
18 Graph Search and Its Applications

see applications of depth-first search to sequencing tasks (Section 8.5)
and to understanding the structure of the Web graph (Section 8.7).

8.1.2 For-Free Graph Primitives

The examples in Section 8.1.1 demonstrate that graph search is a
fundamental and widely applicable primitive. I’m happy to report
that, in this chapter, all our algorithms will be blazingly fast, running
in just O(m + n) time, where m and n denote the number of edges
and vertices of the graph.5 That’s just a constant factor larger than
the amount of time required to read the input!6 We conclude that
these algorithms are “for-free primitives”—whenever you have graph
data, you should feel free to apply any of these primitives to glean
information about what it looks like.7

For-Free Primitives

We can think of an algorithm with linear or near-linear
running time as a primitive that we can use essentially
“for free” because the amount of computation used is
barely more than the amount required just to read
the input. When you have a primitive relevant to
your problem that is so blazingly fast, why not use it?
For example, you can always compute the connected
components of your graph data in a preprocessing step,
even if you’re not quite sure how it will help later.
One of the goals of this book series is to stock your
algorithmic toolbox with as many for-free primitives
as possible, ready to be applied at will.

8.1.3 Generic Graph Search

The point of a graph search algorithm is to solve the following prob-
lem.

5Also, the constants hidden in the big-O notation are reasonably small.
6In graph search and connectivity problems, there is no reason to expect that

the input graph is connected. In the disconnected case, where m might be much
smaller than n, the size of a graph is ⇥(m+ n) but not necessarily ⇥(m).

7Can we do better? No, up to the hidden constant factor: every correct
algorithm must at least read the entire input in some cases.

8.1 Overview 19

Problem: Graph Search

Input: An undirected or directed graph G = (V,E), and
a starting vertex s 2 V .

Goal: Identify the vertices of V reachable from s in G.

By a vertex v being “reachable,” we mean that there is a sequence of
edges in G that travels from s to v. If G is a directed graph, all the
path’s edges should be traversed in the forward (outgoing) direction.
For example, in Figure 8.2(a), the set of reachable vertices (from s)
is {s, u, v, w}. In the directed version of the graph in Figure 8.2(b),
there is no directed path from s to w, and only the vertices s, u, and v
are reachable from s via a directed path.8

s

u

v

w

x

z

y

(a) An undirected graph

s

u

v

w

x

z

y

(b) A directed version

Figure 8.2: In (a), the set of vertices reachable from s is {s, u, v, w}. In (b),
it is {s, u, v}.

The two graph search strategies that we’ll focus on—breadth-first
search and depth-first search—are different ways of instantiating a
generic graph search algorithm. The generic algorithm systematically
finds all the reachable vertices, taking care to avoid exploring anything
twice. It maintains an extra variable with each vertex that keeps
track of whether or not it has already been explored, planting a flag
the first time that vertex is reached. The main loop’s responsibility is
to reach a new unexplored vertex in each iteration.

8In general, most of the algorithms and arguments in this chapter apply
equally well to undirected and directed graphs. The big exception is computing
connected components, which is a trickier problem in directed graphs than in
undirected graphs.

20 Graph Search and Its Applications

GenericSearch

Input: graph G = (V,E) and a vertex s 2 V .
Postcondition: a vertex is reachable from s if and
only if it is marked as “explored.”

mark s as explored, all other vertices as unexplored
while there is an edge (v, w) 2 E with v explored and
w unexplored do

choose some such edge (v, w) // underspecified

mark w as explored

The algorithm is essentially the same for both directed and undirected
graphs. In the directed case, the edge (v, w) chosen in an iteration
of the while loop should be directed from an explored vertex v to an
unexplored vertex w.

On Pseudocode

This book series explains algorithms using a mixture
of high-level pseudocode and English (as above). I’m
assuming that you have the skills to translate such
high-level descriptions into working code in your fa-
vorite programming language. Several other books
and resources on the Web offer concrete implementa-
tions of various algorithms in specific programming
languages.

The first benefit of emphasizing high-level descrip-
tions over language-specific implementations is flexi-
bility. While I assume familiarity with some program-
ming language, I don’t care which one. Second, this
approach promotes the understanding of algorithms
at a deep and conceptual level, unencumbered by low-
level details. Seasoned programmers and computer
scientists generally think and communicate about al-
gorithms at a similarly high level.

