g

s s e R R e R RS e R e S e T

Quicksort

Quicksort is a sorting algorithm whose worst-case running time is ©®(n?) on an
input array of n numbers. In spite of this slow worst-case running time, quicksort
is often the best practical choice for sorting because it is remarkably efficient on
the average: its expected running time is ® (n 1g n), and the constant factors hidden
in the ®(nlgn) notation are quite small. It also has the advantage of sorting in
place (see page 16), and it works well even in virtual memory environments.

Section 7.1 describes the algorithm and an important subroutine used by quick-
sort for partitioning. Because the behavior of quicksort is complex, we start with
an intuitive discussion of its performance in Section 7.2 and postpone its precise
analysis to the end of the chapter. Section 7.3 presents a version of quicksort that
uses random sampling. This algorithm has a good average-case running time, and
no particular input elicits its worst-case behavior. The randomized algorithm is
analyzed in Section 7.4, where it is shown to run in ©(n?) time in the worst case
and in O (n Ign) time on average.

7.1 Description of quicksort

Quicksort, like merge sort, is based on the divide-and-conquer paradigm introduced
in Section 2.3.1. Here is the three-step divide-and-conquer process for sorting a
typical subarray A[p ..r].

Divide: Partition (rearrange) the array A[p ..r] into two (possibly empty) subar-
rays A[p..q — 1]and A[g + 1 ..r] such that each element of A[p .. ¢ —1]is
less than or equal to A[g], which is, in turn, less than or equal to each element
of A[g + 1..r]. Compute the index ¢ as part of this partitioning procedure.

Conquer: Sort the two subarrays A[p ..q —1]and A[g +1..r] by recursive calls
to quicksort.

Combine: Since the subarrays are sorted in place, no work is needed to combine
them: the entire array A[p ..r] is now sorted.

146

Chapter 7 Quicksort

The following procedure implements quicksort.

QUICKSORT(A, p,7)

1 ifp<r

2 then g < PARTITION(A, p, 1)
3 QUICKSORT(A, p,g — 1)
4 QUICKSORT(A, g + 1,r)

To sort an entire array A, the initial call is QUICKSORT (A, 1, length[A]).

Partitioning the array

The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray A[p ..r] in place.

PARTITION(A, p, 1)

1 x <« A[r]

2 i<« p—1

3 forj <« ptor —1

4 doif A[j] <x

5 theni < i+ 1

6 exchange Ali] <> A[J]
7 exchange A[i + 1] < A[r]

8 returni 4+ 1

Figure 7.1 shows the operation of PARTITION on an 8-element array. PARTITION
always selects an element x = A[r] as a pivot element around which to partition
the subarray A[p..r]. As the procedure runs, the array is partitioned into four
(possibly empty) regions. At the start of each iteration of the for loop in lines 3-6,
each region satisfies certain properties, which we can state as a loop invariant:

At the beginning of each iteration of the loop of lines 3-6, for any array
index k,

1.If p <k <i,then A[k] < x.
2.Ifi +1 <k <j—1,then Alk] > x.
3. If k = r, then A[k] = x.

Figure 7.2 summarizes this structure. The indices between j and r — 1 are not
covered by any of the three cases, and the values in these entries have no partidular
relationship to the pivot x.

We need to show that this loop invariant is true prior to the first iteration, that
each iteration of the loop maintains the invariant, and that the invariant provides a
useful property to show correctness when the loop terminates.

- - -

ot
13

at

7.1 Description of quicksort 147

i pj o
(a) !2|8|7|1|3'|5|6!4|

(b)

(c)

(d)

(e)

()

(2

()

®

Figure 7.1 The operation of PARTITION on a sample array. Lightly shaded array elements are all in
the first partition with values no greater than x. Heavily shaded elements are in the second partition
with values greater than x. The unshaded elements have not yet been put in one of the first two
partitions, and the final white element is the pivot. (a) The initial array and variable settings. None of
the elements have been placed in either of the first two partitions. (b) The value 2 is “swapped with
itself”” and put in the partition of smaller values. (¢)—-(d) The values 8 and 7 are added to the partition
of larger values. (e) The values 1 and 8 are swapped, and the smaller partition grows. (f) The values
3 and 7 are swapped, and the smaller partition grows. (g)—(h) The larger partition grows to include
5 and 6 and the loop terminates. (i) In lines 7-8, the pivot element is swapped so that it lies between
the two partitions.

