asing Subseqllencgs X

Algorithms 159

an expression which involves only smaller subproblems. How long does this step
take? It requires the predecessors of j to be known; for this the adjacency list of
the reverse graph GF, constructible in linear time (recall Exercise 3.5), is handy.
The computation of L(j) then takes time proportional to the indegree of j, giving
an overall running time linear in |E|. This is at most O(n?), the maximum being
when the input array is sorted in increasing order. Thus the dynamic programming
solution is both simple and efficient.

There is one last issue to be cleared up: the L-values only tell us the length of the
optimal subsequence, so how do we recover the subsequence itself? This is easily
managed with the same bookkeeping device we used for shortest paths in Chapter 4.
While computing L (j), we should also note down prev(j), the next-to-last node
on the longest path to j. The optimal subsequence can then be reconstructed by
following these backpointers.

6.3 Edit distance

When a spell checker encounters a possible misspelling, it looks in its dictionary
for other words that are close by. What is the appropriate notion of closeness in this
case?

A natural measure of the distance between two strings is the extent to which they
can be aligned, or matched up. Technically, an alignment is simply a way of writing
the strings one above the other. For instance, here are two possible alignments of
SNOWY and SUNNY:

S — N 0O W Y - S N O W Y
S U N N — Y S U N — — N Y
Cost: 3 Cost: 5
The “—” indicates a “gap”; any number of these can be placed in either string. The

cost of an alignment is the number of columns in which the letters differ. And the
edit distance between two -strings is the cost of their best possible alignment. Do
you see that there is no better alignment of SNOWY and SUNNY than the one shown
here with a cost of 3?

Edit distance is so named because it can also be thought of as the minimum number
of edits—insertions, deletions, and substitutions of characters—needed to transform
the first string into the second. For instance, the alignment shown on the left corre-
sponds to three edits: insert U, substitute 0 — N, and delete W.

In general, there are so many possible alignments between two strings that it would
be terribly inefficient to search through all of them for the best one. Instead we turn
to dynamic programming.

A dynamic programming solution
When solving a problem by dynamic programming, the most crucial question is,
What are the subproblems? As long as they are chosen so as to have the property

160

Recursion? No, thanks.

Returning to our discussion of longest increasing subsequences: the formula for Z(7) also
suggests an alternative, recursive algorithm. Wouldn’t that be even simpler?

Actually, recursion is a very bad idea: the resulting procedure would require exponential
time! To see why, suppose that the dag contains edges (7, j) forall i < j—that s, the given
sequence of numbers #1, 45, . . ., a,, is sorted. In that case, the formula for subproblem ()
becomes

L(j) =1+ max{L(), L(2), ..., L(j — 1)}.

The following figure unravels the recursion for Z(5). Notice that the same subproblems get
solved over and over again!

L(5)

L) L(2) L(3) L4)

@)L EILE)F SILED S E(2) L(3)

| |

L(1) L) LD L@

L(1)

For L(n) this tree has exponentially many nodes (can you bound it?), and so a recursive
solution is disastrous.

Then why did recursion work so well with divide-and-conquer? The key point is that in
divide-and-conquer, a problem is expressed in terms of subproblems that are substantially
smaller, say half the size. For instance, mergesort sorts an array of size 7 by recursively
sorting two subarrays of size 7/2. Because of this sharp drop in problem size, the full
recursion tree has only logarithmic depth and a polynomial number of nodes.

In contrast, in a typical dynamic programming formulation, a problem is reduced to sub-
problems that are only slightly smaller—for instance, Z (j) relies on L(j — 1). Thus the full
recursion tree generally has polynomial depth and an exponential number of nodes. How-
ever, it turns out that most of these nodes are repeats, that there are not too many distinct
subproblems among them. Efficiency is therefore obtained by explicitly enumerating the
distinct subproblems and solving them in the right order.

6.3 Edit distance

Chapter 6

Algorithms 161

Programming?

The origin of the term dynamic programming has very little to do with writing code. It
was first coined by Richard Bellman in the 1950s, a time when computer programming
was an esoteric activity practiced by so few people as to not even merit a name. Back then
programming meant “planning,” and “dynamic programming” was conceived to optimally
plan multistage processes. The dag of Figure 6.2 can be thought of as describing the
possible ways in which such a process can evolve: each node denotes a state, the lefmost
node is the starting point, and the edges leaving a state represent possible actions, leading
to different states in the next unit of time.

The etymology of linear programming, the subject of Chapter 7, is similar.

(*) from page 158. it is an easy matter to write down the algorithm: iteratively solve
one subproblem after the other, in order of increasing size.

Our goal is to find the edit distance between two strings x[1---m] and y[1---n].
What is a good subproblem? Well, it should go part of the way toward solving the
whole problem; so how about looking at the edit distance between some prefix of the
first string, x[1 - - - i], and some prefix of the second, y[1---j]? Call this subproblem
E(i, j) (see Figure 6.3). Our final objective, then, is to compute E (m, n).

For this to work, we need to somehow express E (i, j) in terms of smaller subprob-
lems. Let’s see—what do we know about the best alignment between x[1---7] and
y[1---j]2 Well, its rightmost column can only be one of three things:

x[i] . —_ x[i]
414 asbuaililio et WL

The first case incurs a cost of 1 for this particular column, and it remains to align
x[1---i — 1] with y[1--- j]. But this is exactly the subproblem E (i — 1, j)! We seem
to be getting somewhere. In the second case, also with cost 1, we still need to align
x[1---i] with y[1---j — 1]. This is again another subproblem, E (i, j — 1). And in
the final case, which either costs 1 (if x[i] # y[j1) or 0 (if x[{] = y[j]), what’s left
is the subproblem E (i — 1, j — 1). In short, we have expressed E(i, j) in terms of

Figure 6.3 The subproblem E (7, 5).