Still, there is no substitute for the detailed under-
standing of an algorithm that comes from providing

8.1 Overview 21

your own working implementation of it. I strongly
encourage you to implement as many of the algo-
rithms in this book as you have time for. (It’s also a
great excuse to pick up a new programming language!)
For guidance, see the end-of-chapter Programming
Problems and supporting test cases.

For example, in the graph in Figure 8.2(a), initially only our home
base s is marked as explored. In the first iteration of the while loop, two
edges meet the loop condition: (s, u) and (s, v). The GenericSearch

algorithm chooses one of these edges—(s, u), say—and marks u as
explored. In the second iteration of the loop, there are again two
choices: (s, v) and (u,w). The algorithm might choose (u,w), in
which case w is marked as explored. With one more iteration (after
choosing either (s, v) or (w, v)), v is marked as explored. At this
point, the edge (x, y) has two unexplored endpoints and the other
edges have two explored endpoints, and the algorithm halts. As one
would hope, the vertices marked as explored—s, u, v, and w—are
precisely the vertices reachable from s.

This generic graph search algorithm is underspecified, as multiple
edges (v, w) can be eligible for selection in an iteration of the while
loop. Breadth-first search and depth-first search correspond to two
specific decisions about which edge to explore next. No matter how
this choice is made, the GenericSearch algorithm is guaranteed to
be correct (in both undirected and directed graphs).

Proposition 8.1 (Correctness of Generic Graph Search) At
the conclusion of the GenericSearch algorithm, a vertex v 2 V is
marked as explored if and only if there is a path from s to v in G.

Section 8.1.5 provides a formal proof of Proposition 8.1; feel free to
skip it if the proposition seems intuitively obvious.

On Lemmas, Theorems, and the Like

In mathematical writing, the most important tech-
nical statements are labeled theorems. A lemma is
a technical statement that assists with the proof of
a theorem (much as a subroutine assists with the

22 Graph Search and Its Applications

implementation of a larger program). A corollary is a
statement that follows immediately from an already-
proved result, such as a special case of a theorem.
We use the term proposition for stand-alone techni-
cal statements that are not particularly important in
their own right.

What about the running time of the GenericSearch algorithm?
The algorithm explores each edge at most once—after an edge (v, w)
has been explored for the first time, both v and w are marked as
explored and the edge will not be considered again. This suggests that
it should be possible to implement the algorithm in linear time, as
long as we can quickly identify an eligible edge (v, w) in each iteration
of the while loop. We’ll see how this works in detail for breadth-first
search and depth-first search in Sections 8.2 and 8.4, respectively.

8.1.4 Breadth-First and Depth-First Search

Every iteration of the GenericSearch algorithm chooses an edge that
is “on the frontier” of the explored part of the graph, with one endpoint
explored and the other unexplored (Figure 8.3). There can be many
such edges, and to specify the algorithm fully we need a method for
choosing one of them. We’ll focus on the two most important strategies:
breadth-first search and depth-first search. Both are excellent ways
to explore a graph, and each has its own set of applications.

Breadth-first search (BFS). The high-level idea of breadth-first
search—or BFS to its friends—is to explore the vertices of a graph
cautiously, in “layers.” Layer 0 consists only of the starting vertex s.
Layer 1 contains the vertices that neighbor s, meaning the vertices v
such that (s, v) is an edge of the graph (directed from s to v, in the
case that G is directed). Layer 2 comprises the neighbors of layer-1
vertices that do not already belong to layer 0 or 1, and so on. In
Sections 8.2 and 8.3, we’ll see:

• how to implement BFS in linear time using a queue (first-in
first-out) data structure;

• how to use BFS to compute (in linear time) the length of a
shortest path between one vertex and all other vertices, with the

8.1 Overview 23

the frontier

s

explored unexplored

Figure 8.3: Every iteration of the GenericSearch algorithm chooses an
edge “on the frontier,” with one endpoint explored and the other unexplored.

layer-i vertices being precisely the vertices at distance i from s;

• how to use BFS to compute (in linear time) the connected
components of an undirected graph.

