 7 we call Factorial with input n−1, requiring time T (n−1), and then we
multiply by n (1 step) and we return the result (1 step).11 The particular values, 2 and 3, are not important
as we will use the Big O notation, the important thing is that there is a constant work that we account for.

There are a few ways to solve a recursive equation like this, here we will see the most immediate, which
is to expand and try to understand the main form. Then, if we want to be rigorous, we use the one that
we guessed and we substitute to prove it. Let us see this procedure in practice. For large n we have that
T (n) = T (n− 1) + 3, so if we apply this equation multiple times, and in the end T (0) = 2, we obtain:

T (n) = T (n− 1) + 3

= (T (n− 2) + 3) + 3 = T (n− 2) + 3 · 2
= (T (n− 3) + 3) + 3 · 2 = T (n− 3) + 3 · 3
= (T (n− 4) + 3) + 3 · 3 = T (n− 4) + 3 · 4
= (T (n− 5) + 3) + 3 · 4 = T (n− 5) + 3 · 5
= . . .

= T (n− i) + 3i

= . . .

= T (n− n) + 3n = 2 + 3n.

We thus showed that T (n) = 3n + 2. If really want to prove it, we can use induction and the recursive
formula: For n = 0 we get that T (0) = 2 and for n ≥ 1 we assume that the formula is correct for up to n− 1
and for n we have:

T (n) = T (n− 1) + 3 = (3(n− 1) + 2) + 3 = 3n+ 2,

proving that the formula T (n) = 3n+ 2 holds for every n ∈ Z+. Therefore, we have that T (n) = O(n).
Let us consider now the problem of computing the nth Fibonacci number. Recall that the Fibonacci

sequence {Fn;n ∈ Z+}, is defined as

Fn =

{
n, if n = 0 or 1,

Fn−2 + Fn−1, otherwise,

11We assume that each multiplication requires a constant amount of time. However, as n! becomes larger, which happens
quite fast, n! cannot fit in a single CPU register and multiplication requires time that depends on the length of the two numbers
that are being multiplied. This is a more advanced issue, and we ignore it here.
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1. Function Fibonacci(n)
2. Input: n: Nonnegative integer
3.Output: Fn: The nth Fibonacci number
4. if n ≤ 1:
5. return n
6. end if
7. return Fibonacci(n− 2) + Fibonacci(n− 1)

Figure 11: Algorithm Fibonacci: Given n it computes the nth Fibonacci number Fn, starting from 0.

so that the sequence is the
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

Algorithm Fibonacci in Figure 11 solves the problem applying directly the definition. The algorithm applies
directly the definition, so it is correct. Let us now compute the running time. Following the procedure that
we saw for Factorial, we can write:

T (n) =

{
2, if n ≤ 1,

T (n− 2) + T (n− 1) + 3 otherwise.

This seems to be similar to the running time that we saw earlier; yet, the fact that we have those two terms
instead of one, and in which n decreases by a constant amount, makes T (n) be exponential! Here is an easy
way to see it. For general n, and using the fact that T (n − 1) = T (n − 3) + T (n − 2) + 3 ≥ T (n − 2), we
have that:

T (n) = T (n− 2) + T (n− 1) + 3

≥ T (n− 2) + T (n− 2)

= 2 · T (n− 2)

≥ 2 · 2 · T (n− 4) = 4 · T (n− 4)

≥ 4 · 2 · T (n− 6) = 8 · T (n− 6)

≥ 8 · 2 · T (n− 8) = 16 · T (n− 8)

≥ . . .

≥ 2i · T (n− 2i)

≥ . . .

≥ 2n/2 · T (n− 2(n/2))

= 2n/2+1,

assuming than n is even (if n is odd we obtain a similar expression).
Therefore it turns out that this algorithm is very inefficient! If we reflect upon it a little bit, we can

see that it is because by simply using the recursion we recalculate things again and again. For instance,
calculating the value T (n) and T (n − 1) both require the calculation of T (n − 2). Thus we calculate the
value T (n − 2) twice instead of once. But each of these calculations, for the same reasoning, will require
to perform twice the calculation of T (n − 4), for a total of four times. This can explain why we obtain an
exponential time.