Initialization: Prior to the first iteration of the loop, 7 = p — 1, and j = p. There
are no values between p and 7, and no values between i + 1 and j — 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when

148

L% > unrestricted

Figure 7.2 The four regions maintained by the procedure PARTITION on a subarray A[p..r]. The
values in A[p .. 7] are all less than or equal to v, the values in A[i +1..j — 1] are all greater than x,
and A[r] = x. The values in A[j..r — 1] can take on any values.

A[j] > x; the only action in the loop is to increment j. After j is incre-
mented, condition 2 holds for A[j — 1] and all other entries remain unchanged.
Figure 7.3(b) shows what happens when A[j] < x; i is incremented, A[/]
and A[] are swapped, and then j is incremented. Because of the swap, we
now have that A[i] < x, and condition 1 is satisfied. Similarly, we also have
that A[j — 1] > x, since the item that was swapped into A[j — 1] is, by the
loop invariant, greater than x.

Termination: At termination, j = r. Therefore, every entry in the array is in one
of the three sets described by the invariant, and we have partitioned the values
in the array into three sets: those less than or equal to x, those greater than x,
and a singleton set containing x.

The final two lines of PARTITION move the pivot element into its place in the
middle of the array by swapping it with the leftmost element that is greater than x.
The output of PARTITION now satisfies the specifications given for the divide step.

The running time of PARTITION on the subarray A[p..r] is ®(n), where
n=r —p-+1 (see Exercise 7.1-3).

Exercises

7.1-1
Using Figure 7.1 as a model, illustrate the operation of PARTITION on the array
A=(13,19,9,5,12,8,7,4,11, 2,6, 21).

7.1-2

What value of ¢ does PARTITION return when all elements in the array A[p ..r]
have the same value? Modify PARTITION so that ¢ = (p +r)/2 when all elements
in the array A[p ..r] have the same value.

7.1-3
Give a brief argument that the running time of PARTITION on a subarray of size n
is ®(n).

7.2 Performance of quicksort 149

Figure 7.3 The two cases for one iteration of procedure PARTITION. (a) If A[j] > x, the only
action is to increment j, which maintains the loop invariant. (b) If A[j] < x, index i is incremented,
Ali]and A[] are swapped, and then j is incremented. Again, the loop invariant is maintained.

7.1-4
How would you modify QUICKSORT to sort into nonincreasing order?

7.2 Performance of quicksort

The running time of quicksort depends on whether the partitioning is balanced or
unbalanced, and this in turn depends on which elements are used for partitioning.
If the partitioning is balanced, the algorithm runs asymptotically as fast as merge
sort. If the partitioning is unbalanced, however, it can run asymptotically as slowly
as insertion sort. In this section, we shall informally investigate how quicksort
performs under the assumptions of balanced versus unbalanced partitioning.

Worst-case partitioning

The worst-case behavior for quicksort occurs when the partitioning routine pro-
duces one subproblem with n — 1 elements and one with O elements. (This claim
is proved in Section 7.4.1.) Let us assume that this unbalanced partitioning arises
in each recursive call. The partitioning costs ®(n) time. Since the recursive call

150

Chapter 7 Quicksort

on an array of size 0 just returns, T (0) = ©(1), and the recurrence for the running
time is
Tn) = Tn—1)+T(0) +O(n)

Tn—1)+0n).

Intuitively, if we sum the costs incurred at each level of the recursion, we get
an arithmetic series (equation (A.2)), which evaluates to ©(n?). Indeed, it is
straightforward to use the substitution method to prove that the recurrence T (n) =
T (n — 1) + ©(n) has the solution T'(n) = ©(n?). (See Exercise 7.2-1.)

Thus, if the partitioning is maximally unbalanced at every recursive level of the
algorithm, the running time is @ (n?). Therefore the worst-case running time of
quicksort is no better than that of insertion sort. Moreover, the ® (7%) running time
occurs when the input array is already completely sorted—a common situation in
which insertion sort runs in O (n) time.

Best-case partitioning

In the most even possible split, PARTITION produces two subproblems, each of
size no more than /2, since one is of size |7/2] and one of size [n/2] — 1. In this
case, quicksort runs much faster. The recurrence for the running time is then

T(n) <2T(n/2)+ (1),

which by case 2 of the master theorem (Theorem 4.1) has the solution T'(n) =
O (nlgn). Thus, the equal balancing of the two sides of the partition at every level
of the recursion produces an asymptotically faster algorithm.

Balanced partitioning

The average-case running time of quicksort is much closer to the best case than to
the worst case, as the analyses in Section 7.4 will show. The key to understand-
ing why is to understand how the balance of the partitioning is reflected in the
recurrence that describes the running time.

