
22 Single-Source Shortest Paths

Suppose that you need to drive from Oceanside, New York, to Oceanside, Califor-
nia, by the shortest possible route. Your GPS contains information about the entire
road network of the United States, including the road distance between each pair
of adjacent intersections. How can your GPS determine this shortest route?
One possible way is to enumerate all the routes from Oceanside, New York, to

Oceanside, California, add up the distances on each route, and select the shortest.
But even disallowing routes that contain cycles, your GPS would need to examine
an enormous number of possibilities, most of which are simply not worth consid-
ering. For example, a route that passes through Miami, Florida, is a poor choice,
because Miami is several hundred miles out of the way.
This chapter and Chapter 23 show how to solve such problems efûciently. The

input to a shortest-paths problem is a weighted, directed graph G D .V;E/,
with a weight function w W E ! R mapping edges to real-valued weights. The
weight w.p/ of path p D hv 0 ; v 1 ; : : : ; v k i is the sum of the weights of its con-
stituent edges:

w.p/ D
k X

i D1

w.v i 1 ; v i / :

We deûne the shortest-path weight ı.u; v/ from u to v by

ı.u; v/ D

(
minfw.p/ W u p

❀ vg if there is a path from u to v ;
1 otherwise :

A shortest path from vertex u to vertex v is then deûned as any path p with
weight w.p/ D ı.u; v/.
In the example of going from Oceanside, New York, to Oceanside, California,

your GPS models the road network as a graph: vertices represent intersections,
edges represent road segments between intersections, and edge weights represent
road distances. The goal is to ûnd a shortest path from a given intersection in

Chapter 22 Single-Source Shortest Paths 605

Oceanside, New York (say, Brower Avenue and Skillman Avenue) to a given inter-
section in Oceanside, California (say, Topeka Street and South Horne Street).

Edge weights can represent metrics other than distances, such as time, cost,
penalties, loss, or any other quantity that accumulates linearly along a path and
that you want to minimize.
The breadth-ûrst-search algorithm from Section 20.2 is a shortest-paths algo-

rithm that works on unweighted graphs, that is, graphs in which each edge has unit
weight. Because many of the concepts from breadth-ûrst search arise in the study
of shortest paths in weighted graphs, you might want to review Section 20.2 before
proceeding.

Variants
This chapter focuses on the single-source shortest-paths problem: given a graph
G D .V;E/, ûnd a shortest path from a given source vertex s 2 V to every
vertex v 2 V . The algorithm for the single-source problem can solve many other
problems, including the following variants.
Single-destination shortest-paths problem: Find a shortest path to a given des-
tination vertex t from each vertex v. By reversing the direction of each edge in
the graph, you can reduce this problem to a single-source problem.

Single-pair shortest-path problem: Find a shortest path from u to v for given
vertices u and v. If you solve the single-source problem with source vertex u,
you solve this problem also. Moreover, all known algorithms for this problem
have the same worst-case asymptotic running time as the best single-source
algorithms.

All-pairs shortest-paths problem: Find a shortest path from u to v for every
pair of vertices u and v. Although you can solve this problem by running a
single-source algorithm once from each vertex, you often can solve it faster.
Additionally, its structure is interesting in its own right. Chapter 23 addresses
the all-pairs problem in detail.

Optimal substructure of a shortest path

Shortest-paths algorithms typically rely on the property that a shortest path be-
tween two vertices contains other shortest paths within it. (The Edmonds-Karp
maximum-üow algorithm in Chapter 24 also relies on this property.) Recall that
optimal substructure is one of the key indicators that dynamic programming (Chap-
ter 14) and the greedy method (Chapter 15) might apply. Dijkstra9s algorithm,
which we shall see in Section 22.3, is a greedy algorithm, and the Floyd-Warshall
algorithm, which ûnds a shortest path between every pair of vertices (see Sec-

606 Chapter 22 Single-Source Shortest Paths

tion 23.2), is a dynamic-programming algorithm. The following lemma states the
optimal-substructure property of shortest paths more precisely.

Lemma 22.1 (Subpaths of shortest paths are shortest paths)
Given a weighted, directed graph G D .V;E/ with weight function w W E ! R,
let p D hv 0 ; v 1 ; : : : ; v k i be a shortest path from vertex v 0 to vertex v k and, for any
i and j such that 0 හ i හ j හ k, let p ij D hv i ; v i C1 ; : : : ; v j i be the subpath of p
from vertex v i to vertex v j . Then, p ij is a shortest path from v i to v j .