Depth-first search (DFS). Depth-first search—DFS to its
friends—is perhaps even more important. DFS employs a more
aggressive strategy for exploring a graph, very much in the spirit
of how you might explore a maze, going as deeply as you can and
backtracking only when absolutely necessary. In Sections 8.4–8.7,
we’ll see:

• how to implement DFS in linear time using either recursion or
an explicit stack (last-in first-out) data structure;

• how to use DFS to compute (in linear time) a topological order-
ing of the vertices of a directed acyclic graph, a useful primitive
for task sequencing problems;

• how to use DFS to compute (in linear time) the “strongly con-
nected components” of a directed graph, with applications to
understanding the structure of the Web.

24 Graph Search and Its Applications

8.1.5 Correctness of the GenericSearch Algorithm

We now prove Proposition 8.1, which states that at the conclusion
of the GenericSearch algorithm with input graph G = (V,E) and
starting vertex s 2 V , a vertex v 2 V is marked as explored if and
only if there is a path from s to v in G. As usual, if G is a directed
graph, the s ; v path should also be directed, with all edges traversed
in the forward direction.

The “only if” direction of the proposition should be intuitively
clear: The only way that the GenericSearch algorithm discovers new
vertices is by following paths from s.9

The “if” direction asserts the less obvious fact that the
GenericSearch algorithm doesn’t miss anything—it finds every vertex
that it could conceivably discover. For this direction, we’ll use a proof
by contradiction. Recall that in this type of proof, you assume the
opposite of what you want to prove, and then build on this assumption
with a sequence of logically correct steps that culminates in a patently
false statement. Such a contradiction implies that the assumption
can’t be true, which proves the desired statement.

So, assume that there is a path from s to v in the graph G, but
the GenericSearch algorithm somehow misses it and concludes with
the vertex v marked as unexplored. Let S ✓ V denote the vertices
of G marked as explored by the algorithm. The vertex s belongs to S
(by the first line of the algorithm), and the vertex v does not (by
assumption). Because the s ; v path travels from a vertex inside S to
one outside S, at least one edge e of the path has one endpoint u in S
and the other w outside S (with e directed from u to w in the case
that G is directed); see Figure 8.4. But this, my friends, is impossible:
The edge e would be eligible for selection in the while loop of the
GenericSearch algorithm, and the algorithm would have explored at
least one more vertex, rather than giving up! There’s no way that the
GenericSearch algorithm could have halted at this point, so we’ve
reached a contradiction. This contradiction concludes the proof of
Proposition 8.1. QE D10

9If we wanted to be pedantic about it, we’d prove this direction by induction
on the number of loop iterations.

10“Q.e.d.” is an abbreviation for quod erat demonstrandum, and means “that
which was to be demonstrated.” In mathematical writing, it is used at the end of
a proof to mark its completion.

8.2 Breadth-First Search and Shortest Paths 25

s u

w v

S = explored vertices

eligible for exploration!

e

Figure 8.4: Proof of Proposition 8.1. As long as the GenericSearch

algorithm has not yet discovered all the reachable vertices, there is an
eligible edge along which it can explore further.

8.2 Breadth-First Search and Shortest Paths

Let’s drill down on our first specific graph search strategy, breadth-first
search.

8.2.1 High-Level Idea

Breadth-first search explores the vertices of a graph in layers, in order
of increasing distance from the starting vertex. Layer 0 contains the
starting vertex s and nothing else. Layer 1 is the set of vertices that
are one hop away from s—that is, s’s neighbors. These are the vertices
that are explored immediately after s in breadth-first search. For
example, in the graph in Figure 8.5, a and b are the neighbors of s
and constitute layer 1. In general, the vertices in a layer i are those
that neighbor a vertex in layer i� 1 and that do not already belong
to one of the layers 0, 1, 2, . . . , i � 1. Breadth-first search explores
all of layer-i vertices immediately after completing its exploration of
layer-(i� 1) vertices. (Vertices not reachable from s do not belong
to any layer.) For example, in Figure 8.5, the layer-2 vertices are c
and d, as they neighbor layer-1 vertices but do not themselves belong
to layer 0 or 1. (The vertex s is also a neighbor of a layer-1 vertex,
but it already belongs to layer 0.) The last layer of the graph in
Figure 8.5 comprises only the vertex e.

