
Chapter 8

NP-complete problems

8.1 Search problems

Over the past seven chapters we have developed algorithms for finding shortest paths and
minimum spanning trees in graphs, matchings in bipartite graphs, maximum increasing sub-
sequences, maximum flows in networks, and so on. All these algorithms are efficient, because
in each case their time requirement grows as a polynomial function (such as n, n2, or n3) of
the size of the input.

To better appreciate such efficient algorithms, consider the alternative: In all these prob-
lems we are searching for a solution (path, tree, matching, etc.) from among an exponential
population of possibilities. Indeed, n boys can be matched with n girls in n! different ways, a
graph with n vertices has nn−2 spanning trees, and a typical graph has an exponential num-
ber of paths from s to t. All these problems could in principle be solved in exponential time by
checking through all candidate solutions, one by one. But an algorithm whose running time is
2n, or worse, is all but useless in practice (see the next box). The quest for efficient algorithms
is about finding clever ways to bypass this process of exhaustive search, using clues from the
input in order to dramatically narrow down the search space.

So far in this book we have seen the most brilliant successes of this quest, algorithmic tech-
niques that defeat the specter of exponentiality: greedy algorithms, dynamic programming,
linear programming (while divide-and-conquer typically yields faster algorithms for problems
we can already solve in polynomial time). Now the time has come to meet the quest’s most
embarrassing and persistent failures. We shall see some other “search problems,” in which
again we are seeking a solution with particular properties among an exponential chaos of al-
ternatives. But for these new problems no shortcut seems possible. The fastest algorithms we
know for them are all exponential—not substantially better than an exhaustive search. We
now introduce some important examples.

247

248 Algorithms

The story of Sissa and Moore
According to the legend, the game of chess was invented by the Brahmin Sissa to amuse
and teach his king. Asked by the grateful monarch what he wanted in return, the wise
man requested that the king place one grain of rice in the first square of the chessboard,
two in the second, four in the third, and so on, doubling the amount of rice up to the 64th
square. The king agreed on the spot, and as a result he was the first person to learn the
valuable—-albeit humbling—lesson of exponential growth. Sissa’s request amounted to 264−
1 = 18,446,744,073,709,551,615 grains of rice, enough rice to pave all of India several times
over!
All over nature, from colonies of bacteria to cells in a fetus, we see systems that grow

exponentially—for a while. In 1798, the British philosopher T. Robert Malthus published an
essay in which he predicted that the exponential growth (he called it “geometric growth”)
of the human population would soon deplete linearly growing resources, an argument that
influenced Charles Darwin deeply. Malthus knew the fundamental fact that an exponential
sooner or later takes over any polynomial.
In 1965, computer chip pioneer Gordon E. Moore noticed that transistor density in chips

had doubled every year in the early 1960s, and he predicted that this trend would continue.
This prediction, moderated to a doubling every 18 months and extended to computer speed,
is known as Moore’s law. It has held remarkably well for 40 years. And these are the two
root causes of the explosion of information technology in the past decades: Moore’s law and
efficient algorithms.
It would appear that Moore’s law provides a disincentive for developing polynomial al-

gorithms. After all, if an algorithm is exponential, why not wait it out until Moore’s law
makes it feasible? But in reality the exact opposite happens: Moore’s law is a huge incen-
tive for developing efficient algorithms, because such algorithms are needed in order to take
advantage of the exponential increase in computer speed.
Here is why. If, for example, an O(2n) algorithm for Boolean satisfiability (SAT) were

given an hour to run, it would have solved instances with 25 variables back in 1975, 31 vari-
ables on the faster computers available in 1985, 38 variables in 1995, and about 45 variables
with today’s machines. Quite a bit of progress—except that each extra variable requires a
year and a half ’s wait, while the appetite of applications (many of which are, ironically, re-
lated to computer design) grows much faster. In contrast, the size of the instances solved
by an O(n) or O(n log n) algorithm would be multiplied by a factor of about 100 each decade.
In the case of an O(n2) algorithm, the instance size solvable in a fixed time would be mul-
tiplied by about 10 each decade. Even an O(n6) algorithm, polynomial yet unappetizing,
would more than double the size of the instances solved each decade. When it comes to the
growth of the size of problems we can attack with an algorithm, we have a reversal: expo-
nential algorithms make polynomially slow progress, while polynomial algorithms advance
exponentially fast! For Moore’s law to be reflected in the world we need efficient algorithms.
As Sissa and Malthus knew very well, exponential expansion cannot be sustained in-