Proof Decompose path p into v 0
p 0i
❀ v i

p ij
❀ v j

p jk
❀ v k , so that w.p/ D w.p 0i / C

w.p ij / C w.p jk /. Now, assume that there is a path p 0 ij from v i to v j with weight
w.p 0 ij / < w.p ij /. Then, v 0

p 0i
❀ v i

p 0
ij
❀ v j

p jk
❀ v k is a path from v 0 to v k whose

weight w.p 0i / C w.p 0 ij / C w.p jk / is less than w.p/, which contradicts the as-
sumption that p is a shortest path from v 0 to v k .

Negative-weight edges
Some instances of the single-source shortest-paths problem may include edges
whose weights are negative. If the graph G D .V;E/ contains no negative-
weight cycles reachable from the source s , then for all v 2 V , the shortest-path
weight ı.s; v/ remains well deûned, even if it has a negative value. If the graph
contains a negative-weight cycle reachable from s , however, shortest-path weights
are not well deûned. No path from s to a vertex on the cycle can be a short-
est path4you can always ûnd a path with lower weight by following the proposed
<shortest= path and then traversing the negative-weight cycle. If there is a negative-
weight cycle on some path from s to v, we deûne ı.s; v/ D 1.
Figure 22.1 illustrates the effect of negative weights and negative-weight cy-

cles on shortest-path weights. Because there is only one path from s to a (the
path hs; ai), we have ı.s; a/ D w.s; a/ D 3. Similarly, there is only one path
from s to b, and so ı.s; b/ D w.s; a/ C w.a; b/ D 3 C .4/ D 1. There are
inûnitely many paths from s to c : hs; c i, hs; c; d; c i, hs; c; d; c; d; c i, and so on.
Because the cycle hc; d; c i has weight 6 C .3/ D 3 > 0, the shortest path from s
to c is hs; c i, with weight ı.s; c/ D w.s; c/ D 5, and the shortest path from s to d
is hs; c; d i, with weight ı.s; d/ D w.s; c/ C w.c; d/ D 11. Analogously, there
are inûnitely many paths from s to e: hs; ei, hs; e; f; ei, hs; e; f; e; f; ei, and so
on. Because the cycle he; f; ei has weight 3 C .6/ D 3 < 0, however, there
is no shortest path from s to e. By traversing the negative-weight cycle he; f; ei
arbitrarily many times, you can ûnd paths from s to e with arbitrarily large negative
weights, and so ı.s; e/ D 1. Similarly, ı.s; f / D 1. Because g is reachable
from f , you can also ûnd paths with arbitrarily large negative weights from s to g,

Chapter 22 Single-Source Shortest Paths 607

5
c d 6

33

–∞
e

–∞
f 3

36

3
a

31
b

0
s

–∞
g

34

5

3

2

8

4

7

∞
h

∞
i

2

∞
j

38 3 11

Figure 22.1 Negative edge weights in a directed graph. The shortest-path weight from source s
appears within each vertex. Because vertices e and f form a negative-weight cycle reachable from s ,
they have shortest-path weights of 1. Because vertex g is reachable from a vertex whose shortest-
path weight is 1, it, too, has a shortest-path weight of 1. Vertices such as h, i , and j are not
reachable from s , and so their shortest-path weights are 1, even though they lie on a negative-weight
cycle.

and so ı.s; g/ D 1. Vertices h, i , and j also form a negative-weight cycle. They
are not reachable from s , however, and so ı.s; h/ D ı.s; i/ D ı.s; j / D 1.
Some shortest-paths algorithms, such as Dijkstra9s algorithm, assume that all

edge weights in the input graph are nonnegative, as in a road network. Others, such
as the Bellman-Ford algorithm, allow negative-weight edges in the input graph and
produce a correct answer as long as no negative-weight cycles are reachable from
the source. Typically, if there is such a negative-weight cycle, the algorithm can
detect and report its existence.