Suppose, for example, that the partitioning algorithm always produces a 9-to-1
proportional split, which at first blush seems quite unbalanced. We then obtain the
recurrence

T(n) <TOn/10) + T (n/10) + cn

on the running time of quicksort, where we have explicitly included the constant ¢
hidden in the ® (n) term. Figure 7.4 shows the recursion tree for this recurrence.
Notice that every level of the tree has cost ¢, until a boundary condition is reached
at depth log,gn = ©(lgn), and then the levels have cost at most c7. The re-
cursion terminates at depth log,y9n = ©(Ign). The total cost of quicksort is

7.2 Performance of quicksort 151
no_wen S ———————— - cn
A / \
%/7 %n sl CH
logyo 7 1/ \\9 9/ \8\1
00 Too0 2 100 "t Tg 72 e i cn
7\ 7\ 7% / \
logipon| ,/ S T
B I i
¥ 1 1000 1000 :
/NN
N e - < cn
A\
1 i < cnm
O(nlgn)

Figure 7.4 A recursion tree for QUICKSORT in which PARTITION always produces a 9-to-1 split,
yielding a running time of O (n 1gn). Nodes show subproblem sizes, with per-level costs on the right.
The per-level costs include the constant ¢ implicit in the ® (n) term.

therefore O (nlgn). Thus, with a 9-to-1 proportional split at every level of re-
cursion, which intuitively seems quite unbalanced, quicksort runs in O(nlgn)
time—asymptotically the same as if the split were right down the middle. In fact,
even a 99-to-1 split yields an O (nlgn) running time. The reason is that any split
of constant proportionality yields a recursion tree of depth ® (Ign), where the cost
at each level is O (n). The running time is therefore O (nlgn) whenever the split
has constant proportionality.

Intuition for the average case

To develop a clear notion of the average case for quicksort, we must make an
assumption about how frequently we expect to encounter the various inputs. The
behavior of quicksort is determined by the relative ordering of the values in the
array elements given as the input, and not by the particular values in the array. As
in our probabilistic analysis of the hiring problem in Section 5.2, we will assume
for now that all permutations of the input numbers are equally likely. -
When we run quicksort on a random input array, it is unlikely that the partition-
ing always happens in the same way at every level, as our informal analysis has
assumed. We expect that some of the splits will be reasonably well balanced and
that some will be fairly unbalanced. For example, Exercise 7.2-6 asks you to show

Chapter 7 Quicksort

n

/ \ i ©(17) N e e O(n)

n—1 / \
/ \ (n-1)/2 (n-1)/2

(n-1)/2-1 (n=1)/2
(a) (b)

Figure 7.5 (a) Two levels of a recursion tree for quicksort. The partitioning at the root costs n
and produces a “bad” split: two subarrays of sizes 0 and n — 1. The partitioning of the subarray of
size n — 1 costs n — 1 and produces a “good™ split: subarrays of size (n — 1)/2 — 1 and (n — 1)/2.
(b) A single level of a recursion tree that is very well balanced. In both parts, the partitioning cost for
the subproblems shown with elliptical shading is ®(11). Yet the subproblems remaining to be solved
in (a), shown with square shading, are no larger than the corresponding subproblems remaining to be
solved in (b).

that about 80 percent of the time PARTITION produces a split that is more balanced
than 9 to 1, and about 20 percent of the time it produces a split that is less balanced
than 9 to 1.

In the average case, PARTITION produces a mix of “good” and “bad” splits. In a
recursion tree for an average-case execution of PARTITION, the good and bad splits
are distributed randomly throughout the tree. Suppose for the sake of intuition,
however, that the good and bad splits alternate levels in the tree, and that the good
splits are best-case splits and the bad splits are worst-case splits. Figure 7.5(a)
shows the splits at two consecutive levels in the recursion tree. At the root of the
tree, the cost is n for partitioning, and the subarrays produced have sizes n — 1
and 0: the worst case. At the next level, the subarray of size n — 1 is best-case
partitioned into subarrays of size (n — 1)/2 — 1 and (n — 1)/2. Let’s assume that
the boundary-condition cost is 1 for the subarray of size 0.