26 Graph Search and Its Applications

s

layer 0

layer 1
layer 2

layer 3 a

b

c

d

e

Figure 8.5: Breadth-first search discovers vertices in layers. The layer-i
vertices are the neighbors of the layer-(i� 1) vertices that do not appear in
any earlier layer.

Quiz 8.1

Consider an undirected graph with n � 2 vertices. What
are the minimum and maximum number of different layers
that the graph could have, respectively?

a) 1 and n� 1

b) 2 and n� 1

c) 1 and n

d) 2 and n

(See Section 8.2.6 for the solution and discussion.)

8.2.2 Pseudocode for BFS

Implementing breadth-first search in linear time requires a simple
“first-in first-out” data structure known as a queue. BFS uses a queue
to keep track of which vertices to explore next. If you’re unfamiliar
with queues, now is a good time to read up on them in your favorite
introductory programming book (or on Wikipedia). The gist is that

8.2 Breadth-First Search and Shortest Paths 27

a queue is a data structure for maintaining a list of objects, and you
can remove stuff from the front or add stuff to the back in constant
time.11

BFS

Input: graph G = (V,E) in adjacency-list
representation, and a vertex s 2 V .

Postcondition: a vertex is reachable from s if and
only if it is marked as “explored.”

1 mark s as explored, all other vertices as unexplored
2 Q := a queue data structure, initialized with s
3 while Q is not empty do
4 remove the vertex from the front of Q, call it v
5 for each edge (v, w) in v’s adjacency list do
6 if w is unexplored then
7 mark w as explored
8 add w to the end of Q

Each iteration of the while loop explores one new vertex. In
line 5, BFS iterates through all the edges incident to the vertex v
(if G is undirected) or through all the outgoing edges from v (if G is
directed).12 Unexplored neighbors of v are added to the end of the
queue and are marked as explored; they will eventually be processed
in later iterations of the algorithm.

8.2.3 An Example

Let’s see how our pseudocode works for the graph in Figure 8.5, num-
bering the vertices in order of insertion into the queue (equivalently,
in order of exploration). The starting vertex s is always the first to

11You may never need to implement a queue from scratch, as they are built in
to most modern programming languages. If you do, you can use a doubly linked
list. Or, if you have advance knowledge of the maximum number of objects that
you might have to store (which is |V |, in the case of BFS), you can get away with
a fixed-length array and a couple of indices (which keep track of the front and
back of the queue).

12This is the step where it’s so convenient to have the input graph represented
via adjacency lists.

28 Graph Search and Its Applications

be explored. The first iteration of the while loop extracts s from
the queue Q and the subsequent for loop examines the edges (s, a)
and (s, b), in whatever order these edges appear in s’s adjacency list.
Because neither a nor b is marked as explored, both get inserted into
the queue. Let’s say that edge (s, a) came first and so a is inserted
before b. The current state of the graph and the queue is now:

s

#1

state of the queue Q

a

b

c

d

e

#2

#3

the frontier

b a s

already removed front of queue

The next iteration of the while loop extracts the vertex a from the
front of the queue, and considers its incident edges (s, a) and (a, c). It
skips over the former after double-checking that s is already marked
as explored, and adds the (previously unexplored) vertex c to the
end of the queue. The third iteration extracts the vertex b from the
front of the queue and adds vertex d to the end (because s and c are
already marked as explored, they are skipped over). The new picture
is:

s

#1

state of the queue Q

a

b

c

d

e

#2

#3

the frontier

b a s

already removed front of queue
#4

#5

c d

In the fourth iteration, the vertex c is removed from the front of the
queue. Of its neighbors, the vertex e is the only one not encountered

8.2 Breadth-First Search and Shortest Paths 29

before, and it is added to the end of the queue. The final two
iterations extract d and then e from the queue, and verify that all
of their neighbors have already been explored. The queue is then
empty, and the algorithm halts. The vertices are explored in order
of the layers, with the layer-i vertices explored immediately after the
layer-(i� 1) vertices (Figure 8.6).

s

#1

a

b

c

d

e

#2

#3

#4

#5

#6

(a) Order of exploration

s

layer 0

layer 1
layer 2

layer 3 a

b

c

d

e

(b) Layers

Figure 8.6: In breadth-first search, the layer-i vertices are explored imme-
diately after the layer-(i� 1) vertices.