definitely in our finite world. Bacterial colonies run out of food; chips hit the atomic scale.
Moore’s law will stop doubling the speed of our computers within a decade or two. And then
progress will depend on algorithmic ingenuity—or otherwise perhaps on novel ideas such as
quantum computation, explored in Chapter 10.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 249

Satisfiability
SATISFIABILITY, or SAT (recall Exercise 3.28 and Section 5.3), is a problem of great practical
importance, with applications ranging from chip testing and computer design to image analy-
sis and software engineering. It is also a canonical hard problem. Here’s what an instance of
SAT looks like:

(x ∨ y ∨ z) (x ∨ y) (y ∨ z) (z ∨ x) (x ∨ y ∨ z).

This is a Boolean formula in conjunctive normal form (CNF). It is a collection of clauses
(the parentheses), each consisting of the disjunction (logical or, denoted ∨) of several literals,
where a literal is either a Boolean variable (such as x) or the negation of one (such as x).
A satisfying truth assignment is an assignment of false or true to each variable so that
every clause contains a literal whose value is true. The SAT problem is the following: given a
Boolean formula in conjunctive normal form, either find a satisfying truth assignment or else
report that none exists.
In the instance shown previously, setting all variables to true, for example, satisfies every

clause except the last. Is there a truth assignment that satisfies all clauses?
With a little thought, it is not hard to argue that in this particular case no such truth

assignment exists. (Hint: The three middle clauses constrain all three variables to have the
same value.) But how do we decide this in general? Of course, we can always search through
all truth assignments, one by one, but for formulas with n variables, the number of possible
assignments is exponential, 2n.
SAT is a typical search problem. We are given an instance I (that is, some input data

specifying the problem at hand, in this case a Boolean formula in conjunctive normal form),
and we are asked to find a solution S (an object that meets a particular specification, in this
case an assignment that satisfies each clause). If no such solution exists, we must say so.
More specifically, a search problem must have the property that any proposed solution S

to an instance I can be quickly checked for correctness. What does this entail? For one thing,
S must at least be concise (quick to read), with length polynomially bounded by that of I. This
is clearly true in the case of SAT, for which S is an assignment to the variables. To formalize
the notion of quick checking, we will say that there is a polynomial-time algorithm that takes
as input I and S and decides whether or not S is a solution of I. For SAT, this is easy as it just
involves checking whether the assignment specified by S indeed satisfies every clause in I.
Later in this chapter it will be useful to shift our vantage point and to think of this efficient

algorithm for checking proposed solutions as defining the search problem. Thus:

A search problem is specified by an algorithm C that takes two inputs, an instance
I and a proposed solution S, and runs in time polynomial in |I|. We say S is a
solution to I if and only if C(I, S) = true.

Given the importance of the SAT search problem, researchers over the past 50 years have
tried hard to find efficient ways to solve it, but without success. The fastest algorithms we
have are still exponential on their worst-case inputs.
Yet, interestingly, there are two natural variants of SAT for which we do have good algo-

rithms. If all clauses contain at most one positive literal, then the Boolean formula is called

250 Algorithms

Figure 8.1 The optimal traveling salesman tour, shown in bold, has length 18.

4

5

6

3

3 3

2
4

1

2 3

a Horn formula, and a satisfying truth assignment, if one exists, can be found by the greedy
algorithm of Section 5.3. Alternatively, if all clauses have only two literals, then graph the-
ory comes into play, and SAT can be solved in linear time by finding the strongly connected
components of a particular graph constructed from the instance (recall Exercise 3.28). In fact,
in Chapter 9, we’ll see a different polynomial algorithm for this same special case, which is
called 2SAT.
On the other hand, if we are just a little more permissive and allow clauses to contain three

literals, then the resulting problem, known as 3SAT (an example of which we saw earlier), once
again becomes hard to solve!