Cycles
Can a shortest path contain a cycle? As we have just seen, it cannot contain a
negative-weight cycle. Nor can it contain a positive-weight cycle, since remov-
ing the cycle from the path produces a path with the same source and destination
vertices and a lower path weight. That is, if p D hv 0 ; v 1 ; : : : ; v k i is a path and
c D hv i ; v i C1 ; : : : ; v j i is a positive-weight cycle on this path (so that v i D v j and
w.c/ > 0), then the path p 0 D hv 0 ; v 1 ; : : : ; v i ; v j C1 ; v j C2 ; : : : ; v k i has weight
w.p 0 / D w.p/ w.c/ < w.p/, and so p cannot be a shortest path from v 0 to v k .

That leaves only 0-weight cycles. You can remove a 0-weight cycle from any
path to produce another path whose weight is the same. Thus, if there is a shortest
path from a source vertex s to a destination vertex v that contains a 0-weight cycle,
then there is another shortest path from s to v without this cycle. As long as a
shortest path has 0-weight cycles, you can repeatedly remove these cycles from the
path until you have a shortest path that is cycle-free. Therefore, without loss of

608 Chapter 22 Single-Source Shortest Paths

generality, assume that shortest paths have no cycles, that is, they are simple paths.
Since any acyclic path in a graph G D .V;E/ contains at most jV j distinct vertices,
it also contains at most jV j 1 edges. Assume, therefore, that any shortest path
contains at most jV j 1 edges.

Representing shortest paths
It is usually not enough to compute only shortest-path weights. Most applications
of shortest paths need to know the vertices on shortest paths as well. For example, if
your GPS told you the distance to your destination but not how to get there, it would
not be terribly useful. We represent shortest paths similarly to how we represented
breadth-ûrst trees in Section 20.2. Given a graph G D .V;E/, maintain for each
vertex v 2 V a predecessor v:� that is either another vertex or NIL. The shortest-
paths algorithms in this chapter set the � attributes so that the chain of predecessors
originating at a vertex v runs backward along a shortest path from s to v. Thus,
given a vertex v for which v:� ¤ NIL, the procedure PRINT-PATH.G; s; v/ from
Section 20.2 prints a shortest path from s to v.
In the midst of executing a shortest-paths algorithm, however, the � values might

not indicate shortest paths. The predecessor subgraph G D .V ; E / induced by
the � values is deûned the same for single-source shortest paths as for breadth-ûrst
search in equations (20.2) and (20.3) on page 561:
V D fv 2 V W v:� ¤ NILg [fs g ;
E D f.v:�; v/ 2 E W v 2 V fs gg :

We9ll prove that the � values produced by the algorithms in this chapter have
the property that at termination G is a <shortest-paths tree=4informally, a rooted
tree containing a shortest path from the source s to every vertex that is reachable
from s . A shortest-paths tree is like the breadth-ûrst tree from Section 20.2, but it
contains shortest paths from the source deûned in terms of edge weights instead of
numbers of edges. To be precise, let G D .V;E/ be a weighted, directed graph
with weight function w W E ! R, and assume that G contains no negative-weight
cycles reachable from the source vertex s 2 V , so that shortest paths are well
deûned. A shortest-paths tree rooted at s is a directed subgraph G 0 D .V 0 ; E 0 /,
where V 0 ෂ V and E 0 ෂ E, such that
1. V 0 is the set of vertices reachable from s in G,
2. G 0 forms a rooted tree with root s , and
3. for all v 2 V 0 , the unique simple path from s to v in G 0 is a shortest path from s

to v in G.

Chapter 22 Single-Source Shortest Paths 609

(a) (b) (c)

0

6

6

7 2 1 2 4
3

5 3

s

t x

y z

0

6

6

7 2 1 2 4
3

5 3

s

t x

y z

3 9

5 11

0

6

6

7 2 1 2 4
3

5 3

s

t x

y z

3 9

5 11

3 9

5 11

Figure 22.2 (a) A weighted, directed graph with shortest-path weights from source s . (b) The blue
edges form a shortest-paths tree rooted at the source s . (c) Another shortest-paths tree with the same
root.

Shortest paths are not necessarily unique, and neither are shortest-paths trees.
For example, Figure 22.2 shows a weighted, directed graph and two shortest-paths
trees with the same root.

Relaxation

The algorithms in this chapter use the technique of relaxation. For each vertex
v 2 V , the single-source shortest paths algorithms maintain an attribute v: d, which
is an upper bound on the weight of a shortest path from source s to v. We call v: d a
shortest-path estimate. To initialize the shortest-path estimates and predecessors,
call the ‚.V /-time procedure I NITIALIZE-SINGLE-SOURCE. After initialization,
we have v:� D NIL for all v 2 V , s: d D 0 and v: d D 1 for v 2 V fs g.

