TSI G I s A R L e R S A U S R R R L S |

24

Single-Source Shortest Paths

A motorist wishes to find the shortest possible route from Chicago to Boston.
Given a road map of the United States on which the distance between each pair
of adjacent intersections is marked, how can we determine this shortest route?

One possible way is to enumerate all the routes from Chicago to Boston, add
up the distances on each route, and select the shortest. It is easy to see, however,
that even if we disallow routes that contain cycles, there are millions of possibili-
ties, most of which are simply not worth considering. For example, a route from
Chicago to Houston to Boston is obviously a poor choice, because Houston is about
a thousand miles out of the way.

In this chapter and in Chapter 25, we show how to solve such problems ef-
ficiently. In a shortest-paths problem, we are given a weighted, directed graph
G = (V, E), with weight function w : E — R mapping edges to real-valued
weights. The weight of path p = (vo, vy, ..., vi) is the sum of the weights of its
constituent edges:

k
w(p) = Z w(vi-1, V) .
i=1

We define the shortest-path weight ffo‘m u to v by

5,) = min{w(p) : u L v} if there is a path from u to v ,
' 00 otherwise .

A shortest path from vertex u to vertex v is then defined as any path p with weight
w(p) = 6(u, v).

In the Chicago-to-Boston example, we can model the road map as a graph: ver-
tices represent intersections, edges represent road segments between intersections,
and edge weights represent road distances. Our goal is to find a shortest path from
a given intersection in Chicago (say, Clark St. and Addison Ave.) to a given inter-
section in Boston (say, Brookline Ave. and Yawkey Way).

Chapter 24 Single-Source Shortest Paths 581

Edge weights can be interpreted as metrics other than distances. They are often
used to represent time, cost, penalties, loss, or any other quantity that accumulates
linearly along a path and that one wishes to minimize.

The breadth-first-search algorithm from Section 22.2 is a shortest-paths algo-
rithm that works on unweighted graphs, that is, graphs in which each edge can
be considered to have unit weight. Because many of the concepts from breadth-
first search arise in the study of shortest paths in weighted graphs, the reader is
encouraged to review Section 22.2 before proceeding.

Variants

In this chapter, we shall focus on the single-source shortest-paths problem: given
a graph G = (V, E), we want to find a shortest path from a given source vertex
s € V to each vertex v € V. Many other problems can be solved by the algorithm
for the single-source problem, including the following variants.

Single-destination shortest-paths problem: Find a shortest path to a given des-
tination vertex t from each vertex v. By reversing the direction of each edge in
the graph, we can reduce this problem to a single-source problem.

Single-pair shortest-path problem: Find a shortest path from u to v for given
vertices u and v. If we solve the single-source problem with source vertex u, we
solve this problem also. Moreover, no algorithms for this problem are known
that run asymptotically faster than the best single-source algorithms in the worst
case.

All-pairs shortest-paths problem: Find a shortest path from u to v for every pair
of vertices u and v. Although this problem can be solved by running a single-
source algorithm once from each vertex, it can usually be solved faster. Addi-
tionally, its structure is of interest in its own right. Chapter 25 addresses the
all-pairs problem in detail.

Optimal substructure of a shortest path

Shortest-paths algorithms typically rely on the property that a shortest path be-
tween two vertices contains other shortest paths within it. (The Edmonds-Karp
maximum-flow algorithm in Chapter 26 also relies on this property.) This optimal-
substructure property is a hallmark of the applicability of both dynamic program-
ming (Chapter 15) and the greedy method (Chapter 16). Dijkstra’s algorithm,
which we shall see in Section 24.3, is a greedy algorithm, and the Floyd-Warshall
algorithm, which finds shortest paths between all pairs of vertices (see Chapter 25),
is a dynamic-programming algorithm. The following lemma states the optimal-
substructure property of shortest paths more precisely.

582

Chapter 24 Single-Source Shortest Paths

Lemma 24.1 (Subpaths of shortest paths are shortest paths)

Given a weighted, directed graph G = (V, E) with weight function w : £ — R,
let p = (vy, va, ..., V) be a shortest path from vertex v; to vertex vy and, for any
i and jsuchthat 1 <i < j <k,let p;j = (vi, Vig1, .-+, v;) be the subpath of p
from vertex v; to vertex v;. Then, p;; is a shortest path from v; to v;.