The combination of the bad split followed by the good split produces three sub-
arrays of sizes 0, (n — 1)/2 — 1, and (n — 1)/2 at a combined partitioning cost
of ®(n) + ®(n — 1) = ©(n). Certainly, this situation is no worse than that in
Figure 7.5(b), namely a single level of partitioning that produces two subarrays of
size (n — 1)/2, at a cost of ®(n). Yet this latter situation is balanced! Intuitively,
the ®(n — 1) cost of the bad split can be absorbed into the © (n) cost of the good
split, and the resulting split is good. Thus, the running time of quicksort, when lev-
els alternate between good and bad splits, is like the running time for good splits
alone: still O (nlgn), but with a slightly larger constant hidden by the O-notation.
We shall give a rigorous analysis of the average case of a randomized version of
quicksort in Section 7.4.2.

(n)

s n
/ of
/2.
for
ved
) be

ced
ced

na
lits
on,
ood
()

the

ase
that

sub-
cost
it in
s of
rely,
ood
lev-
plits
[ion.
n of

7.3 A randomized version of quicksort 153

Exercises

7.2-1
Use the substitution method to prove that the recurrence 7'(n) = T'(n — 1) + ©(n)
has the solution T (n) = ©® (n?), as claimed at the beginning of Section 7.2.

7.2-2
What is the running time of QUICKSORT when all elements of array A have the
same value?

7.2-3
Show that the running time of QUICKSORT is ©®(n*) when the array A contains
distinct elements and is sorted in decreasing order.

7.2-4

Banks often record transactions on an account in order of the times of the transac-
tions, but many people like to receive their bank statements with checks listed in
order by check number. People usually write checks in order by check number, and
merchants usually cash them with reasonable dispatch. The problem of converting
time-of-transaction ordering to check-number ordering is therefore the problem of
sorting almost-sorted input. Argue that the procedure INSERTION-SORT would
tend to beat the procedure QUICKSORT on this problem.

7.2-5

Suppose that the splits at every level of quicksort are in the proportion 1 —« to a,
where 0 < o < 1/2 is a constant. Show that the minimum depth of a leaf in the re-
cursion tree is approximately — lg 7/ g o and the maximum depth is approximately
—1gn/lg(1 —). (Don’t worry about integer round-off.)

7.2-6 *

Argue that for any constant 0 < o < 1/2, the probability is approximately 1 — 2c
that on a random input array, PARTITION produces a split more balanced than 1 —«
o .

7.3 A randomized version of quicksort

In exploring the average-case behavior of quicksort, we have made an assumption
that all permutations of the input numbers are equally likely. In an engineering
situation, however, we cannot always expect it to hold. (See Exercise 7.2-4.) As we
saw in Section 5.3, we can sometimes add randomization to an algorithm in order
to obtain good average-case performance over all inputs. Many people regard the

154

Chapter 7 Quicksort

resulting randomized version of quicksort as the sorting algorithm of choice for
large enough inputs.

In Section 5.3, we randomized our algorithm by explicitly permuting the input.
We could do so for quicksort also, but a different randomization technique, called
random sampling, yields a simpler analysis. Instead of always using A[r] as the
pivot, we will use a randomly chosen element from the subarray A[p ..r]. We do
so by exchanging element A[r] with an element chosen at random from Alp..rl.
This modification, in which we randomly sample the range p, ..., r, ensures that
the pivot element x = A[r] is equally likely to be any of the r — p + 1 elements in
the subarray. Because the pivot element is randomly chosen, we expect the split of
the input array to be reasonably well balanced on average.

The changes to PARTITION and QUICKSORT are small. In the new partition
procedure, we simply implement the swap before actually partitioning:

RANDOMIZED-PARTITION (A, p, 1)

1 i < RANDOM(p,)

2 exchange A[r] < A[i]

3 return PARTITION(A, p,r)

The new quicksort calls RANDOMIZED-PARTITION in place of PARTITION:

RANDOMIZED-QUICKSORT (A, p, 1)

1 ifp<r

2 then ¢ <~ RANDOMIZED-PARTITION (A, p, 1)
3 RANDOMIZED-QUICKSORT (A, p,q — 1)
4 RANDOMIZED-QUICKSORT(A, ¢ + 1, r)

We analyze this algorithm in the next section.

Exercises

7.3-1
Why do we analyze the average-case performance of a randomized algorithm and
not its worst-case performance?

7.3-2

During the running of the procedure RANDOMIZED-QUICKSORT, how many calls
are made to the random-number generator RANDOM in the worst case? How about
in the best case? Give your answer in terms of ®-notation.