What is the solution? There are different ways. One would be to keep the recursive algorithm, but when
we compute a result store it in memory and not recompute it (a technique called memoization but it is too
early for us to explain more). Other approaches can also work but are also not important to learn at this
point (e.g., a technique called tail recursion). The easiest way is to not use recursion but compute it with a

15



1. Function FibonacciIterative(n)
2. Input: n: Nonnegative integer
3.Output: Fn: The nth Fibonacci number
4. if n ≤ 1:
5. return n
6. end if
7. previousValue ← 0
8. currentValue ← 1
9. for i = 2 to n:
10. newValue ← previousValue + currentValue
11. previousValue ← currentValue
12. currentValue ← newValue
13. end for
14. return currentValue

Figure 12: Algorithm FibonacciIterative: Given n it computes the nth Fibonacci number Fn, using an
iterative algorithm.

for loop. For example, the algorithm FibonacciIterative in Figure 12 computes the nth Fibonacci value
in time O(n).

We now move to the last example of recursion, which is also the most interesting. We want to create an
algorithm that, given an array A that is sorted with values from the smallest to the largest, and a value x,
returns the index of x in A, or −1 if A does not contain x. Of course we can find if the element exists, in
linear time, by scanning one by one the array A. However the fact that A is sorted can help us tremendously
(think about how you search for a word in a dictionary). This can give us the idea of binary search: we
look at the middle element of A, and if it equals x we are done. If not, then if x is smaller than the middle
element, we restrict our search on the first half of A. If x is greater, then we restrict our search on the
second half of A. In this way, in every step we can ignore half of the remaining elements. We present the
pseudocode of the algorithm BinarySearch in Figure 13.

This is an example of how to prove the correctness of the algorithm when it is not completely obvious as
in the previous examples that we saw. We argue as follows:

• If x ̸∈ A, first note that the condition in line 11 can never be satisfied and, therefore, line 12 will never
be executed. Furthermore, notice that, as long as high ≥ low , the difference high − low decreases in
every recursive call. This means that eventually high will become less than low and then line 7 will
evaluate to True and the function will return −1.

• On the other hand, if x ∈ A, then by examining every line (esp. lines 13–16) we can see that the
algorithm BinarySearch maintains the invariant that A[low ] ≤ x ≤ A[high]. This, combined with
the fact that A is sorted in nondecreasing order, means that we will never have that high < low , so
line 7 will always evaluate to False and line 8 will never be executed. On the other hand, in each
recursive call the difference high − low decreases. These two facts, imply that eventually we will have
A[mid ] = x (at the latest when the function gets called with low = high) and then the condition in
line 11 will evaluate to True and subsequently in line 12 it will return the correct index.

Let us now compute the running time, T (n). The fact that we use the Big O notation allows us to be a
bit sloppy. For n = 1 we have T (1) = c′ for some constant c′. Also, as long as n > 1 we have that

T (n) ≤ T

(⌈
n− 1

2

⌉)
+ c,

where c is some constant that counts the constant amount of work we do at each step. Note also that we
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1. Function BinarySearch(A, low , high, x)
2. Input: A: Array of size n, sorted in nondecreasing order
3. low : The lowest index of A in which we search
4. high: The highest index of A in which we search
5. x: Real value
6.Output: The index of A where x can be found, or −1 if x does not exist within A[low ], . . . A[high]
7. if high < low :
8. return −1
9. end if
10. mid = ⌊(low + high)/2⌋
11. if x = A[mid ]:
12. return mid
13. else if x < A[mid ]:
14. return BinarySearch(A, low ,mid − 1, x)
15. else:
16. return BinarySearch(A,mid + 1, high, x)
17. end if