Proof If we decompose path p into v, R Ry i R4 vy, then we have that
w(p) = w(py) + w(pij) +w(pjp)- Now, assume that there is a path plfj from v,
to v; with weight w(pl’-j) < w(p;j). Then, vy Ry v; ﬁi@ o R vy is a path from v,
to v, whose weight w(py;) +w(p; j) + w(pji) is less than w(p), which contradicts
the assumption that p is a shortest path from v; to vi. |

Negative-weight edges

In some instances of the single-source shortest-paths problem, there may be edges
whose weights are negative. If the graph G = (V, E) contains no negative-
weight cycles reachable from the source s, then for all v € V, the shortest-path
weight 8(s, v) remains well defined, even if it has a negative value. If there is
a negative-weight cycle reachable from s, however, shortest-path weights are not
well defined. No path from s to a vertex on the cycle can be a shortest path—a
lesser-weight path can always be found that follows the proposed “shortest” path
and then traverses the negative-weight cycle. If there is a negative-weight cycle on
some path from s to v, we define 8(s, v) = —o0.

Figure 24.1 illustrates the effect of negative weights and negative-weight cycles
on shortest-path weights. Because there is only one path from s to a (the path
(s, a)), 8(s,a) = w(s,a) = 3. Similarly, there is only one path from s to b, and so
8(s, b) = w(s,a) + w(a, b) = 3+ (—=4) = —1. There are infinitely many paths
from s to c: (s, ¢), {s, ¢, d,c), (s,¢c,d, c,d,c), and so on. Because the cycle
(c, d, c) has weight 6 4 (=3) = 3.> 0, the shortest path from s to c is (s, ¢), with
weight 8(s, ¢) = 5. Similarly, the shortest path from s to d is (s, c, d), with weight
8(s,d) = w(s, c) + w(c,d) = 11. Analogously, there are infinitely many paths
from s to e: (s, e), (s, e, f.), (s, e, f- e, f, e), and so on. Since the cycle (e, f,€)
has weight 3 + (—6) = —3 < 0, however, there is no shortest path from s to e. By
traversing the negative-weight cycle (e, f, e) arbitrarily many times, we can find
paths from s to e with arbitrarily large negative weights, and so §(s,e) = —o0.
Similarly, 8(s, f) = —oo. Because g is reachable from f, we can also find paths
with arbitrarily large negative weights from s to g, and é(s, g) = —00. Vertices £,
i,and j also form a negative-weight cycle. They are not reachable from s, however,
and so 8(s, h) = 8(s, i) = 8(s, j) = 0.

Some shortest-paths algorithms, such as Dijkstra’s algorithm, assume that all
edge weights in the input graph are nonnegative, as in the road-map example. Oth-

Chapter 24 Single-Source Shortest Paths 583

Figure 24.1 Negative edge weights in a directed graph. Shown within each vertex is its shortest-
path weight from source s. Because vertices e and f form a negative-weight cycle reachable from s,
they have shortest-path weights of —oo. Because vertex g is reachable from a vertex whose shortest-
path weight is —oo0, it, too, has a shortest-path weight of —co. Vertices such as &, i, and j are not
reachable from s, and so their shortest-path weights are co, even though they lie on a negative-weight
cycle.

ers, such as the Bellman-Ford algorithm, allow negative-weight edges in the in-
put graph and produce a correct answer as long as no negative-weight cycles are
reachable from the source. Typically, if there is such a negative-weight cycle, the
algorithm can detect and report its existence.

Cycles

Can a shortest path contain a cycle? As we have just seen, it cannot contain a
negative-weight cycle. Nor can it contain a positive-weight cycle, since remov-
ing the cycle from the path produces a path with the same source and destination

vertices and a lower path weight. That is, if p = (v, vy, ..., v;) is a path and
¢ = (v;, Viy1, ..., v;) is a positive-weight cycle on this path (so that v; = v; and
w(c) > 0), then the path p" = (vg, vy, ..., Vi, Vj41, V42, ..., v;) has weight

w(p’) = w(p) — w(c) < w(p), and so p cannot be a shortest path from v to vy.