D

7.4 Analysis of quicksort 155

ice for
7.4 Analysis of quicksort
- input.
called Section 7.2 gave some intuition for the worst-case behavior of quicksort and for
as the why we expect it to run quickly. In this section, we analyze the behavior of quick-
We do sort more rigorously. We begin with a worst-case analysis, which applies to either
jo I) QUICKSORT or RANDOMIZED-QUICKSORT, and conclude with an average-case
es that analysis of RANDOMIZED-QUICKSORT.
lents in
split of 7.4.1 Worst-case analysis
artition We saw in Section 7.2 that a worst-case split at every level of recursion in quicksort
produces a ® (n%) running time, which, intuitively, is the worst-case running time
of the algorithm. We now prove this assertion.
Using the substitution method (see Section 4.1), we can show that the running
time of quicksort is O (n?). Let T(n) be the worst-case time for the procedure
QUICKSORT on an input of size n. We have the recurrence
T(n)= max (T(g)+Tn—qg—1))+0({), (7.1)
0<g<n—-1
.
where the parameter ¢ ranges from 0 to n — 1 because the procedure PARTITION
produces two subproblems with total size n — 1. We guess that T'(n) < cn® for
some constant c. Substituting this guess into recurrence (7.1), we obtain
T(n) < max (cq2 +cn—q— D?) + O(n)
0<g<n—1
= (- max (q2 +n—-q— D> +6m).
0<g<n—1
The expression g2+ (n—q — 1)? achieves a maximum over the parameter’s range
0 < g < n — 1 at either endpoint, as can be seen since the second derivative of
the expression with respect to ¢ is positive (see Exercise 7.4-3). This observation
gives us the bound maxoqu,,q(q2 +n—-qg— D) < (n— D2 =n>—-2n+1.
Continuing with our bounding of T (n), we obtain
thm and)
T(n) < cn”"—c2n—1)+0(n)
< cn?,
any calls since we can pick the constant ¢ large enough so that the ¢(2n — 1) term dom-
yw about inates the ®(n) term. Thus, T (n) = O (n?). We saw in Section 7.2 a specific

case in which quicksort takes §2(n?) time: when partitioning is unbalanced. Al-
ternatively, Exercise 7.4-1 asks you to show that recurrence (7.1) has a solution of
T (n) = Q(n?). Thus, the (worst-case) running time of quicksort is © (n?).

156

Chapter 7 Quicksort

7.4.2 Expected running time

We have already given an intuitive argument why the average-case running time
of RANDOMIZED-QUICKSORT is O (n 1g n): if, in each level of recursion, the split
induced by RANDOMIZED-PARTITION puts any constant fraction of the elements
on one side of the partition, then the recursion tree has depth ®(lgn), and O (n)
work is performed at each level. Even if we add new levels with the most unbal-
anced split possible between these levels, the total time remains O (nlgn). We
can analyze the expected running time of RANDOMIZED-QUICKSORT precisely
by first understanding how the partitioning procedure operates and then using this
understanding to derive an O (n1gn) bound on the expected running time. This
upper bound on the expected running time, combined with the © (1 1g) best-case
bound we saw in Section 7.2, yields a ® (n lg 1) expected running time.

Running time and comparisons

The running time of QUICKSORT is dominated by the time spent in the PARTI-
TION procedure. Each time the PARTITION procedure is called, a pivot element is
selected, and this element is never included in any future recursive calls to QUICK-
SORT and PARTITION. Thus, there can be at most n calls to PARTITION over the
entire execution of the quicksort algorithm. One call to PARTITION takes o(1)
time plus an amount of time that is proportional to the number of iterations of the
for loop in lines 3-6. Each iteration of this for loop performs a comparison in
line 4, comparing the pivot element to another element of the array A. Therefore,
if we can count the total number of times that line 4 is executed, we can bound the
total time spent in the for loop during the entire execution of QUICKSORT.

Lemma 7.1

Let X be the number of comparisons performed in line 4 of PARTITION over the
entire execution of QUICKSORT on an n-element array. Then the running time of
QUICKSORT is O (n + X).

Proof By the discussion above, there are n calls to PARTITION, each of which
does a constant amount of work and then executes the for loop some number of
times. Each iteration of the for loop executes line 4. =

Our goal, therefore is to compute X, the total number of comparisons performed
in all calls to PARTITION. We will not attempt to analyze how many comparisons
are made in each call to PARTITION. Rather, we will derive an overall bound on the
total number of comparisons. To do so, we must understand when the algorithm
compares two elements of the array and when it does not. For ease of analysis, we
rename the elements of the array A as zy, z,, ..., z,, with z; being the ith smallest

N 2 = (Y

v v Vi T~ A\ 4

Lt

\v = AV = ¥

N

"

7.4 Analysis of quicksort 157

element. We also define the set Z;; = {z;, Zi+1, - .., 2} to be the set of elements
between z; and z;, inclusive.