8.2.4 Correctness and Running Time

Breadth-first search discovers all the vertices reachable from the
starting vertex, and it runs in linear time. The more refined running
time bound in Theorem 8.2(c) below will come in handy for our
linear-time algorithm for computing connected components (described
in Section 8.3).

Theorem 8.2 (Properties of BFS) For every undirected or di-
rected graph G = (V,E) in adjacency-list representation and for every
starting vertex s 2 V :

(a) At the conclusion of BFS, a vertex v 2 V is marked as explored
if and only if there is a path from s to v in G.

(b) The running time of BFS is O(m + n), where m = |E| and
n = |V |.

30 Graph Search and Its Applications

(c) The running time of lines 2–8 of BFS is

O(ms + ns),

where ms and ns denote the number of edges and vertices, re-
spectively, reachable from s in G.

Proof: Part (a) follows from the guarantee in Proposition 8.1 for the
generic graph search algorithm GenericSearch, of which BFS is a
special case.13 Part (b) follows from part (c), as the overall running
time of BFS is just the running time of lines 2–8 plus the O(n) time
needed for the initialization in line 1.

We can prove part (c) by inspecting the pseudocode. The ini-
tialization in line 2 takes O(1) time. In the main while loop, the
algorithm only ever encounters the ns vertices that are reachable
from s. Because no vertex is explored twice, each such vertex is added
to the end of the queue and removed from the front of the queue
exactly once. Each of these operations takes O(1) time—this is the
whole point of the first-in first-out queue data structure—and so the
total amount of time spent in lines 3–4 and 7–8 is O(ns). Each of
the ms edges (v, w) reachable from s is processed in line 5 at most
twice—once when v is explored, and once when w is explored.14 Thus
the total amount of time spent in lines 5–6 is O(ms), and the overall
running time for lines 2–8 is O(ms + ns). QE D

8.2.5 Shortest Paths

The properties in Theorem 8.2 are not unique to breadth-first search—
for example, they also hold for depth-first search. What is unique
about BFS is that, with just a couple extra lines of code, it efficiently
computes shortest-path distances.

13Formally, BFS is equivalent to the version of GenericSearch where, in every
iteration of the latter’s while loop, the algorithm chooses the eligible edge (v, w)
for which v was discovered the earliest, breaking ties among v’s eligible edges
according to their order in v’s adjacency list. If that sounds too complicated, you
can alternatively check that the proof of Proposition 8.1 holds verbatim also for
breadth-first search. Intuitively, breadth-first search discovers vertices only by
exploring paths from s; as long as it hasn’t explored every vertex on a path, the
“next vertex” on the path is still in the queue awaiting future exploration.

14If G is a directed graph, each edge is processed at most once, when its tail
vertex is explored.

8.2 Breadth-First Search and Shortest Paths 31

Problem Definition

In a graph G, we use the notation dist(v, w) for the fewest number of
edges in a path from v to w (or +1, if G contains no path from v
to w).15

Problem: Shortest Paths (Unit Edge Lengths)

Input: An undirected or directed graph G = (V,E), and
a starting vertex s 2 V .

Output: dist(s, v) for every vertex v 2 V .16

For example, if G is the movie network and s is the vertex corre-
sponding to Kevin Bacon, the problem of computing shortest paths
is precisely the problem of computing everyone’s Bacon number (Sec-
tion 8.1.1). The basic graph search problem (Section 8.1.3) cor-
responds to the special case of identifying all the vertices v with
dist(s, v) 6= +1.

Pseudocode

To compute shortest paths, we add two lines to the basic BFS algorithm
(lines 2 and 9 below); these increase the algorithm’s running time by
a small constant factor. The first one initializes preliminary estimates
of vertices’ shortest-path distances—0 for s, and +1 for the other
vertices, which might not even be reachable from s. The second one
executes whenever a vertex w is discovered for the first time, and
computes w’s final shortest-path distance as one more than that of
the vertex v that triggered w’s discovery.

15As usual, if G is directed, all the edges of the path should be traversed in
the forward direction.