I NITIALIZE-SINGLE-SOURCE .G; s/
1 for each vertex v 2 G: V
2 v: d D 1
3 v:� D NIL
4 s: d D 0

The process of relaxing an edge .u; v/ consists of testing whether going through
vertex u improves the shortest path to vertex v found so far and, if so, updating
v: d and v:� . A relaxation step might decrease the value of the shortest-path esti-
mate v: d and update v9s predecessor attribute v:� . The RELAX procedure on the
following page performs a relaxation step on edge .u; v/ in O.1/ time. Figure 22.3
shows two examples of relaxing an edge, one in which a shortest-path estimate
decreases and one in which no estimate changes.

610 Chapter 22 Single-Source Shortest Paths

u
5 9 2

u
5 7 2

(a) (b)

u
5 6 2

u
5 6 2

v

v

v

v

RELAX.u; v;w/ RELAX.u; v;w/

Figure 22.3 Relaxing an edge .u; v/ with weight w.u; v/ D 2. The shortest-path estimate of each
vertex appears within the vertex. (a) Because v: d > u: d C w.u; v/ prior to relaxation, the value
of v: d decreases. (b) Since we have v: d හ u: d C w.u; v/ before relaxing the edge, the relaxation
step leaves v: d unchanged.

RELAX.u; v;w/
1 if v: d > u: d C w.u; v/
2 v: d D u: d C w.u; v/
3 v:� D u

Each algorithm in this chapter calls I NITIALIZE-SINGLE-SOURCE and then re-
peatedly relaxes edges. 1 Moreover, relaxation is the only means by which shortest-
path estimates and predecessors change. The algorithms in this chapter differ in
how many times they relax each edge and the order in which they relax edges. Dijk-
stra9s algorithm and the shortest-paths algorithm for directed acyclic graphs relax
each edge exactly once. The Bellman-Ford algorithm relaxes each edge jV j 1
times.

Properties of shortest paths and relaxation

To prove the algorithms in this chapter correct, we9ll appeal to several properties
of shortest paths and relaxation. We state these properties here, and Section 22.5
proves them formally. For your reference, each property stated here includes the
appropriate lemma or corollary number from Section 22.5. The latter ûve of these
properties, which refer to shortest-path estimates or the predecessor subgraph, im-

1 It may seem strange that the term <relaxation= is used for an operation that tightens an upper bound.
The use of the term is historical. The outcome of a relaxation step can be viewed as a relaxation of
the constraint v: d හ u: d C w.u; v/, which, by the triangle inequality (Lemma 22.10 on page 633) ,
must be satisûed if u: d D ı.s; u/ and v: d D ı.s; v/. That is, if v: d හ u: d C w.u; v/, there is no
<pressure= to satisfy this constraint, so the constraint is <relaxed.=

Chapter 22 Single-Source Shortest Paths 611

plicitly assume that the graph is initialized with a call to I NITIALIZE-SINGLE-
SOURCE.G; s/ and that the only way that shortest-path estimates and the prede-
cessor subgraph change are by some sequence of relaxation steps.
Triangle inequality (Lemma 22.10)

For any edge .u; v/ 2 E, we have ı.s; v/ හ ı.s; u/ C w.u; v/.
Upper-bound property (Lemma 22.11)

We always have v: d ı.s; v/ for all vertices v 2 V , and once v: d achieves the
value ı.s; v/, it never changes.

No-path property (Corollary 22.12)
If there is no path from s to v, then we always have v: d D ı.s; v/ D 1.

Convergence property (Lemma 22.14)
If s ❀ u ! v is a shortest path in G for some u; v 2 V , and if u: d D ı.s; u/ at
any time prior to relaxing edge .u; v/, then v: d D ı.s; v/ at all times afterward.

Path-relaxation property (Lemma 22.15)
If p D hv 0 ; v 1 ; : : : ; v k i is a shortest path from s D v 0 to v k , and the edges of p
are relaxed in the order .v 0 ; v 1 /; .v 1 ; v 2 /; : : : ; .v k1 ; v k /, then v k : d D ı.s; v k /.
This property holds regardless of any other relaxation steps that occur, even if
they are intermixed with relaxations of the edges of p.