When does the algorithm compare z; and z;? To answer this question, we first
observe that each pair of elements is compared at most once. Why? Elements
are compared only to the pivot element and, after a particular call of PARTITION
finishes, the pivot element used in that call is never again compared to any other
elements.

Our analysis uses indicator random variables (see Section 5.2). We define

X;; = 1{z; is compared to z;} ,

where we are considering whether the comparison takes place at any time during
the execution of the algorithm, not just during one iteration or one call of PARTI-
TION. Since each pair is compared at most once, we can easily characterize the
total number of comparisons performed by the algorithm:

n—1 n

X=)) Xy.

i=1 j=i+1

Taking expectations of both sides, and then using linearity of expectation and
Lemma 5.1, we obtain

n—1 n
E[X] = E[>) Xy
i=1 j=i+l
n—1 n
= Y > E[Xy]
i=1 j=i+1
1—1 n
= ,Z Z Pr{z; is compared to z;} . (7.2)

i=1 j=i+1

It remains to compute Pr{z; is compared to z;}. Our analysis assumes that each
pivot is chosen randomly and independently.

It is useful to think about when two items are not compared. Consider an input
to quicksort of the numbers 1 through 10 (in any order), and assume that the first
pivot element is 7. Then the first call to PARTITION separates the numbers into two
sets: {1,2,3,4,5,6} and {8, 9, 10}. In doing so, the pivot element 7 is compared
to all other elements, but no number from the first set (e.g., 2) is or ever will be
compared to any number from the second set (e.g., 9).

In general, once a pivot x is chosen with z; < x < z;, we know that z; and z;
cannot be compared at any subsequent time. If, on the other hand, z; is chosen as
a pivot before any other item in Z;;, then z; will be compared to each item in Z;;,
except for itself. Similarly, if z; is chosen as a pivot before any other item in Z;;,

158

Chapter 7 Quicksort

then z; will be compared to each item in Z;;, except for itself. In our example, the
values 7 and 9 are compared because 7 is the first item from Z7.9 to be chosen as a
pivot. In contrast, 2 and 9 will never be compared because the first pivot element
chosen from Z, ¢ is 7. Thus, z; and z; are compared if and only if the first element
to be chosen as a pivot from Z;; is either z; or Z s

We now compute the probability that this event occurs. Prior to the point at
which an element from Z;; has been chosen as a pivot, the whole set Z;; ; s together
in the same partition. Therefore, any element of Z;; ; 1s equally likely to be the first
one chosen as a pivot. Because the set Z;; has j —i +1 elements, and because pivots
are chosen randomly and independently, the probability that any given element is
the first one chosen as a pivot is 1/(j — i + 1). Thus, we have

Pr{z; is compared to z;} = Pr{z; or z; 1s first pivot chosen from Z;;}
- = Pr{gz is first pivot chosen from Zii}
+ Pr{z; is first pivot chosen from Z;;}

B 1 N 1
T O J—i41 " j—i4i
2

The second line follows because the two events are mutually exclusive. Combining
equations (7.2) and (7.3), we get that

n—1 n

ELX] = ZZ j—z+1

i=1 j=i+l1

We can evaluate this sum using a change of variables (k = j —) and the bound on
the harmonic series in equation (A.7):

n—1 n

Sl = ZZ]—I+1

i=1 j=i+l1

n—1 n—i 9
= 2

= O(nlgn). (7.4)

Thus we conclude that, using RANDOMIZED-PARTITION, the expected running
time of quicksort is O (nlgn).

Problems for Chapter 7 159

Exercises

7.4-1
Show that in the recurrence

T(n)= Og;lg;’(_l(T((/) +T(n—q—1)+060m),

T (n) = Q3.

7.4-2

Show that quicksort’s best-case running time is €2 (n Ign).

7.4-3

Show that ¢2 + (n — g — 1) achieves a maximum over ¢ =0, 1,...,n — 1 when

gq=0o0orqg=n-1.

7.4-4
Show that RANDOMIZED-QUICKSORT’s expected running time is 2 (n g n).