16The phrase “unit edge lengths” in the problem statement refers to the as-
sumption that each edge of G contributes 1 to the length of a path. Chapter 9
generalizes BFS to compute shortest paths in graphs in which each edge has its
own nonnegative length.

32 Graph Search and Its Applications

Augmented-BFS

Input: graph G = (V,E) in adjacency-list
representation, and a vertex s 2 V .

Postcondition: for every vertex v 2 V , the value l(v)
equals the true shortest-path distance dist(s, v).

1 mark s as explored, all other vertices as unexplored
2 l(s) := 0, l(v) := +1 for every v 6= s
3 Q := a queue data structure, initialized with s
4 while Q is not empty do
5 remove the vertex from the front of Q, call it v
6 for each edge (v, w) in v’s adjacency list do
7 if w is unexplored then
8 mark w as explored
9 l(w) := l(v) + 1

10 add w to the end of Q

Example and Analysis

In our running example (Figure 8.6), the first iteration of the while
loop discovers the vertices a and b. Because s triggered their discovery
and l(s) = 0, the algorithm reassigns l(a) and l(b) from +1 to 1:

s

l(s)=0

a

b

c

d

e

l(a)=1

l(b)=1

the frontier

state of the queue Q

b a s

already removed front of queue
l(c)=+∞

l(d)=+∞

l(e)=+∞

The second iteration of the while loop processes the vertex a, leading
to c’s discovery. The algorithm reassigns l(c) from +1 to l(a) + 1,
which is 2. Similarly, in the third iteration, l(d) is set to l(b) + 1,
which is also 2:

8.2 Breadth-First Search and Shortest Paths 33

s

state of the queue Q

a

b

c

d

e

the frontier

b a s

already removed front of queue

c d

l(s)=0

l(a)=1

l(b)=1

l(c)=2

l(d)=2

l(e)=+∞

The fourth iteration discovers the final vertex e via the vertex c, and
sets l(e) to l(c) + 1, which is 3. At this point, for every vertex v, l(v)
equals the true shortest-path distance dist(s, v), which also equals
the number of the layer that contains v (Figure 8.6). These properties
hold in general, and not just for this example.

Theorem 8.3 (Properties of Augmented-BFS) For every undi-
rected or directed graph G = (V,E) in adjacency-list representation
and for every starting vertex s 2 V :

(a) At the conclusion of Augmented-BFS, for every vertex v 2 V ,
the value of l(v) equals the length dist(s, v) of a shortest path
from s to v in G (or +1, if no such path exists).

(b) The running time of Augmented-BFS is O(m+n), where m = |E|
and n = |V |.

Because the asymptotic running time of the Augmented-BFS al-
gorithm is the same as that of BFS, part (b) of Theorem 8.3 follows
from the latter’s running time guarantee (Theorem 8.2(b)). Part (a)
follows from two observations. First, the vertices v with dist(s, v) = i
are precisely the vertices in the ith layer of the graph—this is why
we defined layers the way we did. Second, for every layer-i vertex w,
Augmented-BFS eventually sets l(w) = i (since w is discovered via a
layer-(i�1) vertex v with l(v) = i�1). For vertices not in any layer—
that is, not reachable from s—both dist(s, v) and l(v) are +1.17

17If you’re hungry for a more rigorous proof, then proceed—in the privacy of
your own home—by induction on the number of while loop iterations performed
by the Augmented-BFS algorithm. Alternatively, Theorem 8.3(a) is a special case
of the correctness of Dijkstra’s shortest-path algorithm, as proved in Section 9.3.

34 Graph Search and Its Applications

8.2.6 Solution to Quiz 8.1

Correct answer: (d). An undirected graph with n � 2 vertices has
at least two layers and at most n layers. When n � 2, there cannot be
fewer than two layers because s is the only vertex in layer 0. Complete
graphs have only two layers (Figure 8.7(a)). There cannot be more
than n layers, as layers are disjoint and contain at least one vertex
each. Path graphs have n layers (Figure 8.7(b)).

s

layer 0 layer 1

(a) A complete graph

s

layer 0 layer 1 layer 2 layer 3

(b) A path graph

Figure 8.7: An n-vertex graph can have anywhere from two to n different
layers.

8.3 Computing Connected Components

In this section, G = (V,E) will always denote an undirected graph. We
postpone the more difficult connectivity problems in directed graphs
until Section 8.6.

