—

Getting Started

This chapter will familiarize you with the framework we shall use throughout the
book to think about the design and analysis of algorithms. It is self-contained, but
it does include several references to material that will be introduced in Chapters
3 and 4. (It also contains several summations, which Appendix A shows how to
solve.)

We begin by examining the insertion sort algorithm to solve the sorting problem
introduced in Chapter 1. We define a “pseudocode” that should be familiar to read-
ers who have done computer programming and use it to show how we shall specify
our algorithms. Having specified the algorithm, we then argue that it correctly sorts
and we analyze its running time. The analysis introduces a notation that focuses
on how that time increases with the number of items to be sorted. Following our
discussion of insertion sort, we introduce the divide-and-conquer approach to the
design of algorithms and use it to develop an algorithm called merge sort. We end
with an analysis of merge sort’s running time.

2.1 Insertion sort

Our first algorithm, insertion sort, solves the sorting problem introduced in Chap-
ter 1:

Input: A sequence of n numbers (a1, @, ...,).

Output: A permutation (reordering) (ai, a;, ..., a,) of the input sequence such
thata| <a), <--- <a,.

The numbers that we wish to sort are also known as the keys.

In this book, we shall typically describe algorithms as programs written in a
pseudocode that is similar in many respects to C, Pascal, or Java. If you have been
introduced to any of these languages, you should have little trouble reading our al-
gorithms. What separates pseudocode from “real” code is that in pseudocode, we

16

Chapter 2 Getting Started

Figure 2.1 Sorting a hand of cards using insertion sort.

employ whatever expressive method is most clear and concise to specify a given al-
gorithm. Sometimes, the clearest method is English, so do not be surprised if you
come across an English phrase or sentence embedded within a section of “real”
code. Another difference between pseudocode and real code is that pseudocode
is not typically concerned with issues of software engineering. Issues of data ab-
straction, modularity, and error handling are often ignored in order to convey the
essence of the algorithm more concisely.

We start with insertion sort, which is an efficient algorithm for sorting a small
number of elements. Insertion sort works the way many people sort a hand of
playing cards. We start with an empty left hand and the cards face down on the
table. We then remove one card at a time from the table and insert it into the
correct position in the left hand. To find the correct position for a card, we compare
it with each of the cards already in the hand, from right to left, as illustrated in
Figure 2.1. At all times, the cards held in the left hand are sorted, and these cards
were originally the top cards of the pile on the table.

Our pseudocode for insertion sort is presented as a procedure called INSERTION-
SORT, which takes as a parameter an array A[l..n] containing a sequence of
length 7 that is to be sorted. (In the code, the number # of elements in A is denoted
by length[A].) The input numbers are sorted in place: the numbers are rearranged
within the array A, with at most a constant number of them stored outside the
array at any time. The input array A contains the sorted output sequence when
INSERTION-SORT is finished.

2.1 Insertion sort 17
1 2 3 4 5 1 2 3 4 5 6

o BECLLT] o BB © CEEEN
\Y/

2 1 4 1 2 3 4 5 6
o EEETC <e>w o ODDLTe)
V V.

Figure 2.2 The operation of INSERTION-SORT on the array A = (5, 2, 4, 6, 1, 3). Array indices
appear above the rectangles, and values stored in the array positions appear within the rectangles.
(a)—(e) The iterations of the for loop of lines 1-8. In each iteration, the black rectangle holds the
key taken from A[j], which is compared with the values in shaded rectangles to its left in the test of
line 5. Shaded arrows show array values moved one position to the right in line 6, and black arrows
indicate where the key is moved to in line 8. (f) The final sorted array.

INSERTION-SORT (A)
for j < 2 to length[A]
do key < A[j]

> Insert A[;] into the sorted sequence A[1..j — 1].

i<« j—1

while i > 0 and A[i] > key

do A[i + 1] < A[i]
i <—i—1
Ali + 1] <« key

OO\ W~

Loop invariants and the correctness of insertion sort

Figure 2.2 shows how this algorithm works for A = (5, 2, 4, 6, 1, 3). The in-
dex j indicates the “current card” being inserted into the hand. At the beginning
of each iteration of the “outer” for loop, which is indexed by j, the subarray con-
sisting of elements A[1.. j — 1] constitute the currently sorted hand, and elements
A[j + 1..n] correspond to the pile of cards still on the table. In fact, elements
A[l..j — 1] are the elements originally in positions 1 through j — 1, but now in
sorted order. We state these properties of A[1 .. j — 1] formally as a loop invariant:

At the start of each iteration of the for loop of lines 1-8, the subarray
A[1..j—1] consists of the elements originally in A[1.. j — 1] but in sorted
order.

We use loop invariants to help us understand why an algorithm is correct. We
must show three things about a loop invariant:

18

Chapter 2 Getting Started

Initialization: It is true prior to the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true before the
next iteration.

Termination: When the loop terminates, the invariant gives us a useful property
that helps show that the algorithm is correct.

When the first two properties hold, the loop invariant is true prior to every iteration
of the loop. Note the similarity to mathematical induction, where to prove that a
property holds, you prove a base case and an inductive step. Here, showing that
the invariant holds before the first iteration is like the base case, and showing that
the invariant holds from iteration to iteration is like the inductive step.

The third property is perhaps the most important one, since we are using the loop
invariant to show correctness. It also differs from the usual use of mathematical in-
duction, in which the inductive step is used infinitely; here, we stop the “induction”
when the loop terminates.

Let us see how these properties hold for insertion sort.