Figure 13: Algorithm BinarySearch: It accepts array A of length n, sorted in nondecreasing order, two
integers low and high, and a value x. If x exists in A[low ], A[low+1], . . . , A[high−1], A[high], then it returns
an index of A where x belongs. If x does not exists in this range, it returns −1. In the first call, to search
for x in the entire array A, the function call is BinarySearch(A, 1, n, x).

have that ⌈(n− 1)/2⌉ ≤ n/2. Therefore, we obtain

T (n) = T

(⌈
n− 1

2

⌉)
+ c ≤ T

(n
2

)
+ c ≤ T

(n
4

)
+ 2c ≤ T

(n
8

)
+ 3c

≤ T
( n

16

)
+ 4c ≤ · · · ≤ T

( n

2i

)
+ c · i ≤ · · · ≤ T

( n

2log2 n

)
+ c log2 n

= T (1) + c log2 n = c′ + c log2 n = O(log n).

Notice that the exact constants c and c′ do not matter if we want to show that T (n) = O(log n).
Thus we see that binary search is exponentially faster than linear search. Of course it requires to have

the input already sorted.
Is it optimal? The answer is yes, but we will not prove it here.12

6 NP-Completeness

All the problems that we have seen until now can be solved by algorithms that require polynomial time. Yet
there are problems that we do not know how to solve in polynomial time or whether they can even be solved
in polynomial time. (By the way, there are even problems that we know that can never be solved by any
algorithm no matter how long it takes, but that’s another story.)

Computer science has developed the area of complexity theory to study the hardness of problems. Com-
putational problems belong into complexity classes based on their hardness. Two very important classes are
the following two:

Class P: This includes the problems that can be solved in polynomial time.

12The proof is based on information theory: We need to identify one index out of n possible indices, so we need log2 n bits
of information, and each comparison that we perform gives as at most one bit of information, so we need to peform at least
log2 n comparisons.
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(a) A sudoku problem instance. (b) A solved sudoku problem instance.

Figure 14: An unsolved and solved sudoku problem instance. (Source: https://en.wikipedia.org/wiki/
Sudoku)

N P

N P − complete
P

(a) Scenario 1: P ̸= NP.

P = N P = N P − complete

(b) Scenario 2: P = NP.

Figure 15: Relationship between the NP and the P problem classes. One of the two possible scenarios holds
but we do not know which one.

Class NP: This includes the problems for which, if a solution is given, we can verify in polynomial time
whether the solution is correct or not or.

Class P is easy to understand and we have seen various examples (finding the maximum element of an
array, finding the index of a given nuber in a sorted array, finding the nth Fibonacci number, To understand
the class NP, think of the problem of sudoku (see Figure 14). Although sudoku might be hard to solve, it
is very easy to verify if a given solution is correct: it is enough to check that every row, column, and block
contains all digits 1–9. Sudoku can actually be generalized to having n = k2 numbers, instead of just 9,
and given a generalized problem intance of sudoku and a candidate solution, it is easy to verify whether a
solution is correct, in time O(n2). Thus the problem of (generalized) sudoku is in NP.

Note that we have P ⊆ NP: If a problem can be solved in polynomial time then we can certainly also
verify in polynomial time that a given solution is correct by solving the problem in polynomial time and
comparing the solution that we found with the candidate solution.13; see Figure 15.

One may wonder whether there exist problems that are in NP but are not in P. Actually, after 50 years
of research, we still don’t know the answer! There are two potential scenarios in our universe:

1. P ≠ NP (see Figure 15(a)): This means that there exist problems in NP \ P; these are problems

13This is just the intuition. To really prove that P ⊆ NP we need to become more technical and it is not needed at this
point.
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that cannot be solved by a polynomial-time algorithm, but for which if we are given a solution we can
verify in polynomial time whether the solution is correct.

2. P = NP (see Figure 15(b)): Every problem in NP can be solved in polynomial time.

Which of the two scenarios is true? This is arguably the most important unsolvable problem in theoretical
computer science and one of the most important for all mathematics. It is actually so important that the
Clay institute categorized it as one of the seven millenium problems in mathematics, for which a solution
would give one million U.S. dollars to the solver.14 Other millenium problems are the Poincaré conjecture
(solved in 2003) and the Riemann hypothesis. If it was shown that P = NP, this would have very profound
implications in many fields, such as mathematics, cryptography, economics, and philosophy.