7.4-5
The running time of quicksort can be improved in practice by taking advantage :
of the fast running time of insertion sort when its input is “nearly” sorted. When
quicksort is called on a subarray with fewer than k elements, let it simply return
without sorting the subarray. After the top-level call to quicksort returns, run in- ,
sertion sort on the entire array to finish the sorting process. Argue that this sorting ;‘
algorithm runs in O (nk +nlg(n/k)) expected time. How should & be picked, both
in theory and in practice?

7.4-6 x

Consider modifying the PARTITION procedure by randomly picking three elements
from array A and partitioning about their median (the middle value of the three
elements). Approximate the probability of getting at worst an a-to-(1 — «) split,
as a function of « in the range 0 < o < 1.

Problems

7-1 Hoare partition correctness
The version of PARTITION given in this chapter is not the original partitioning
algorithm. Here is the original partition algorithm, which is due to C. A. R. Hoare:

160

Chapter 7 Quicksort

HOARE-PARTITION (A, p, 1)
x < Alp]
i< p-—1
Jj<—r+1
while TRUE
do repeat j < j — 1
until A[j] <x
repeat i < i + 1
until A[i] > x
ifi <j
then exchange A[i] <> A[/]
else return j

— O O 00 JON N AW~

—_

a. Demonstrate the operation of HOARE-PARTITION on the array A = (13, 19,9,
5,12,8,7,4,11,2,6,21), showing the values of the array and auxiliary values
after each iteration of the for loop in lines 4—11.

The next three questions ask you to give a careful argument that the procedure
HOARE-PARTITION is correct. Prove the following:

b. The indices i and j are such that we never access an element of A outside the
subarray A[p..r].

¢. When HOARE-PARTITION terminates, it returns a value j such that p < j < r.

d. Every element of A[p .. j]is less than or equal to every element of A[j+1..r]
when HOARE-PARTITION terminates.

The PARTITION procedure in Section 7.1 separates the pivot value (originally
in A[r]) from the two partitions it forms. The HOARE-PARTITION procedure, on
the other hand, always places the pivot value (originally in A[p]) into one of the
two partitions A[p .. j]land A[j 4 1..7]. Since p < j < r, this split is always
nontrivial.

e. Rewrite the QUICKSORT procedure to use HOARE-PARTITION.

7-2 Alternative quicksort analysis

An alternative analysis of the running time of randomized quicksort focuses on the
expected running time of each individual recursive call to QUICKSORT, rather than
on the number of comparisons performed.

a. Argue that, given an array of size n, the probability that any particular element
is chosen as the pivot is 1/n. Use this to define indicator random variables
X; = I'{ith smallest element is chosen as the pivot}. What is E [X;]?

v V=

1t

T

Problems for Chapter 7 161

b.

Let T'(n) be a random variable denoting the running time of quicksort on an
array of size n. Argue that

E[T(n)]=E [Z X,T(@@—-1)+Tn—q)+ @(n)):| . (7.5)
g=1
Show that equation (7.5) can be rewritten as

n—1

E[T(n)] = - ZE [T(@)]+0O6Mm). (7.6)
=

Show that

n—1 1 1

Zklgk < —n*lgn — =n?. (7.7)

= 2 8

(Hint: Split the summation into two parts, one for k = 2,3, ..., [n/2] — 1 and

one fork = [n/2],...,n—1.)

Using the bound from equation (7.7), show that the recurrence in equation (7.6)
has the solution E[T(n)] = ®(nlgn). (Hint: Show, by substitution, that
E[T (n)] < anlgn for sufficiently large n and for some positive constant «.)

7-3 Stooge sort
Professors Howard, Fine, and Howard have proposed the following “elegant” sort-
ing algorithm:

STOOGE-SORT(A, i, j)

1
2
3
4
5
6
7
8

a.

if Ali] > A[j]
then exchange A[i] < A[j]

ifi+1>

then return
k< |(j—i4+1)/3] > Round down.
STOOGE-SORT(A, i,] — k) > First two-thirds.
STOOGE-SORT(A,i + k, j) > Last two-thirds.
STOOGE-SORT(A, i,] — k) > First two-thirds again.

Argue that, if n = length[A], then STOOGE-SORT(A, 1, length[A]) correctly
sorts the input array A[1..n].

Give a recurrence for the worst-case running time of STOOGE-SORT and a tight
asymptotic (®-notation) bound on the worst-case running time.

162

Chapter 7 Quicksort

¢. Compare the worst-case running time of STOOGE-SORT with that of insertion
sort, merge sort, heapsort, and quicksort. Do the professors deserve tenure?