The traveling salesman problem
In the traveling salesman problem (TSP) we are given n vertices 1, . . . , n and all n(n − 1)/2
distances between them, as well as a budget b. We are asked to find a tour, a cycle that passes
through every vertex exactly once, of total cost b or less—or to report that no such tour exists.
That is, we seek a permutation τ(1), . . . , τ(n) of the vertices such that when they are toured
in this order, the total distance covered is at most b:

dτ(1),τ(2) + dτ(2),τ(3) + · · · + dτ(n),τ(1) ≤ b.

See Figure 8.1 for an example (only some of the distances are shown; assume the rest are very
large).
Notice how we have defined the TSP as a search problem: given an instance, find a tour

within the budget (or report that none exists). But why are we expressing the traveling
salesman problem in this way, when in reality it is an optimization problem, in which the
shortest possible tour is sought? Why dress it up as something else?
For a good reason. Our plan in this chapter is to compare and relate problems. The

framework of search problems is helpful in this regard, because it encompasses optimization
problems like the TSP in addition to true search problems like SAT.
Turning an optimization problem into a search problem does not change its difficulty at all,

because the two versions reduce to one another. Any algorithm that solves the optimization

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 251

TSP also readily solves the search problem: find the optimum tour and if it is within budget,
return it; if not, there is no solution.

Conversely, an algorithm for the search problem can also be used to solve the optimization
problem. To see why, first suppose that we somehow knew the cost of the optimum tour; then
we could find this tour by calling the algorithm for the search problem, using the optimum
cost as the budget. Fine, but how do we find the optimum cost? Easy: By binary search! (See
Exercise 8.1.)

Incidentally, there is a subtlety here: Why do we have to introduce a budget? Isn’t any
optimization problem also a search problem in the sense that we are searching for a solution
that has the property of being optimal? The catch is that the solution to a search problem
should be easy to recognize, or as we put it earlier, polynomial-time checkable. Given a po-
tential solution to the TSP, it is easy to check the properties “is a tour” (just check that each
vertex is visited exactly once) and “has total length≤ b.” But how could one check the property
“is optimal”?

As with SAT, there are no known polynomial-time algorithms for the TSP, despite much
effort by researchers over nearly a century. Of course, there is an exponential algorithm for
solving it, by trying all (n − 1)! tours, and in Section 6.6 we saw a faster, yet still exponential,
dynamic programming algorithm.

The minimum spanning tree (MST) problem, for which we do have efficient algorithms,
provides a stark contrast here. To phrase it as a search problem, we are again given a distance
matrix and a bound b, and are asked to find a tree T with total weight

�
(i,j)∈T dij ≤ b. The

TSP can be thought of as a tough cousin of the MST problem, in which the tree is not allowed
to branch and is therefore a path.1 This extra restriction on the structure of the tree results
in a much harder problem.

Euler and Rudrata

In the summer of 1735 Leonhard Euler (pronounced “Oiler”), the famous Swiss mathemati-
cian, was walking the bridges of the East Prussian town of Königsberg. After a while, he
noticed in frustration that, no matter where he started his walk, no matter how cleverly he
continued, it was impossible to cross each bridge exactly once. And from this silly ambition,
the field of graph theory was born.

Euler identified at once the roots of the park’s deficiency. First, you turn the map of the
park into a graph whose vertices are the four land masses (two islands, two banks) and whose
edges are the seven bridges:

1Actually the TSP demands a cycle, but one can define an alternative version that seeks a path, and it is not
hard to see that this is just as hard as the TSP itself.