Most researchers though believe that P ≠ NP and there are good reasons for this. One is the following.
Inside NP there exist some problems with the property that if we could solve any of them in polynomial time,
then we could solve any problem in NP in polynomial time. We call this class of problems NP-complete
problems. Let us elaborate a bit more.

In complexity theory we have the concept of a polynomial-time reduction between two problems. We
say that a problem P1 can be reduced in polynomial time to another problem P2, if there exists a way that
transforms in polynomial time an instance of the P1 problem to an instance of the P2 problem. Thus, if
we have a polynomial algorithm for P2 and a reduction from P1 to P2 then we also have a polynomial-
time algorithm for P1. For example, finding the maximium among n numbers can be polynomially reduced
(trivially) to the problem of sorting n numbers. But also the opposite is true: sorting n numbers can be
polynomially reduced to finding the maximum (find out how). Then we say that a problem P ∈ NP is
NP-complete if every problem in NP can be polynomially reduced to P .

Although a priori it is not clear why such problems should exist, It turns out that they do!15 Problems
such as TSP, set cover, knapsack, max clique, which we will see in Section 6.1, are all NP-complete. Notice
that this indicates that these problems are very hard: for 50 years, researchers have been trying unsuccessfully
to find a polynomial-time algorithm for problems in NP. If any NP-complete problem could be solved in
polynomial time, this would imply a polynomial-time algorithm for all those problems that all these smart
people have not been able to solve. Given this, most researchers believe that P ̸= NP and therefore the
reality is as depicted in Figure 15(a). If however, at some point, someone would find a polynomial-time
algorithm for an NP-complete problem, then all the three problem classes would collapse to one, as shown
in Figure 15(b)

It is important of course to recognize if a problem that we come across is NP-complete. In this case it
is almost always useless to try to solve the problem optimally and we can decide to solve it (nonoptimally)
with some other approach; see Section 6.2. The more you will work with algorithms, the more experienced
you will become into recognizing whether a problem is NP-complete or not.

Another related class of problems are the problems that are NP-hard. A problem is NP-hard if any
problem in NP can be reduced to it. The difference from NP-complete problems is that an NP-hard
problem does not have to be in NP, it can be even harder!16

NP-complete = NP-hard ∩NP.

One last note. The concept of hardness that we discuss here, has to do with the worst-case scenario.
In other words, when we say that a problem P can be solved in polynomial time, it means there exists an
algorithm such that for every instance of P the algorithm can produce a solution in polynomial time. On
the contrary, if a problem is not known to be polynomially sovable it means that there exists some input
instance of this problem that is not known to be solved in polynomial time. Note that this does not mean

14https://www.claymath.org/millennium-problems
15Cook in 1971 and Levin in 1973 proved, independently, that SAT, the problem of deciding whether a boolean formula that

contains n binary variables can be evaluated to True for some assignment of those n variables, is NP-complete. Then, to prove
that some other problem P is NP-complete, it suffices to find a polynomial-time reduction from SAT to P .

16There is also another technical difference: The class NP-complete contains the decision version of the problems, whereas
NP-hard may contain the optimization version.
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that all problem instances are hard! Luckily, it turns out that some of the input instances to NP-complete
problems that we encounter in practice are easy instances to solve. However, we cannot be sure that this
will always be the case, that is, that we will always come across easy instances.

6.1 Some Common NP-Complete Problems

There are various NP-complete problems that we encounter in practice. For a large list consult the book of
Garey and Johnson [2] and the web [1].

Here is a list of some common problems, which I will expand at some point, for now you can search them
online for more details.

• Travaling salesman problem (TSP): Given n points and the distances between them, find the tour that
visits all the points and minimizes the sum of the distances that belong to the tour.

• Hamiltonian path: Given a graph, find a path that visits each node exactly once.