8.3.1 Connected Components

An undirected graph G = (V,E) naturally falls into “pieces,” which are
called connected components (Figure 8.8). More formally, a connected
component is a maximal subset S ✓ V of vertices such that there is a
path from any vertex in S to any other vertex in S.18 For example,

18Still more formally, the connected components of a graph can be defined as
the equivalence classes of a suitable equivalence relation. Equivalence relations
are usually covered in a first course on proofs or on discrete mathematics. A

40 Graph Search and Its Applications

graphs and complete graphs (Figure 8.7) are two examples. At the
other extreme, in a graph with no edges, each vertex is in its own
connected component, for a total of n. There cannot be more than n
connected components, as they are disjoint and each contains at least
one vertex.

8.4 Depth-First Search

Why do we need another graph search strategy? After all, breadth-first
search seems pretty awesome—it finds all the vertices reachable from
the starting vertex in linear time, and can even compute shortest-path
distances along the way.

There’s another linear-time graph search strategy, depth-first
search (DFS), which comes with its own impressive catalog of applica-
tions (not already covered by BFS). For example, we’ll see how to use
DFS to compute in linear time a topological ordering of the vertices
of a directed acyclic graph, as well as the connected components
(appropriately defined) of a directed graph.

8.4.1 An Example

If breadth-first search is the cautious and tentative exploration strat-
egy, depth-first search is its more aggressive cousin, always exploring
from the most recently discovered vertex and backtracking only when
necessary (like exploring a maze). Before we describe the full pseu-
docode for DFS, let’s illustrate how it works on the same running
example used in Section 8.2 (Figure 8.9).

s

a

b

c

d

e

Figure 8.9: Running example for depth-first search.

8.4 Depth-First Search 41

Like BFS, DFS marks a vertex as explored the first time it discovers
it. Because it begins its exploration at the starting vertex s, for the
graph in Figure 8.9, the first iteration of DFS examines the edges (s, a)
and (s, b), in whatever order these edges appear in s’s adjacency list.
Let’s say (s, a) comes first, leading DFS to discover the vertex a and
mark it as explored. The second iteration of DFS is where it diverges
from BFS—rather than considering next s’s other layer-1 neighbor b,
DFS immediately proceeds to exploring the neighbors of a. (It will
eventually get back to exploring (s, b).) Perhaps from a it checks s
first (which is already marked as explored) and then discovers the
vertex c, which is where it travels next:

s

#1

a

b

c

d

e

#2

#3

the frontier

Then DFS examines in some order the neighbors of c, the most
recently discovered vertex. To keep things interesting, let’s say that
DFS discovers d next, followed by e:

s

#1

a

b

c

d

e

#2

#3

the frontier

#5

#4

need to
backtrack
from here

From e, DFS has nowhere to go—both of e’s neighbors are already
marked as explored. DFS is forced to retreat to the previous vertex,
namely d, and resume exploring the rest of its neighbors. From d, DFS
will discover the final vertex b (perhaps after checking c and finding
it marked as explored). Once at b, the dominoes fall quickly. DFS

42 Graph Search and Its Applications

discovers that all of b’s neighbors have already been explored, and
must backtrack to the previously visited vertex, which is d. Similarly,
because all of d’s remaining neighbors are already marked as explored,
DFS must rewind further, to c. DFS then retreats further to a (after
checking that all of c’s remaining neighbors are marked as explored),
then to s. It finally stops once it checks s’s remaining neighbor (which
is b) and finds it marked as explored.

8.4.2 Pseudocode for DFS

Iterative Implementation

One way to think about and implement DFS is to start from the code
for BFS and make two changes: (i) swap in a stack data structure
(which is last-in first-out) for the queue (which is first-in first-out);
and (ii) postpone checking whether a vertex has already been explored
until after removing it from the data structure.20,21

DFS (Iterative Version)

Input: graph G = (V,E) in adjacency-list
representation, and a vertex s 2 V .