252 Algorithms

Southern bank

Northern bank

Small
island

Big
island

This graph has multiple edges between two vertices—a feature we have not been allowing so
far in this book, but one that is meaningful for this particular problem, since each bridge must
be accounted for separately. We are looking for a path that goes through each edge exactly
once (the path is allowed to repeat vertices). In other words, we are asking this question:
When can a graph be drawn without lifting the pencil from the paper?
The answer discovered by Euler is simple, elegant, and intuitive: If and only if (a) the

graph is connected and (b) every vertex, with the possible exception of two vertices (the start
and final vertices of the walk), has even degree (Exercise 3.26). This is why Königsberg’s park
was impossible to traverse: all four vertices have odd degree.
To put it in terms of our present concerns, let us define a search problem called EULER

PATH: Given a graph, find a path that contains each edge exactly once. It follows from Euler’s
observation, and a little more thinking, that this search problem can be solved in polynomial
time.
Almost a millennium before Euler’s fateful summer in East Prussia, a Kashmiri poet

named Rudrata had asked this question: Can one visit all the squares of the chessboard,
without repeating any square, in one long walk that ends at the starting square and at each
step makes a legal knight move? This is again a graph problem: the graph now has 64 ver-
tices, and two squares are joined by an edge if a knight can go from one to the other in a
single move (that is, if their coordinates differ by 2 in one dimension and by 1 in the other).
See Figure 8.2 for the portion of the graph corresponding to the upper left corner of the board.
Can you find a knight’s tour on your chessboard?
This is a different kind of search problem in graphs: we want a cycle that goes through all

vertices (as opposed to all edges in Euler’s problem), without repeating any vertex. And there
is no reason to stick to chessboards; this question can be asked of any graph. Let us define the
RUDRATA CYCLE search problem to be the following: given a graph, find a cycle that visits
each vertex exactly once—or report that no such cycle exists.2 This problem is ominously
reminiscent of the TSP, and indeed no polynomial algorithm is known for it.
There are two differences between the definitions of the Euler and Rudrata problems. The

first is that Euler’s problem visits all edges while Rudrata’s visits all vertices. But there is
2In the literature this problem is known as the Hamilton cycle problem, after the great Irish mathematician

who rediscovered it in the 19th century.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 253

Figure 8.2 Knight’s moves on a corner of a chessboard.

also the issue that one of them demands a path while the other requires a cycle. Which of
these differences accounts for the huge disparity in computational complexity between the
two problems? It must be the first, because the second difference can be shown to be purely
cosmetic. Indeed, define the RUDRATA PATH problem to be just like RUDRATA CYCLE, except
that the goal is now to find a path that goes through each vertex exactly once. As we will soon
see, there is a precise equivalence between the two versions of the Rudrata problem.

Cuts and bisections
A cut is a set of edges whose removal leaves a graph disconnected. It is often of interest to find
small cuts, and the MINIMUM CUT problem is, given a graph and a budget b, to find a cut with
at most b edges. For example, the smallest cut in Figure 8.3 is of size 3. This problem can be
solved in polynomial time by n− 1max-flow computations: give each edge a capacity of 1, and
find the maximum flow between some fixed node and every single other node. The smallest
such flow will correspond (via the max-flow min-cut theorem) to the smallest cut. Can you see
why? We’ve also seen a very different, randomized algorithm for this problem (page 150).
In many graphs, such as the one in Figure 8.3, the smallest cut leaves just a singleton

vertex on one side—it consists of all edges adjacent to this vertex. Far more interesting are
small cuts that partition the vertices of the graph into nearly equal-sized sets. More precisely,
the BALANCED CUT problem is this: given a graph with n vertices and a budget b, partition
the vertices into two sets S and T such that |S|, |T | ≥ n/3 and such that there are at most b
edges between S and T . Another hard problem.
Balanced cuts arise in a variety of important applications, such as clustering. Consider

for example the problem of segmenting an image into its constituent components (say, an
elephant standing in a grassy plain with a clear blue sky above). A good way of doing this is
to create a graph with a node for each pixel of the image and to put an edge between nodes
whose corresponding pixels are spatially close together and are also similar in color. A single

254 Algorithms

Figure 8.3What is the smallest cut in this graph?

object in the image (like the elephant, say) then corresponds to a set of highly connected
vertices in the graph. A balanced cut is therefore likely to divide the pixels into two clusters
without breaking apart any of the primary constituents of the image. The first cut might, for
instance, separate the elephant on the one hand from the sky and from grass on the other. A
further cut would then be needed to separate the sky from the grass.