Predecessor-subgraph property (Lemma 22.17)
Once v: d D ı.s; v/ for all v 2 V , the predecessor subgraph is a shortest-paths
tree rooted at s .

Chapter outline
Section 22.1 presents the Bellman-Ford algorithm, which solves the single-source
shortest-paths problem in the general case in which edges can have negative weight.
The Bellman-Ford algorithm is remarkably simple, and it has the further beneût
of detecting whether a negative-weight cycle is reachable from the source. Sec-
tion 22.2 gives a linear-time algorithm for computing shortest paths from a single
source in a directed acyclic graph. Section 22.3 covers Dijkstra9s algorithm, which
has a lower running time than the Bellman-Ford algorithm but requires the edge
weights to be nonnegative. Section 22.4 shows how to use the Bellman-Ford algo-
rithm to solve a special case of linear programming. Finally , Section 22.5 proves
the properties of shortest paths and relaxation stated above.
This chapter does arithmetic with inûnities, and so we need some conventions

for when 1 or 1 appears in an arithmetic expression. We assume that for any
real number a ¤ 1, we have a C 1 D 1 C a D 1. Also, to make our
proofs hold in the presence of negative-weight cycles, we assume that for any real
number a ¤ 1, we have a C .1/ D .1/ C a D 1.

620 Chapter 22 Single-Source Shortest Paths

22.3 Dijkstra’s algorithm

Dijkstra9s algorithm solves the single-source shortest-paths problem on a weighted,
directed graph G D .V;E/, but it requires nonnegative weights on all edges:
w.u; v/ 0 for each edge .u; v/ 2 E. As we shall see, with a good implementa-
tion, the running time of Dijkstra9s algorithm is lower than that of the Bellman-Ford
algorithm.
You can think of Dijkstra9s algorithm as generalizing breadth-ûrst search to

weighted graphs. A wave emanates from the source, and the ûrst time that a wave
arrives at a vertex, a new wave emanates from that vertex. Whereas breadth-ûrst
search operates as if each wave takes unit time to traverse an edge, in a weighted
graph, the time for a wave to traverse an edge is given by the edge9s weight. Be-
cause a shortest path in a weighted graph might not have the fewest edges, a sim-
ple, ûrst-in, ûrst-out queue won9t sufûce for choosing the next vertex from which
to send out a wave.
Instead, Dijkstra9s algorithm maintains a set S of vertices whose ûnal shortest-

path weights from the source s have already been determined. The algorithm re-
peatedly selects the vertex u 2 V S with the minimum shortest-path estimate,
adds u into S , and relaxes all edges leaving u. The procedure DIJKSTRA replaces
the ûrst-in, ûrst-out queue of breadth-ûrst search by a min-priority queue Q of
vertices, keyed by their d values.

DIJKSTRA .G;w; s/
1 I NITIALIZE-SINGLE-SOURCE .G; s/
2 S D ;
3 Q D ;
4 for each vertex u 2 G: V
5 I NSERT.Q; u/
6 while Q ¤ ;
7 u D EXTRACT-MIN .Q/
8 S D S [fug
9 for each vertex v in G: AdjŒu�
10 RELAX.u; v;w/
11 if the call of RELAX decreased v: d
12 DECREASE-KEY .Q; v; v: d/

Dijkstra9s algorithm relaxes edges as shown in Figure 22.6. Line 1 initializes the
d and � values in the usual way, and line 2 initializes the set S to the empty set.
The algorithm maintains the invariant that Q D V S at the start of each iteration

22.3 Dijkstra’s algorithm 621

0

∞ ∞

∞ ∞

0

2

10

5

(c)

0

0 0 0

6 4 3 2 9

7

s

t x

y z

1

2

10

5

(f)

6 4 3 2 9

7

s

t x

y z

1

2

10

5

(b)

6 4 3 2 9

7

s

t x

y z

1

2

10

5

(e)

6 4 3 2 9

7

s

t x

y z

1

2

10

5

(a)

6 4 3 2 9

7

s

t x

y z

1

2

10

5

(d)

6 4 3 2 9

7

s

t x

y z

∞ 10

∞ 5

1 8 14

5 7

9 8

5 7

8 9

5 7

8 13

5 7

Figure 22.6 The execution of Dijkstra9s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and blue edges indicate predecessor values. Blue
vertices belong to the set S , and tan vertices are in the min-priority queue Q D V S . (a) The
situation just before the ûrst iteration of the while loop of lines 6312. (b)–(f) The situation after each
successive iteration of the while loop. In each part, the vertex highlighted in orange was chosen as
vertex u in line 7, and each edge highlighted in orange caused a d value and a predecessor to change
when the edge was relaxed. The d values and predecessors shown in part (f) are the ûnal values.