• Knapsack: We are given a budget W ∈ Z+ and a collection U = {e1, . . . , en} of n elements. For each
element ei we have a value vi and a weight wi, with vi, wi ∈ Z+. The goal is to select a subset of
elements S ⊆ U , such that, ∑

ei∈S

wi ≤W

that maximizes ∑
ei∈S

vi.

• Set cover: We have a universe U = {e1, e2, . . . , en} of n elements and m sets S = {S1, . . . Sm}, where
Si ⊆ U . The goal is to find the minimum number of sets that can cover all the elements of U , that is,
find a collection C ⊆ S that contains as few sets as possible, such that⋃

S∈C
S = U.

• Maximum clique: Given a graph, find a subgraph of maximum size in which each node is directly
connected with every other node in the subgraph.

• Subset sum: Given a list of nunbers, find a subset whose sum equals to 0.

6.2 Approximation Algorithms and Heuristics

Unfortunately, often we come across an NP-complete problem that we need to solve (e.g., DHL every day
computes tours for delivering packages). Even though we cannot hope for a polynomial-time algorithm that
solves the problem, we still need to provide some solution. There are two main approaches that we follow.

Approximation algorithms. An approximation algorithm to a problem, is an algorithm that returns a
solution that is guaranteed to be within a factor of the optimal solution. For example, even though we cannot
solve the TSP exactly in polynomial time, there are approximation algorithms that if the input distances
satisfy the triangle inequality guarantee a solution that is at most 50% worse than the optimal. There is a
whole area in theoretical computer science dedicated to the study of such algorithms. The downside, is that,
although polynomial, often these algorithms are inpractical in practice (they have a very high exponent in
the polynomial running time) and then they are interesting only from a theoretical point of view.
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Heuristics. Heuristics are typically simple, natural algorithms that attempt to solve the problem. Usually
they are very easy to implement, and very often they return good solution in practice. Their main downside
is that they do not provide some guarantee for the solution that they return. Metaheuristics are generic
approaches that can be used to solve optimization problems. Examples of metaheuristic algorithms are
simulated annealing (inspired from statistical physics), ant-colony optimization, taboo search, and other
local-search approaches; these last ones, work by finding some or more candidate solutions and then try to
improve them by searching for solutions that are similar to the one(s) already found.

7 Data Structures

As we saw in Section 4, arrays are not very efficient for all types of operations; for example, they are not
efficient for searching for a given element by value—unless the elements are sorted. For this reason, computer
scientists have designed data structures, which are ways of storing information in memory such that some
operation can be performed efficiently. Each data structure may be more suitable for some type of operation
and less suitable for another; therefore, it is up to the analyst and the programmer to decide which data
structre is more appropriate for the desired application.

In this section we will present some om the most basic data structures, and their complexity in performing
operations. Note that often, even though two data structures may have the same asymptotic complexity,
one may be faster in practice for some operations because it may be simpler: for example, one data may
require one memory lookup for a given operation, whereas another one may require three. Nevetheless,
here we deal with the big O complexity and most of the time we ignore these differences; but as one starts
designing real-world systems becomes more aware of these issues. A more complete introduction to the topic
of data structures, and how they can be implemented by Python, is the book of Goodrich, Tamassia, and
Goldwasser [3].

Abstract and Concrete Data Structures First we distinguish between two concepts, that of an abstract
data type and that of a concrete data structure. Sometimes there can be a confusion between the two
concepts, because there is not a standard terminology (the choice of the two terms that I use is not standard)
and because they often share the same names, but it is important to know the difference.

An abstract data type (ADT) or abstract data structure is a description of the operations that a data
structure must support. It is essentially an interface description. For example, the map abstract data type,
specifies that a data structure that supports it must offer ways to create it, insert and remove elements,
search for an element, and so on.

A (concrete) data structure is a description of how the data are stored in memory and how various
operations, such as inserting elements into it, removing elements from it, and accessing its elements are
performed. A data structure can be used to implement some interface and different data structures can
implement the same interface. For example, the map abstract data type can be implemented by a balanced
tree or by a hash table, each of which has different properties.