Integer linear programming
Even though the simplex algorithm is not polynomial time, we mentioned in Chapter 7 that
there is a different, polynomial algorithm for linear programming. Therefore, linear pro-
gramming is efficiently solvable both in practice and in theory. But the situation changes
completely if, in addition to specifying a linear objective function and linear inequalities, we
also constrain the solution (the values for the variables) to be integer. This latter problem
is called INTEGER LINEAR PROGRAMMING (ILP). Let’s see how we might formulate it as a
search problem. We are given a set of linear inequalitiesAx ≤ b, whereA is anm× nmatrix
and b is anm-vector; an objective function specified by an n-vector c; and finally, a goal g (the
counterpart of a budget in maximization problems). We want to find a nonnegative integer
n-vector x such that Ax ≤ b and c · x ≥ g.
But there is a redundancy here: the last constraint c · x ≥ g is itself a linear inequality

and can be absorbed into Ax ≤ b. So, we define ILP to be following search problem: given A

and b, find a nonnegative integer vector x satisfying the inequalities Ax ≤ b, or report that
none exists. Despite the many crucial applications of this problem, and intense interest by
researchers, no efficient algorithm is known for it.
There is a particularly clean special case of ILP that is very hard in and of itself: the goal is

to find a vector x of 0’s and 1’s satisfyingAx = 1, whereA is anm×nmatrix with 0−1 entries
and 1 is them-vector of all 1’s. It should be apparent from the reductions in Section 7.1.4 that
this is indeed a special case of ILP. We call it ZERO-ONE EQUATIONS (ZOE).

We have now introduced a number of important search problems, some of which are fa-
miliar from earlier chapters and for which there are efficient algorithms, and others which
are different in small but crucial ways that make them very hard computational problems. To

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 255

Figure 8.4 A more elaborate matchmaking scenario. Each triple is shown as a triangular-
shaped node joining boy, girl, and pet.

Armadillo Bobcat

Carol

Beatrice

AliceChet

Bob

Al

Canary

complete our story we will introduce a few more hard problems, which will play a role later
in the chapter, when we relate the computational difficulty of all these problems. The reader
is invited to skip ahead to Section 8.2 and then return to the definitions of these problems as
required.

Three-dimensional matching
Recall the BIPARTITE MATCHING problem: given a bipartite graph with n nodes on each side
(the boys and the girls), find a set of n disjoint edges, or decide that no such set exists. In
Section 7.3, we saw how to efficiently solve this problem by a reduction to maximum flow.
However, there is an interesting generalization, called 3D MATCHING, for which no polyno-
mial algorithm is known. In this new setting, there are n boys and n girls, but also n pets,
and the compatibilities among them are specified by a set of triples, each containing a boy, a
girl, and a pet. Intuitively, a triple (b, g, p) means that boy b, girl g, and pet p get along well
together. We want to find n disjoint triples and thereby create n harmonious households.
Can you spot a solution in Figure 8.4?

Independent set, vertex cover, and clique
In the INDEPENDENT SET problem (recall Section 6.7) we are given a graph and an integer g,
and the aim is to find g vertices that are independent, that is, no two of which have an edge
between them. Can you find an independent set of three vertices in Figure 8.5? How about
four vertices? We saw in Section 6.7 that this problem can be solved efficiently on trees, but
for general graphs no polynomial algorithm is known.
There are many other search problems about graphs. In VERTEX COVER, for example, the

input is a graph and a budget b, and the idea is to find b vertices that cover (touch) every
edge. Can you cover all edges of Figure 8.5 with seven vertices? With six? (And do you see the

256 Algorithms

Figure 8.5What is the size of the largest independent set in this graph?

intimate connection to the INDEPENDENT SET problem?)
VERTEX COVER is a special case of SET COVER, which we encountered in Chapter 5. In

that problem, we are given a set E and several subsets of it, S1, . . . , Sm, along with a budget
b. We are asked to select b of these subsets so that their union is E. VERTEX COVER is the
special case in which E consists of the edges of a graph, and there is a subset Si for each
vertex, containing the edges adjacent to that vertex. Can you see why 3D MATCHING is also
a special case of SET COVER?
And finally there is the CLIQUE problem: given a graph and a goal g, find a set of g ver-

tices such that all possible edges between them are present. What is the largest clique in
Figure 8.5?