That leaves only 0-weight cycles. We can remove a O-weight cycle from any
path to produce another path whose weight is the same. Thus, if there is a shortest
path from a source vertex s to a destination vertex v that contains a 0-weight cycle,
then there is another shortest path from s to v without this cycle. As long as a
shortest path has 0-weight cycles, we can repeatedly remove these cycles from the
path until we have a shortest path that is cycle-free. Therefore, without loss of
generality we can assume that when we are finding shortest paths, they have no
cycles. Since any acyclic path in a graph G = (V, E) contains at most |V | distinct
vertices, it also contains at most |V | — 1 edges. Thus, we can restrict our attention
to shortest paths of at most |V| — 1 edges.

584

Chapter 24 Single-Source Shortest Paths

Representing shortest paths

We often wish to compute not only shortest-path weights, but the vertices on short-
est paths as well. The representation we use for shortest paths is similar to the one
we used for breadth-first trees in Section 22.2. Given a graph G = (V, E), we
maintain for each vertex v € V a predecessor 7 [v] that is either another vertex
or NIL. The shortest-paths algorithms in this chapter set the 7 attributes so that
the chain of predecessors originating at a vertex v runs backwards along a shortest
path from s to v. Thus, given a vertex v for which 7 [v] # NIL, the procedure
PRINT-PATH(G, s, v) from Section 22.2 can be used to print a shortest path from s
tov.

During the execution of a shortest-paths algorithm, however, the 7 values need
not indicate shortest paths. As in breadth-first search, we shall be interested in the
predecessor subgraph G, = (Vz, Ex) induced by the v values. Here again, we
define the vertex set V,, to be the set of vertices of G with non-NIL predecessors,
plus the source s:

Vy,={veV :m[v] #NIL} U {s} .

The directed edge set E is the set of edges induced by the 7 values for vertices
in Vy:

E,={(m],v) € E:veV,—{s}}.

We shall prove that the 7 values produced by the algorithms in this chapter have
the property that at termination G is a “shortest-paths tree”—informally, a rooted
tree containing a shortest path from the source s to every vertex that is reachable
from s. A shortest-paths tree is like the breadth-first tree from Section 22.2, but it
contains shortest paths from the source defined in terms of edge weights instead of
numbers of edges. To be precise, let G = (V, E) be a weighted, directed graph
with weight function w : E — R, and assume that G contains no negative-weight
cycles reachable from the source vertex s € V, so that shortest paths are well
defined. A shortest-paths tree rooted at s is a directed subgraph G’ = (V', E'),
where V/ € V and E’ C E, such that

1. V' is the set of vertices reachable from s in G,
2. G’ forms a rooted tree with root s, and

3. forall v € V/, the unique simple path from s to v in G’ is a shortest path from s
tovinG.

Shortest paths are not necessarily unique, and neither are shortest-paths trees. For
example, Figure 24.2 shows a weighted, directed graph and two shortest-paths trees
with the same root.

Chapter 24 Single-Source Shortest Paths 585

Figure 24.2 (a) A weighted, directed graph with shortest-path weights from source s. (b) The
shaded edges form a shortest-paths tree rooted at the source s. () Another shortest-paths tree with
the same root.

Relaxation

The algorithms in this chapter use the technique of relaxation. For each vertex
v € V, we maintain an attribute d[v], which is an upper bound on the weight of
a shortest path from source s to v. We call d[v] a shortest-path estimate. We
initialize the shortest-path estimates and predecessors by the following ® (V)-time
procedure.

INITIALIZE-SINGLE-SOURCE (G, s)
1 for each vertex v € V[G]

2 do d[v] < o
3 m[v] < NIL
4 d[s] <0

After initialization, w[v] = NIL for all v € V, d[s] = 0, and d[v] = oo for
veV —{s}

The process of relaxing' an edge (u, v) consists of testing whether we can im-
prove the shortest path to v found so far by going through u and, if so, updating
d[v] and 7[v]. A relaxation step may decrease the value of the shortest-path esti-
mate d[v] and update v’s predecessor field 7 [v]. The following code performs a
relaxation step on edge (u, v).

It may seem strange that the term “relaxation” is used for an operation that tightens an upper bound.
The use of the term is historical. The outcome of a relaxation step can be viewed as a relaxation
of the constraint d[v] < d[u] 4+ w(u, v), which, by the triangle inequality (Lemma 24.10), must
be satisfied if d[u] = &(s,u) and d[v] = 8(s, v). That is, if d[v] < d[u] + w(u, v), there is no
“pressure” to satisfy this constraint, so the constraint is “relaxed.”