To understand the difference, think of a car. A car is the analogue of an abstract data type: It specifies
that it has four wheels, a gas and break pedals, a steering wheel used to turn, and so on. But there are
different ways to implement a car: it can be based on a traditional internal combustion engine, it can be
hybrid, gas-powered, electric, and so on. Each of the different tecnologies has its own properties and can be
thought of as the analogue of a data structure.

7.1 Abstract Data Structures

We start by describing four abstract data structures: the queue, the stack, the map, and the priority queue.
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Figure 16: An example of a queue Q. Elements are inserted to the back of Q and returned from the front.
Q.peek() will return 3, and leave Q as is. Q.dequeue() will return 3 and remove it, so that the next element in
the front of the queue will be 1. Therefore, the sequence Q.dequeue(); Q.peek(); Q.dequeue(); Q.dequeue(),
will return the values 3, 1, 1, and 2. The sequence of Q.enqueue(7); Q.enqueue(9), will put 7 to the back,
after 6, and then 9 after 7.

7.1.1 Queue

A queue Q is a data structure that supports the first in first out (FIFO) paradigm: elements can be inserted
to Q one after the other, and the first one to be inserted is the last one to be extracted. See Figure 16.

A queue Q supports the following operations.

• Q.enqueue(x): Insert element x to the back of Q.

• Q.dequeue(): Remove the element in the front of Q and return it.

• Q.peek(): Return the elements in the front of Q.

• Q.isEmpty() : Return True if Q is empty.

7.1.2 Stack

A stack is a data structure that supports the last in first out (LIFO) paradigm: elements can be inserted
one after the other, and the last element inserted is the first element to be extracted.

A stack S supports the following operations.

• S.push(x): Insert element x on the top of Q.

• S.pop(): Remove element form the top of Q and return it.

• S.peek(): Return the element on the top of Q.

• S.isEmpty() : Return True if Q is empty.

7.1.3 Map

The map ADT is a data structure that allows to associate a key with a value. Note that this is what Python’s
dictionaries implement. Yet, the map ADT can be implemented in other ways as well (e.g., with a red-black
tree.)

A map M supports the following operations.

• M.set(k, v): Set the value of k in M equal to k. Replace the existing value associated with k if k
already exists in M .

• M.get(k): Return the value associated with key k in M .
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Figure 17: An example of a stack S. Elements are inserted on the top of S and removed from the top.
S.pop() will remove 1 from S and return it. The sequence S.push(9); S.push(2), will insert 9 on top of 1
and 2 on top of 9, and will not return any value. Therefore, the sequence S.push(9); S.peek(); S.push(2);
S.pop(); S.pop(); S.peek(); S.pop(); S.pop(), will return the values 9, 2, 9, 1, 1, and 3.

• M.exists(k): Return True if k exists in M , False if it does not.

• M.delete(k): Remove the key k from M and its associated value.

• M.isEmpty() : Return True if M is empty.

7.1.4 Priority Queue

The priority queue ADT allows to insert elements each of which has a priority, and it allows to extract the
one with the maximum priority.

A priority queue Q supports the following operations.

• Q.insert(x): Insert element x to the back of Q.

• Q.removeMax(): Remove the maximum element of Q and return it.

• Q.peekMax(): Return the maximum elements in Q.

• Q.isEmpty() : Return True if Q is empty.

In Table 3 we can see an example of a sequence of executions in a priority queue.