Longest path
We know the shortest-path problem can be solved very efficiently, but how about the LONGEST
PATH problem? Here we are given a graph G with nonnegative edge weights and two distin-
guished vertices s and t, along with a goal g. We are asked to find a path from s to t with total
weight at least g. Naturally, to avoid trivial solutions we require that the path be simple,
containing no repeated vertices.
No efficient algorithm is known for this problem (which sometimes also goes by the name

of TAXICAB RIP-OFF).

Knapsack and subset sum
Recall the KNAPSACK problem (Section 6.4): we are given integer weights w1, . . . , wn and
integer values v1, . . . , vn for n items. We are also given a weight capacity W and a goal g (the
former is present in the original optimization problem, the latter is added to make it a search
problem). We seek a set of items whose total weight is at most W and whose total value is at
least g. As always, if no such set exists, we should say so.
In Section 6.4, we developed a dynamic programming scheme for KNAPSACK with running

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 257

time O(nW), which we noted is exponential in the input size, since it involvesW rather than
log W . And we have the usual exhaustive algorithm as well, which looks at all subsets of
items—all 2n of them. Is there a polynomial algorithm for KNAPSACK? Nobody knows of one.
But suppose that we are interested in the variant of the knapsack problem in which the

integers are coded in unary—for instance, by writing IIIIIIIIIIII for 12. This is admittedly
an exponentially wasteful way to represent integers, but it does define a legitimate problem,
which we could call UNARY KNAPSACK. It follows from our discussion that this somewhat
artificial problem does have a polynomial algorithm.
A different variation: suppose now that each item’s value is equal to its weight (all given in

binary), and to top it off, the goal g is the same as the capacityW . (To adapt the silly break-in
story whereby we first introduced the knapsack problem, the items are all gold nuggets, and
the burglar wants to fill his knapsack to the hilt.) This special case is tantamount to finding
a subset of a given set of integers that adds up to exactly W . Since it is a special case of
KNAPSACK, it cannot be any harder. But could it be polynomial? As it turns out, this problem,
called SUBSET SUM, is also very hard.
At this point one could ask: If SUBSET SUM is a special case that happens to be as hard

as the general KNAPSACK problem, why are we interested in it? The reason is simplicity. In
the complicated calculus of reductions between search problems that we shall develop in this
chapter, conceptually simple problems like SUBSET SUM and 3SAT are invaluable.

8.2 NP-complete problems
Hard problems, easy problems
In short, the world is full of search problems, some of which can be solved efficiently, while
others seem to be very hard. This is depicted in the following table.

Hard problems (NP-complete) Easy problems (in P)
3SAT 2SAT, HORN SAT

TRAVELING SALESMAN PROBLEM MINIMUM SPANNING TREE
LONGEST PATH SHORTEST PATH
3D MATCHING BIPARTITE MATCHING
KNAPSACK UNARY KNAPSACK

INDEPENDENT SET INDEPENDENT SET on trees
INTEGER LINEAR PROGRAMMING LINEAR PROGRAMMING

RUDRATA PATH EULER PATH
BALANCED CUT MINIMUM CUT

This table is worth contemplating. On the right we have problems that can be solved
efficiently. On the left, we have a bunch of hard nuts that have escaped efficient solution over
many decades or centuries.

258 Algorithms

The various problems on the right can be solved by algorithms that are specialized and
diverse: dynamic programming, network flow, graph search, greedy. These problems are easy
for a variety of different reasons.
In stark contrast, the problems on the left are all difficult for the same reason! At their

core, they are all the same problem, just in different disguises! They are all equivalent: as we
shall see in Section 8.3, each of them can be reduced to any of the others—and back.

P and NP
It’s time to introduce some important concepts. We know what a search problem is: its defin-
ing characteristic is that any proposed solution can be quickly checked for correctness, in the
sense that there is an efficient checking algorithm C that takes as input the given instance I
(the data specifying the problem to be solved), as well as the proposed solution S, and outputs
true if and only if S really is a solution to instance I. Moreover the running time of C(I, S)
is bounded by a polynomial in |I|, the length of the instance. We denote the class of all search
problems by NP.
We’ve seen many examples of NP search problems that are solvable in polynomial time.

