20 Elementary Graph Algorithms

This chapter presents methods for representing a graph and for searching a graph. Searching a graph means systematically following the edges of the graph so as to visit the vertices of the graph. A graph-searching algorithm can discover much about the structure of a graph. Many algorithms begin by searching their input graph to obtain this structural information. Several other graph algorithms elaborate on basic graph searching. Techniques for searching a graph lie at the heart of the field of graph algorithms.

Section 20.1 discusses the two most common computational representations of graphs: as adjacency lists and as adjacency matrices. Section 20.2 presents a simple graph-searching algorithm called breadth-first search and shows how to create a breadth-first tree. Section 20.3 presents depth-first search and proves some standard results about the order in which depth-first search visits vertices. Section 20.4 provides our first real application of depth-first search: topologically sorting a directed acyclic graph. A second application of depth-first search, finding the strongly connected components of a directed graph, is the topic of Section 20.5.

20.1 Representations of graphs

You can choose between two standard ways to represent a graph $G=(V, E)$: as a collection of adjacency lists or as an adjacency matrix. Either way applies to both directed and undirected graphs. Because the adjacency-list representation provides a compact way to represent sparse graphs-those for which $|E|$ is much less than $|V|^{2}$-it is usually the method of choice. Most of the graph algorithms presented in this book assume that an input graph is represented in adjacency-list form. You might prefer an adjacency-matrix representation, however, when the graph is dense $-|E|$ is close to $|V|^{2}$ - or when you need to be able to tell quickly whether there is an edge connecting two given vertices. For example, two of the

(a)

(b)

		1	2	3	4
1	5				
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

(c)

Figure 20.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

(a)

(b)

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

(c)

Figure 20.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.
all-pairs shortest-paths algorithms presented in Chapter 23 assume that their input graphs are represented by adjacency matrices.

The adjacency-list representation of a graph $G=(V, E)$ consists of an array Adj of $|V|$ lists, one for each vertex in V. For each $u \in V$, the adjacency list $\operatorname{Adj}[u]$ contains all the vertices v such that there is an edge $(u, v) \in E$. That is, $\operatorname{Adj}[u]$ consists of all the vertices adjacent to u in G. (Alternatively, it can contain pointers to these vertices.) Since the adjacency lists represent the edges of a graph, our pseudocode treats the array $A d j$ as an attribute of the graph, just like the edge set E. In pseudocode, therefore, you will see notation such as $G . \operatorname{Adj}[u]$. Figure 20.1(b) is an adjacency-list representation of the undirected graph in Figure 20.1(a). Similarly, Figure 20.2(b) is an adjacency-list representation of the directed graph in Figure 20.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists is $|E|$, since an edge of the form (u, v) is represented by having v appear in $\operatorname{Adj}[u]$. If G is
an undirected graph, the sum of the lengths of all the adjacency lists is $2|E|$, since if (u, v) is an undirected edge, then u appears in v 's adjacency list and vice versa. For both directed and undirected graphs, the adjacency-list representation has the desirable property that the amount of memory it requires is $\Theta(V+E)$. Finding each edge in the graph also takes $\Theta(V+E)$ time, rather than just $\Theta(E)$, since each of the $|V|$ adjacency lists must be examined. Of course, if $|E|=\Omega(V)$ such as in a connected, undirected graph or a strongly connected, directed graph-we can say that finding each edge takes $\Theta(E)$ time.

Adjacency lists can also represent weighted graphs, that is, graphs for which each edge has an associated weight given by a weight function $w: E \rightarrow \mathbb{R}$. For example, let $G=(V, E)$ be a weighted graph with weight function w. Then you can simply store the weight $w(u, v)$ of the edge $(u, v) \in E$ with vertex v in u 's adjacency list. The adjacency-list representation is quite robust in that you can modify it to support many other graph variants.

A potential disadvantage of the adjacency-list representation is that it provides no quicker way to determine whether a given edge (u, v) is present in the graph than to search for v in the adjacency list $\operatorname{Adj}[u]$. An adjacency-matrix representation of the graph remedies this disadvantage, but at the cost of using asymptotically more memory. (See Exercise 20.1-8 for suggestions of variations on adjacency lists that permit faster edge lookup.)

The adjacency-matrix representation of a graph $G=(V, E)$ assumes that the vertices are numbered $1,2, \ldots,|V|$ in some arbitrary manner. Then the adjacencymatrix representation of a graph G consists of a $|V| \times|V|$ matrix $A=\left(a_{i j}\right)$ such that
$a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E, \\ 0 & \text { otherwise } .\end{cases}$
Figures 20.1(c) and 20.2(c) are the adjacency matrices of the undirected and directed graphs in Figures 20.1(a) and 20.2(a), respectively. The adjacency matrix of a graph requires $\Theta\left(V^{2}\right)$ memory, independent of the number of edges in the graph. Because finding each edge in the graph requires examining the entire adjacency matrix, doing so takes $\Theta\left(V^{2}\right)$ time.

Observe the symmetry along the main diagonal of the adjacency matrix in Figure 20.1(c). Since in an undirected graph, (u, v) and (v, u) represent the same edge, the adjacency matrix A of an undirected graph is its own transpose: $A=A^{\mathrm{T}}$. In some applications, it pays to store only the entries on and above the diagonal of the adjacency matrix, thereby cutting the memory needed to store the graph almost in half.

Like the adjacency-list representation of a graph, an adjacency matrix can represent a weighted graph. For example, if $G=(V, E)$ is a weighted graph with edge-weight function w, you can store the weight $w(u, v)$ of the edge $(u, v) \in E$
as the entry in row u and column v of the adjacency matrix. If an edge does not exist, you can store a NIL value as its corresponding matrix entry, though for many problems it is convenient to use a value such as 0 or ∞.

Although the adjacency-list representation is asymptotically at least as spaceefficient as the adjacency-matrix representation, adjacency matrices are simpler, and so you might prefer them when graphs are reasonably small. Moreover, adjacency matrices carry a further advantage for unweighted graphs: they require only one bit per entry.

Representing attributes

Most algorithms that operate on graphs need to maintain attributes for vertices and/or edges. We indicate these attributes using our usual notation, such as $v . d$ for an attribute d of a vertex v. When we indicate edges as pairs of vertices, we use the same style of notation. For example, if edges have an attribute f, then we denote this attribute for edge (u, v) by (u, v). f. For the purpose of presenting and understanding algorithms, our attribute notation suffices.

Implementing vertex and edge attributes in real programs can be another story entirely. There is no one best way to store and access vertex and edge attributes. For a given situation, your decision will likely depend on the programming language you are using, the algorithm you are implementing, and how the rest of your program uses the graph. If you represent a graph using adjacency lists, one design choice is to represent vertex attributes in additional arrays, such as an array $d[1:|V|]$ that parallels the $A d j$ array. If the vertices adjacent to u belong to $\operatorname{Adj}[u]$, then the attribute $u . d$ can actually be stored in the array entry $d[u]$. Many other ways of implementing attributes are possible. For example, in an objectoriented programming language, vertex attributes might be represented as instance variables within a subclass of a Vertex class.

Exercises

20.1-1

Given an adjacency-list representation of a directed graph, how long does it take to compute the out-degree of every vertex? How long does it take to compute the in-degrees?

20.1-2

Give an adjacency-list representation for a complete binary tree on 7 vertices. Give an equivalent adjacency-matrix representation. Assume that the edges are undirected and that the vertices are numbered from 1 to 7 as in a binary heap.