Initialization: We start by showing that the loop invariant holds before the first
loop iteration, when j = 2.! The subarray A[1..j — 1], therefore, consists
of just the single element A[1], which is in fact the original element in A[1].
Moreover, this subarray is sorted (trivially, of course), which shows that the
loop invariant holds prior to the first iteration of the loop.

Maintenance: Next, we tackle the second property: showing that each iteration
maintains the loop invariant. Informally, the body of the outer for loop works
by moving A[j — 1], A[j — 2], A[j — 3], and so on by one position to the right
until the proper position for A[;] is found (lines 4-7), at which point the value
of A[j] is inserted (line 8). A more formal treatment of the second property
would require us to state and show a loop invariant for the “inner” while loop.
At this point, however, we prefer not to get bogged down in such formalism,
and so we rely on our informal analysis to show that the second property holds
for the outer loop.

Termination: Finally, we examine what happens when the loop terminates. For
insertion sort, the outer for loop ends when j exceeds n, i.e., when j = n + 1.
Substituting n + 1 for j in the wording of loop invariant, we have that the
subarray A[1 .. n] consists of the elements originally in A[1..], but in sorted

IWhen the loop is a for loop, the moment at which we check the loop invariant just prior to the first
iteration is immediately after the initial assignment to the loop-counter variable and just before the
first test in the loop header. In the case of INSERTION-SORT, this time is after assigning 2 to the
variable j but before the first test of whether j < length[A].

W v T N W e e w .

@ @ =

2.1 Insertion sort 19

order. But the subarray A[l .. n] is the entire array! Hence, the entire array is
sorted, which means that the algorithm is correct.

We shall use this method of loop invariants to show correctness later in this
chapter and in other chapters as well.

Pseudocode conventions
We use the following conventions in our pseudocode.

1. Indentation indicates block structure. For example, the body of the for loop
that begins on line 1 consists of lines 2-8, and the body of the while loop that
begins on line 5 contains lines 67 but not line 8. Our indentation style applies
to if-then-else statements as well. Using indentation instead of conventional
indicators of block structure, such as begin and end statements, greatly reduces
clutter while preserving, or even enhancing, clarity.?

2. The looping constructs while, for, and repeat and the conditional constructs
if, then, and else have interpretations similar to those in Pascal.> There is one
subtle difference with respect to for loops, however: in Pascal, the value of the
loop-counter variable is undefined upon exiting the loop, but in this book, the
loop counter retains its value after exiting the loop. Thus, immediately after a
for loop, the loop counter’s value is the value that first exceeded the for loop
bound. We used this property in our correctness argument for insertion sort.
The for loop header in line 1 is for j < 2 to length[A], and so when this loop
terminates, j = length[A]+1 (or, equivalently, j = n+1, since n = length[A]).

3. The symbol “r>" indicates that the remainder of the line is a comment.
4. A multiple assignment of the form i < j < e assigns to both variables i and j

the value of expression e; it should be treated as equivalent to the assignment
J < e followed by the assignment i < j.

5. Variables (such as i, j, and key) are local to the given procedure. We shall not
use global variables without explicit indication.

6. Array elements are accessed by specifying the array name followed by the in-
dex in square brackets. For example, A[i] indicates the ith element of the ar-
ray A. The notation “..” is used to indicate a range of values within an ar-

2In real programming languages, it is generally not advisable to use indentation alone to indicate
block structure, since levels of indentation are hard to determine when code is split across pages.

3Most block-structured languages have equivalent constructs, though the exact syntax may differ
from that of Pascal.

20

Chapter 2 Getting Started

ray. Thus, A[1.. j] indicates the subarray of A consisting of the j elements
A[l], A2, -« ALJ]

7. Compound data are typically organized into objects, which are composed of
attributes or fields. A particular field is accessed using the field name followed
by the name of its object in square brackets. For example, we treat an array as
an object with the attribute /ength indicating how many elements it contains. To
specify the number of elements in an array A, we write length[A]. Although we
use square brackets for both array indexing and object attributes, it will usually
be clear from the context which interpretation is intended.

A variable representing an array or object is treated as a pointer to the data
representing the array or object. For all fields f of an object x, setting y < x
causes f[y] = f[x]. Moreover, if we now set f[x] < 3, then afterward not
only is f[x] = 3, but f[y] = 3 as well. In other words, x and y point to the
same object after the assignment y < x.

Sometimes, a pointer will refer to no object at all. In this case, we give it the
special value NIL.

8. Parameters are passed to a procedure by value: the called procedure receives
its own copy of the parameters, and if it assigns a value to a parameter, the
change is not seen by the calling procedure. When objects are passed, the
pointer to the data representing the object is copied, but the object’s fields are
not. For example, if x is a parameter of a called procedure, the assignment
x <« y within the called procedure is not visible to the calling procedure. The
assignment f[x] < 3, however, is visible.

9. The boolean operators “and” and “or” are short circuiting. That is, when we
evaluate the expression “x and y” we first evaluate x. If x evaluates to FALSE,
then the entire expression cannot evaluate to TRUE, and so we do not evaluate y.
If, on the other hand, x evaluates to TRUE, we must evaluate y to determine the
value of the entire expression. Similarly, in the expression “x or y” we evaluate
the expression y only if x evaluates to FALSE. Short-circuiting operators allow
us to write boolean expressions such as “x # NIL and f[x] = y” without
worrying about what happens when we try to evaluate f[x] when x is NIL.

Exercises

2.1-1
Using Figure 2.2 as a model, illustrate the operation of INSERTION-SORT on the
array A = (31,41, 59, 26, 41, 58).