EXPONEN|TTIAL

P OLYNOMTIAL

162

three smaller subproblems E (i — 1, j), E(Gi,j—1),E(@{—1,j—1). We have no idea
which of them is the right one, so we need to try them all and pick the best:

E(G,j)=min{l+E@G—1,j), 1+E@ j—1), diff(,) +EG—-1,j—1)}

where for convenience diff(i, j) is defined to be 0 if x[i] = y[j] and 1 otherwise.

For instance, in computing the edit distance between EXPONENTIAL and
POLYNOMIAL, subproblem E (4, 3) corresponds to the prefixes EXPO and POL. The
rightmost column of their best alignment must be one of the following:

" or
or L

Thus, E (4,3) = min{l + E(3,3), 1+ E(4,2), 1+ E(3,2)}.

The answers to all the subproblems E (i, j) form a two-dimensional table, as in
Figure 6.4. In what order should these subproblems be solved? Any order is fine,
aslongas E(i—1,j), E(i, j—1),and E(i —1,j —1) are handled before E (i, j).
For instance, we could fill in the table one row at a time, from top row to bottom
row, and moving left to right across each row. Or alternatively, we could fill it in
column by column. Both methods would ensure that by the time we get around to
computing a particular table entry, all the other entries we need are already filled
in.

With both the subproblems and the ordering specified, we are almost done. There
just remain the “base cases” of the dynamic programming, the very smallest sub-
problems. In the present situation, these are E (0, -) and E(-,0), both of which
are easily solved. E (0, j) is the edit distance between the 0-length prefix of x,

Figure 6.4 (a) The table of subproblems. Entries E(i — 1, j — 1),E@@-1,j),
and E (i, j — 1) are needed to fill in E (i, j). (b) The final table of values found by
dynamic programming.

(a) (b)

P n P OLYNOMIAL

0 1 2 3 4 5 6 7 8 9 10

B| 1 1 2 3 4 5 6/ 7 899 10

X|2 2 2 3 4 5 6 7 8 9 10

P|3 2 3 3 4 5 6 7 8 9 10

i-1 | O|l4 3 2 3 4 5 5 6 7 8 9
; Yy N|l5 4 3 3 4 4 5 6 7 8 9
E|6 5 4 4 4 5 5 6 7 8 9

N7 6 5 5 5 4 5 6 7 8 9

T|8 7 6 6 6 5 5 6 7 8 9

1|9 8 7 7 7 6 6 6 6 7 8

. o Al10 9 8 8 8 7 T 7 7T 6 7
L|11 10 9 8 9 8 8 8 8 7 6

6.3 Edit distqngy

chapter 6

6.3 Edit distangy

Chapter 6

Algorithms 163
namely the empty string, and the first j letters of y: clearly, j. And similarly,
E(i,0) =1.

At this point, the algorithm for edit distance basically writes itself.

for i=0,1,2,..., m:

E({,0) =i

for j=1,2,...,n:
EQO,j)=]

TOr T=1,2, .yl

for j=1,2,...,n:
E@{ j)=min{E{—-1,j)+1,EGj—-—1)+1,EG—1,j—1)+diff(i, j)}
return E(m,n)

This procedure fills in the table row by row, and left to right within each row. Each
entry takes constant time to fill in, so the overall running time is just the size of the
table, O (mn).

And in our example, the edit distance turns out to be 6:

The underlying dag

Every dynamic program has an underlying dag structure: think of each node as
representing a subproblem, and each edge as a precedence constraint on the order
in which the subproblems can be tackled. Having nodes uy, . .., 1 point to v means
“subproblem v can only be solved once the answers to uy, ..., u are known.”

In our present edit distance application, the nodes of the underlying dag corre-
spond to subproblems, or equivalently, to positions (i, j) in the table. Its edges
are the precedence constraints, of the form (i — 1, j) — (i, j), (i, j — 1) — (i, j),
and (i —1,j—1) — (i, j) (Figure 6.5). In fact, we can take things a little fur-
ther and put weights on the edges so that the edit distances are given by
shortest paths in the dag! To see this, set all edge lengths to 1, except for
{i—1,j—-1) = (@ j) : x[i] = y[j]} (shown dotted in the figure), whose length
is 0. The final answer is then simply the distance between nodes s = (0, 0)
and t = (m,n). One possible shortest path is shown, the one that yields the
alignment we found earlier. On this path, each move down is a deletion, each
move right is an insertion, and each diagonal move is either a match or a
substitution.

By altering the weights on this dag, we can allow generalized forms of edit dis-
tance, in which insertions, deletions, and substitutions have different associated
costs. ’

164

Figure 6.5 The underlying dag, and a path of length 6.

POLYNOMTI AL

...“@

NN

B~ 13 2Z H2Z O " X =

6.4 Knapsack

During a robbery, a burglar finds much more loot than he had expected and has
to decide what to take. His bag (or “knapsack”) will hold a total weight of at

most W pounds. There are n items to pick from, of weight wy, ..., w, and dollar
value vy, ..., v,. What’s the most valuable combination of items he can fit into his
bag?!

For instance, take W = 10 and

Item Weight Value

1 6 $30
2 3 $14
3 4 $16
4 2 $9

1f this application seems frivolous, replace “weight” with “CPU time” and “only W pounds can be
taken” with “only W units of CPU time are available.” Or use “bandwidth” in place of “CPU time,” etc.
The knapsack problem generalizes a wide variety of resource-constrained selection tasks.