Postcondition: a vertex is reachable from s if and
only if it is marked as “explored.”

mark all vertices as unexplored
S := a stack data structure, initialized with s
while S is not empty do

remove (“pop”) the vertex v from the front of S
if v is unexplored then

mark v as explored
for each edge (v, w) in v’s adjacency list do

add (“push”) w to the front of S

20A stack is a “last-in first-out” data structure—like those stacks of upside-down
trays at a cafeteria—that is typically studied in a first programming course (along
with queues, see footnote 11). A stack maintains a list of objects, and you can add
an object to the beginning of the list (a “push”) or remove one from the beginning
of the list (a “pop”) in constant time.

21Would the algorithm behave the same if we made only the first change?

8.4 Depth-First Search 43

As usual, the edges processed in the for loop are the edges incident
to v (if G is an undirected graph) or the edges outgoing from v (if G
is a directed graph).

For example, in the graph in Figure 8.9, the first iteration of DFS’s
while loop pops the vertex s and pushes its two neighbors onto the
stack in some order, say, with b first and a second. Because a was the
last to be pushed, it is the first to be popped, in the second iteration
of the while loop. This causes s and c to be pushed onto the stack,
let’s say with c first. The vertex s is popped in the next iteration;
since it has already been marked as explored, the algorithm skips it.
Then c is popped, and all of its neighbors (a, b, d, and e) are pushed
onto the stack, joining the first occurrence of b. If d is pushed last,
and also b is pushed before e when d is popped in the next iteration,
then we recover the order of exploration from Section 8.4.1 (as you
should check).

Recursive Implementation

Depth-first search also has an elegant recursive implementation.22

DFS (Recursive Version)

Input: graph G = (V,E) in adjacency-list
representation, and a vertex s 2 V .

Postcondition: a vertex is reachable from s if and
only if it is marked as “explored.”

// all vertices unexplored before outer call

mark s as explored
for each edge (s, v) in s’s adjacency list do

if v is unexplored then
DFS (G, v)

In this implementation, all recursive calls to DFS have access to the
same set of global variables which track the vertices that have been
marked as explored (with all vertices initially unexplored). The aggres-
sive nature of DFS is perhaps more obvious in this implementation—the

22I’m assuming you’ve heard of recursion as part of your programming back-
ground. A recursive procedure is one that invokes itself as a subroutine.

44 Graph Search and Its Applications

algorithm immediately recurses on the first unexplored neighbor that
it finds, before considering the remaining neighbors.23 In effect, the
explicit stack data structure in the iterative implementation of DFS is
being simulated by the program stack of recursive calls in the recursive
implementation.24

8.4.3 Correctness and Running Time

Depth-first search is just as correct and just as blazingly fast as
breadth-first search, for the same reasons (cf., Theorem 8.2).25

Theorem 8.5 (Properties of DFS) For every undirected or di-
rected graph G = (V,E) in adjacency-list representation and for every
starting vertex s 2 V :

(a) At the conclusion of DFS, a vertex v 2 V is marked as explored
if and only if there is a path from s to v in G.

(b) The running time of DFS is O(m + n), where m = |E| and
n = |V |.

Part (a) holds because depth-first search is a special case of the generic
graph search algorithm GenericSearch (see Proposition 8.1).26

Part (b) holds because DFS examines each edge at most twice (once
from each endpoint) and, because the stack supports pushes and pops
in O(1) time, performs a constant number of operations per edge
examination (for O(m) total). The initialization requires O(n) time.27

23As stated, the two versions of DFS explore the edges in a vertex’s adjacency
list in opposite orders. (Do you see why?) If one of the versions is modified to
iterate backward through a vertex’s adjacency list, then the iterative and recursive
implementations explore the vertices in the same order.

24Pro tip: If your computer runs out of memory while executing the recursive
version of DFS on a big graph, you should either switch to the iterative version or
increase the program stack size in your programming environment.

25The abbreviation “cf.” stands for confer and means “compare to.”
26Formally, DFS is equivalent to the version of GenericSearch in which, in

every iteration of the latter’s while loop, the algorithm chooses the eligible edge
(v, w) for which v was discovered most recently. Ties among v’s eligible edges are
broken according to their order (for the recursive version) or their reverse order
(for the iterative version) in v’s adjacency list.

27The refined bound in Theorem 8.2(c) also holds for DFS (for the same reasons),
which means DFS can substitute for BFS in the linear-time UCC algorithm for
computing connected components in Section 8.3.