8 Algorithmic Techniques

Designing algorithms requires to understand well the problem, and with experience we become better in it.
Whereas often we need to come up with original ideas, there are some standard techniques that in some
cases can be applied to solve our problem or, at least, some part of our problem. Thus, knowing them, can
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Command Value returned Priority queue
{}

Q.isEmpty() True {}
Q.insert(7) {7}
Q.insert(2) {2, 7}
Q.insert(13) {2, 7, 13}
Q.insert(4) {2, 4, 7, 13}
Q.insert(7) {2, 4, 7, 7, 13}
Q.peekMax() 13 {2, 4, 7, 7, 13}

Q.removeMax() 13 {2, 4, 7, 7}
Q.removeMax() 7 {2, 4, 7}
Q.isEmpty() False {2, 4, 7}
Q.insert(5) {2, 4, 5, 7}

Q.removeMax() 7 {2, 4, 5}

Table 3: Example of a sequence of commands in an initially empty priority queue. The first column shows
the command, the second one that value (when a value is returned), and the third one the contents of the
priority queue after the execution of the command.

make our life easier when we try to solve the problem. Here we present some of them, starting with dynamic
programming.

8.1 Dynamic Programming

Dynamic programming is a very powerful technique, which, in the cases that it can be applied, it can provide
a polynomial-time algorithm to a problem that might look as requiring exponential time. We will expose it
with the example of the edit distance.

We define as the edit distance between two strings S and T as the minimum number of insertions or
deletions required (from anywhere in the string) to transform S to T . There are many other definitions for
the edit diestance that you may find, for example allowing also substitutions, or allowing also transposition,
but we stick with the simpler definition that only allows insertions and deletions.

For example the edit distance between strings “ALGORITHMS” and “LOGARITHM” is 5: We remove
the letters “A,” “O,” and “S” and we insert the letters “O’ and “A” in the right locations. Note that
there are many ways to transform “ALGORITHMS” to “LOGARITHM”. A trivial way is to remove all
the character from “ALGORITHMS” and then insert all the characters of “LOGARITHM,” resulting in 19
operations. The edit distance though is defined as the minimum number of operations in which this can be
achieved. Note also that in general there may be more than one ways that this minimum number can be
achieved.

It is easy to verify that the edit-distace definition satisfies all the properties of a distance function.
Let S[i] be the ith character of string S, and define Si to be the prefix of length i of S, that is

Si = S[1] ◦ S[2] ◦ · · · ◦ S[i],

where ◦ denotes string concatenation. Define analogously for T . Let n and m be the lengths of S and T ,
respectively, so we have that S = Sn and T = Tm.

Let ED(Si, T j) be the edit distance between strings Si and T j . Then we can inductively prove that, for
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1. Function EditDistanceRecursive(S, T )
2. Input: S: String of length i
3. T : String of length j
4.Output: The edit distance between S and T
5. i← len(S)
6. j ← len(T )
7. if i = 0:
8. return j
9. else if j = 0:
10. return i
11. else if S[i] = T [j]:
12. return EditDistanceRecursive(Si−1, T j−1)
13. else:
14. return 1 + min{EditDistanceRecursive(Si−1, T j),EditDistanceRecursive(Si, T j−1)}
15. end if

Figure 18: Algorithm EditDistanceRecursive: Given two strings S and T , return the edit distance
ED(S, T ) between them, computing it recursively.

i ∈ {0} ∪ [n], j ∈ {0} ∪ [m], we have

ED(Si, T j) =


i, if j = 0

j, if i = 0

ED(Si−1, T j−1), if i, j > 0 and S[i] = T [j]

1 + min{ED(Si−1, T j),ED(Si, T j−1)} if i, j > 0 and S[i] ̸= T [j].

(1)

Given this recursive formula, it is straightforward to implement the function recursively. In Figure 18 we
we see algorithm EditDistanceRecursive.

Let us compute the running time for lengths T (i, j). The worst case, is the last case, when we need to
perform two recursive calls. In that case we have that T (i, j) = c+T (i−1, j)+T (i, j−1), for some constance
c ≥ 1. Let N = i+ j, and let T (N) = T (i, j). Then we can write

T (N) = 2 · T (N − 1) + c ≥ 2 · T (N − 1) ≥ 4 · T (N − 2) = 8 · T (N − 3) = · · · = 2ℓ · T (N − ℓ).

We can continue until one of the two strings becomes the empty string, which will happen after at least
ℓ ≥ min{n,m} steps. Therefore, in the worst case we have that T (n,m) = Ω(2min{n,m}), that is, it requires
exponential time.