of the while loop of lines 6312. Lines 335 initialize the min-priority queue Q to
contain all the vertices in V . Since S D ; at that time, the invariant is true upon
ûrst reaching line 6. Each time through the while loop of lines 6312, line 7 extracts
a vertex u from Q D V S and line 8 adds it to set S , thereby maintaining the
invariant. (The ûrst time through this loop, u D s .) Vertex u, therefore, has the
smallest shortest-path estimate of any vertex in V S . Then, lines 9312 relax each
edge .u; v/ leaving u, thus updating the estimate v: d and the predecessor v:� if the
shortest path to v found so far improves by going through u. Whenever a relaxation
step changes the d and � values, the call to DECREASE-KEY in line 12 updates the
min-priority queue. The algorithm never inserts vertices into Q after the for loop
of lines 435, and each vertex is extracted from Q and added to S exactly once, so
that the while loop of lines 6312 iterates exactly jV j times.
Because Dijkstra9s algorithm always chooses the <lightest= or <closest= vertex

in V S to add to set S , you can think of it as using a greedy strategy. Chap-
ter 15 explains greedy strategies in detail, but you need not have read that chapter
to understand Dijkstra9s algorithm. Greedy strategies do not always yield optimal

622 Chapter 22 Single-Source Shortest Paths

S
u

y
s

x

Figure 22.7 The proof of Theorem 22.6. Vertex u is selected to be added into set S in line 7 of
DIJKSTRA. Vertex y is the ûrst vertex on a shortest path from the source s to vertex u that is not in
set S , and x 2 S is y9s predecessor on that shortest path. The subpath from y to u may or may not
re-enter set S .

results in general, but as the following theorem and its corollary show, Dijkstra9s al-
gorithm does indeed compute shortest paths. The key is to show that u: d D ı.s; u/
each time it adds a vertex u to set S .

Theorem 22.6 (Correctness of Dijkstra’s algorithm)
Dijkstra9s algorithm, run on a weighted, directed graph G D .V;E/ with nonneg-
ative weight function w and source vertex s , terminates with u: d D ı.s; u/ for all
vertices u 2 V .

Proof We will show that at the start of each iteration of the while loop of lines
6312, we have v: d D ı.s; v/ for all v 2 S . The algorithm terminates when S D V ,
so that v: d D ı.s; v/ for all v 2 V .

The proof is by induction on the number of iterations of the while loop, which
equals jS j at the start of each iteration. There are two bases: for jS j D 0, so
that S D ; and the claim is trivially true, and for jS j D 1, so that S D fs g and
s: d D ı.s; s/ D 0.

For the inductive step, the inductive hypothesis is that v: d D ı.s; v/ for all
v 2 S . The algorithm extracts vertex u from V S . Because the algorithm adds u
into S , we need to show that u: d D ı.s; u/ at that time. If there is no path from s
to u, then we are done, by the no-path property. If there is a path from s to u, then,
as Figure 22.7 shows, let y be the ûrst vertex on a shortest path from s to u that is
not in S , and let x 2 S be the predecessor of y on that shortest path. (We could
have y D u or x D s .) Because y appears no later than u on the shortest path and
all edge weights are nonnegative, we have ı.s; y/ හ ı.s; u/. Because the call of
EXTRACT-MIN in line 7 returned u as having the minimum d value in V S , we
also have u: d හ y: d, and the upper-bound property gives ı.s; u/ හ u: d.

Since x 2 S , the inductive hypothesis implies that x: d D ı.s; x/. During the
iteration of the while loop that added x into S , edge .x; y/ was relaxed. By the
convergence property, y: d received the value of ı.s; y/ at that time. Thus, we have

22.3 Dijkstra’s algorithm 623

ı.s; y/ හ ı.s; u/ හ u: d හ y: d and y: d D ı.s; y/ ;

so that
ı.s; y/ D ı.s; u/ D u: d D y: d :
Hence, u: d D ı.s; u/, and by the upper-bound property, this value never changes
again.