In such cases, there is an algorithm that takes as input an instance I and has a running time
polynomial in |I|. If I has a solution, the algorithm returns such a solution; and if I has no
solution, the algorithm correctly reports so. The class of all search problems that can be solved
in polynomial time is denoted P. Hence, all the search problems on the right-hand side of the
table are in P.

Why P and NP?
Okay, P must stand for “polynomial.” But why use the initials NP (the common chatroom
abbreviation for “no problem”) to describe the class of search problems, some of which are
terribly hard?
NP stands for “nondeterministic polynomial time,” a term going back to the roots of

complexity theory. Intuitively, it means that a solution to any search problem can be found
and verified in polynomial time by a special (and quite unrealistic) sort of algorithm, called a
nondeterministic algorithm. Such an algorithm has the power of guessing correctly at every
step.
Incidentally, the original definition of NP (and its most common usage to this day) was

not as a class of search problems, but as a class of decision problems: algorithmic questions
that can be answered by yes or no. Example: “Is there a truth assignment that satisfies this
Boolean formula?” But this too reflects a historical reality: At the time the theory of NP-
completeness was being developed, researchers in the theory of computation were interested
in formal languages, a domain in which such decision problems are of central importance.

Are there search problems that cannot be solved in polynomial time? In other words,
is P �= NP? Most algorithms researchers think so. It is hard to believe that exponential
search can always be avoided, that a simple trick will crack all these hard problems, famously
unsolved for decades and centuries. And there is a good reason for mathematicians to believe

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 259

that P �= NP—the task of finding a proof for a given mathematical assertion is a search
problem and is therefore in NP (after all, when a formal proof of a mathematical statement is
written out in excruciating detail, it can be checked mechanically, line by line, by an efficient
algorithm). So if P = NP, there would be an efficient method to prove any theorem, thus
eliminating the need for mathematicians! All in all, there are a variety of reasons why it is
widely believed that P �= NP. However, proving this has turned out to be extremely difficult,
one of the deepest and most important unsolved puzzles of mathematics.

Reductions, again
Even if we accept that P �= NP, what about the specific problems on the left side of the
table? On the basis of what evidence do we believe that these particular problems have no
efficient algorithm (besides, of course, the historical fact that many clever mathematicians
and computer scientists have tried hard and failed to find any)? Such evidence is provided
by reductions, which translate one search problem into another. What they demonstrate is
that the problems on the left side of the table are all, in some sense, exactly the same problem,
except that they are stated in different languages. What’s more, we will also use reductions to
show that these problems are the hardest search problems in NP—if even one of them has a
polynomial time algorithm, then every problem in NP has a polynomial time algorithm. Thus
if we believe that P �= NP, then all these search problems are hard.
We defined reductions in Chapter 7 and saw many examples of them. Let’s now specialize

this definition to search problems. A reduction from search problem A to search problem B
is a polynomial-time algorithm f that transforms any instance I of A into an instance f(I) of
B, together with another polynomial-time algorithm h that maps any solution S of f(I) back
into a solution h(S) of I; see the following diagram. If f(I) has no solution, then neither does
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I)
No solution to I

h(S) of I
Solution

h

And now we can finally define the class of the hardest search problems.

A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

260 Algorithms

Figure 8.6 The space NP of all search problems, assuming P �= NP.

NP−

Increasing difficulty

P complete

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 261

Factoring
One last point: we started off this book by introducing another famously hard search problem:
FACTORING, the task of finding all prime factors of a given integer. But the difficulty of
FACTORING is of a different nature than that of the other hard search problems we have just
seen. For example, nobody believes that FACTORING is NP-complete. One major difference
is that, in the case of FACTORING, the definition does not contain the now familiar clause “or
report that none exists.” A number can always be factored into primes.
Another difference (possibly not completely unrelated) is this: as we shall see in Chap-

ter 10, FACTORING succumbs to the power of quantum computation—while SAT, TSP and the
other NP-complete problems do not seem to.