7-4 Stack depth for quicksort

The QUICKSORT algorithm of Section 7.1 contains two recursive calls to itself.
After the call to PARTITION, the left subarray is recursively sorted and then the
right subarray is recursively sorted. The second recursive call in QUICKSORT
is not really necessary; it can be avoided by using an iterative control structure.
This technique, called tail recursion, is provided automatically by good compil-
ers. Consider the following version of quicksort, which simulates tail recursion.

QUICKSORT' (A, p,r)

1 whilep <r

2 do 1> Partition and sort left subarray.
3 q < PARTITION(A, p,r)

4 QUICKSORT (A, p,g — 1)

5] p<qg+1

a. Argue that QUICKSORT'(A, 1, length[A]) correctly sorts the array A.

Compilers usually execute recursive procedures by using a stack that contains per-
tinent information, including the parameter values, for each recursive call. The
information for the most recent call is at the top of the stack, and the information
for the initial call is at the bottom. When a procedure is invoked, its information
is pushed onto the stack; when it terminates, its information is popped. Since
we assume that array parameters are represented by pointers, the information for
each procedure call on the stack requires O (1) stack space. The stack depth is the
maximum amount of stack space used at any time during a computation.

b. Describe a scenario in which the stack depth of QUICKSORT is ®(n) on an
n-element input array.

¢. Modify the code for QUICKSORT' so that the worst-case stack depth is ® (Ig n).
Maintain the O (n lgn) expected running time of the algorithm.

7-5 Median-of-3 partition

One way to improve the RANDOMIZED-QUICKSORT procedure is to partition
around a pivot that is chosen more carefully than by picking a random element
from the subarray. One common approach is the median-of-3 method: choose
the pivot as the median (middle element) of a set of 3 elements randomly selected
from the subarray. (See Exercise 7.4-6.) For this problem, let us assume that the
elements in the input array A[l..n] are distinct and that n > 3. We denote the

Problems for Chapter 7 163

sorted output array by A’[1..n]. Using the median-of-3 method to choose the
pivot element x, define p; = Pr{x = A'[i]}.

a.

Give an exact formula for p; as a function of 7 and i for i = 2,3,...,n—1.
(Note that p; = p, =0.)

By what amount have we increased the likelihood of choosing the pivot as
x = A'[[(n+1)/2]], the median of A[l..n], compared to the ordinary im-
plementation? Assume that 7 — oo, and give the limiting ratio of these proba-
bilities.

If we define a “good” split to mean choosing the pivot as x = A'[/ 1, where

-n/3 <i <2n/3, by what amount have we increased the likelihood of getting a

good split compared to the ordinary implementation? (Hint: Approximate the
sum by an integral.)

Argue that in the Q2 (n 1gn) running time of quicksort, the median-of-3 method
affects only the constant factor.

7-6 Fuzzy sorting of intervals

Consider a sorting problem in which the numbers are not known exactly. Instead,
for each number, we know an interval on the real line to which it belongs. That is,
we are given n closed intervals of the form [g;, b;], where a; < b;. The goal is to
JSuzzy-sort these intervals, i.e., produce a permutation (i1, i,, ..., i,) of the intervals
such that there exist c; € [(l,‘j, b,-j] satisfying ¢c; < ¢, <--- <¢,.

a.

Design an algorithm for fuzzy-sorting » intervals. Your algorithm should have
the general structure of an algorithm that quicksorts the left endpoints (the @;’s),
but it should take advantage of overlapping intervals to improve the running
time. (As the intervals overlap more and more, the problem of fuzzy-sorting
the intervals gets easier and easier. Your algorithm should take advantage of
such overlapping, to the extent that it exists.)

Argue that your algorithm runs in expected time @ (1 1g) in general, but runs
in expected time ® (n) when all of the intervals overlap (i.e., when there exists a
value x such that x € [a;, b;] for all i). Your algorithm should not be checking
for this case explicitly; rather, its performance should naturally improve as the
amount of overlap increases.

164 Chapter 7 Quicksort

Chapter notes

The quicksort procedure was invented by Hoare [147]; Hoare’s version appears in
Problem 7-1. The PARTITION procedure given in Section 7.1 is due to N. Lomuto.
The analysis in Section 7.4 is due to Avrim Blum. Sedgewick [268] and Bent-
ley [40] provide a good reference on the details of implementation and how they
matter.

Mcllroy [216] showed how to engineer a “killer adversary” that produces an
array on which virtually any implementation of quicksort takes © (n?) time. If the
implementation is randomized, the adversary produces the array after seeing the
random choices of the quicksort algorithm.