Corollary 22.7
After Dijkstra9s algorithm is run on a weighted, directed graph G D .V;E/ with
nonnegative weight function w and source vertex s , the predecessor subgraph G
is a shortest-paths tree rooted at s .

Proof Immediate from Theorem 22.6 and the predecessor-subgraph property.

Analysis
How fast is Dijkstra9s algorithm? It maintains the min-priority queue Q by calling
three priority-queue operations: I NSERT (in line 5), EXTRACT-MIN (in line 7), and
DECREASE-KEY (in line 12). The algorithm calls both I NSERT and EXTRACT-
MIN once per vertex. Because each vertex u 2 V is added to set S exactly once,
each edge in the adjacency list AdjŒu� is examined in the for loop of lines 9312
exactly once during the course of the algorithm. Since the total number of edges in
all the adjacency lists is jEj, this for loop iterates a total of jEj times, and thus the
algorithm calls DECREASE-KEY at most jEj times overall. (Observe once again
that we are using aggregate analysis.)
Just as in Prim9s algorithm, the running time of Dijkstra9s algorithm depends on

the speciûc implementation of the min-priority queue Q. A simple implementation
takes advantage of the vertices being numbered 1 to jV j: simply store v: d in the
vth entry of an array. Each I NSERT and DECREASE-KEY operation takes O.1/
time, and each EXTRACT-MIN operation takes O.V / time (since it has to search
through the entire array), for a total time of O.V 2 C E/ D O.V 2 /.
If the graph is sufûciently sparse4in particular, E D o.V 2 = lg V /4you can

improve the running time by implementing the min-priority queue with a binary
min-heap that includes a way to map between vertices and their corresponding
heap elements. Each EXTRACT-MIN operation then takes O.lg V / time. As be-
fore, there are jV j such operations. The time to build the binary min-heap is O.V /.
(As noted in Section 21.2, you don9t even need to call BUILD-MIN-HEAP.) Each
DECREASE-KEY operation takes O.lg V / time, and there are still at most jEj
such operations. The total running time is therefore O..V C E/ lg V /, which
is O.E lg V / in the typical case that jEj D �.V / . This running time improves
upon the straightforward O.V 2 /-time implementation if E D o.V 2 = lg V /.

624 Chapter 22 Single-Source Shortest Paths

By implementing the min-priority queue with a Fibonacci heap (see page 478),
you can improve the running time to O.V lg V C E/. The amortized cost of each
of the jV j EXTRACT-MIN operations is O.lg V /, and each DECREASE-KEY call,
of which there are at most jEj, takes only O.1/ amortized time. Historically, the
development of Fibonacci heaps was motivated by the observation that Dijkstra9s
algorithm typically makes many more DECREASE-KEY calls than EXTRACT-MIN
calls, so that any method of reducing the amortized time of each DECREASE-KEY
operation to o.lg V / without increasing the amortized time of EXTRACT-MIN
would yield an asymptotically faster implementation than with binary heaps.
Dijkstra9s algorithm resembles both breadth-ûrst search (see Section 20.2) and

Prim9s algorithm for computing minimum spanning trees (see Section 21.2). It is
like breadth-ûrst search in that set S corresponds to the set of black vertices in a
breadth-ûrst search. Just as vertices in S have their ûnal shortest-path weights, so
do black vertices in a breadth-ûrst search have their correct breadth-ûrst distances.
Dijkstra9s algorithm is like Prim9s algorithm in that both algorithms use a min-
priority queue to ûnd the <lightest= vertex outside a given set (the set S in Dijkstra9s
algorithm and the tree being grown in Prim9s algorithm), add this vertex into the
set, and adjust the weights of the remaining vertices outside the set accordingly.

Exercises
22.3-1
Run Dijkstra9s algorithm on the directed graph of Figure 22.2, ûrst using vertex s
as the source and then using vertex ´ as the source. In the style of Figure 22.6,
show the d and � values and the vertices in set S after each iteration of the while
loop.
22.3-2
Give a simple example of a directed graph with negative-weight edges for which
Dijkstra9s algorithm produces an incorrect answer. Why doesn9t the proof of The-
orem 22.6 go through when negative-weight edges are allowed?
22.3-3
Suppose that you change line 6 of Dijkstra9s algorithm to read
6 while jQj > 1
This change causes the while loop to execute jV j 1 times instead of jV j times. Is
this proposed algorithm correct?