The reason that this happens, is the same as with the algorithm Fibonacci: the recursive definition
leads to recomputing again and again the edit distance between the same substrings.

Luckily here we can use the technique of dynamic programming. We want to compute the optimal
solution of the problem of transforming string S to string T . Equation (1) shows us, that to compute this
optimal solution, it suffices to use the optimal solution of three subinstances (depending on the case), namely
the pairs of strings (Si−1, T j−1), (Si−1, T j), and (Si, T j−1), and that these optimal solutions can be reused.
Thus, instead of recomputing them each time that we need them, we can store them. There are various ways
to implement this, and one way is by building a dynamic-programming table.

See Figure 19. We construct a table with n+1 rows and m+1 columns, with the ith row (starting from
0) corresponding to the prefix Si and the jth column (starting from 0) corresponding to the prefix T j . The
value at cell (i, j) equals to ED(Si, T j). We can complete the table using Equation (1). Row and column
0 equal to the length of the nonempty string. Then, notice that because ED(Si, T j) depends only on the
corresponding values of the substrings, to compute the value at cell (i, j), we just need values of the up–left
diagonal cell (if S[i] = T [j]), or the values in the cells just left and just above (if S[i] ̸= T [j]). Therefore, we
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(c) The table completed. The value
at the bottom-right corner gives the
edit distance of the two strings.

Figure 19: The dynamic-programming table for computing the distance between the strings S =
“AMNESTY ” and T = “HAMLET ”. Each row corresponds to a prefix Si and each column to a pre-
fix T j . Starting from top left, we fill in the table using Equation (1). In (a) we start by completing the
first row and column. For instance, we have that ED(“AMN ”, “”) = 3. In (b) we use the previous values to
complete the table. For example, we have that ED(“AMNE ”, “HAMLE ”) = ED(“AMN ”, “HAML ”) = 3.
Also, ED(“AMNE ”, “HAMLET ”) = 1 + min{ED(“AMNE ”, “HAMLE ”),ED(“AMN ”, “HAMLET ”)} =
1+min{3, 5} = 4. In (c) we have completed the table and we see that ED(“AMNESTY ”, “HAMLET ”) = 5.

can complete the table from top to bottom and from left to right. The edit distance ED(S, T ) is given at
the bottom–right cell. We can see a description of algorithm EditDistanceDP in Figure 20. The running
time of this algorithm is O(nm).
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1. Function EditDistanceDP(S, T )
2. Input: S: String of length n
3. T : String of length m
4.Output: The edit distance between S and T
5. n← len(S)
6. m← len(T )
7. edTable← Z(n+1)×(m+1)

8. for j = 0 to m:
9. edTable[0][j]← j
10. end for
11. for i = 1 to n:
12. edTable[i][0]← i
13. end for
14. for i = 1 to n:
15. for j = 1 to m:
16. if S[i] = T [j]:
17. edTable[i][j]← edTable[i− 1][j − 1]
18. else:
19. edTable[i][j]← 1 + min{edTable[i− 1][j], edTable[i][j − 1]}
20. end if
21. end for
22. end for
23. return edTable[n][m]

Figure 20: Algorithm EditDistanceDP: Given two strings S and T , return the edit distance ED(S, T )
between them, computing it by filling in the dynamic-programming table edTable. To simplify notation, we
assume that indexing in the table starts at 0 and indexting in S and T starts at 1.

27


	Binary and Hexadecimal Number Systems
	Representation of Information
	Super Basic Computer Architecture
	A View of Memory

	Python Types and Memory
	Complexity of Algorithms
	A Simple Example
	Big O Notation
	Back to the Analysis of Algorithms
	Prefix Sum
	Recursion

	NP-Completeness
	Some Common NP-Complete Problems
	Approximation Algorithms and Heuristics

	Data Structures
	Abstract Data Structures
	Queue
	Stack
	Map
	Priority Queue


	Algorithmic Techniques
	Dynamic Programming