586

3 w[v] < u

Chapter 24 Single-Source Shortest Paths

u v u v

E‘RELAX(M,V,W) E‘RELAX(M,V,W)
u ? v u ? v
O 2 @ . 2 .
@ | o)

Figure 24.3 Relaxation of an edge (u, v) with weight w(u, v) = 2. The shortest-path estimate of
each vertex is shown within the vertex. (a) Because d[v] > d[u] + w(u, v) prior to relaxation, the
value of d[v] decreases. (b) Here, dv] < d[u] + w(u, v) before the relaxation step, and so d[v] is
unchanged by relaxation.

RELAX (1, v, w)
1 ifd[v] > du] +w(u,v)
2 then d[v] < d[u] + w(u, v)

Figure 24.3 shows two examples of relaxing an edge, one in which a shortest-path
estimate decreases and one in which no estimate changes.

Each algorithm in this chapter calls INITIALIZE-SINGLE-SOURCE and then re-
peatedly relaxes edges. Moreover, relaxation is the only means by which shortest-
path estimates and predecessors change. The algorithms in this chapter differ in
how many times they relax each edge and the order in which they relax edges. In
Dijkstra’s algorithm and the shortest-paths algorithm for directed acyclic graphs,
each edge is relaxed exactly once. In the Bellman-Ford algorithm, each edge is
relaxed many times. '

Properties of shortest paths and relaxation

To prove the algorithms in this chapter correct, we shall appeal to several prop-
erties of shortest paths and relaxation. We state these properties here, and Sec-
tion 24.5 proves them formally. For your reference, each property stated here in-
cludes the appropriate lemma or corollary number from Section 24.5. The latter
five of these properties, which refer to shortest-path estimates or the predecessor
subgraph, implicitly assume that the graph is initialized with a call to INITIALIZE-
SINGLE-SOURCE(G, s) and that the only way that shortest-path estimates and the
predecessor subgraph change are by some sequence of relaxation steps.

Chapter 24 Single-Source Shortest Paths 587

Triangle inequality (Lemma 24.10)
For any edge (4, v) € E, we have 8(s, v) < 8(s, u) + w(u, v).

Upper-bound property (Lemma 24.11)
We always have d[v] > 8(s, v) for all vertices v € V, and once d[v] achieves
the value 8§ (s, v), it never changes.

No-path property (Corollary 24.12)
If there is no path from s to v, then we always have d[v] = §(s, v) = 0.

Convergence property (Lemma 24.14)
If s ~» u — v is a shortest path in G for some u, v € V, and if d[u] = (s, u) at
any time prior to relaxing edge (u, v), then d[v] = 8(s, v) at all times afterward.

Path-relaxation property (Lemma 24.15)
If p = (vo, V1, ..., Ux) is a shortest path from s = vy to v, and the edges of p
are relaxed in the order (vo, v1), (Vi, v2), ..., (Uk—1, Vk), then d[vi] = 8(s, vr).
This property holds regardless of any other relaxation steps that occur, even if
they are intermixed with relaxations of the edges of p.

Predecessor-subgraph property (Lemma 24.17)
Once d[v] = 8(s, v) for all v € V, the predecessor subgraph is a shortest-paths
tree rooted at s.

Chapter outline

Section 24.1 presents the Bellman-Ford algorithm, which solves the single-source
shortest-paths problem in the general case in which edges can have negative weight.
The Bellman-Ford algorithm is remarkable in its simplicity, and it has the further
benefit of detecting whether a negative-weight cycle is reachable from the source.
Section 24.2 gives a linear-time algorithm for computing shortest paths from a sin-
gle source in a directed acyclic graph. Section 24.3 covers Dijkstra’s algorithm,
which has a lower running time than the Bellman-Ford algorithm but requires the
edge weights to be nonnegative. Section 24.4 shows how the Bellman-Ford al-
gorithm can be used to solve a special case of “linear programming.” Finally,
Section 24.5 proves the properties of shortest paths and relaxation stated above.

We require some conventions for doing arithmetic with infinities. We shall as-
sume that for any real number a # —o00, we have a 4+ 00 = 00 +a = 0. Also, to
make our proofs hold in the presence of negative-weight cycles, we shall assume
that for any real number a # oo, we have a + (—00) = (—o0) +a = —0o0.

All algorithms in this chapter assume that the directed graph G is stored in the
adjacency-list representation. Additionally, stored with each edge is its weight, so
that as we traverse each adjacency list, we can determine the edge weights in O (1)
time per edge.

