I

T e e e e e e e e e e e e S e e L e e e L e Rt oo 2]

12

Binary Search Trees

Search trees are data structures that support many dynamic-set operations, includ-
ing SEARCH, MINIMUM, MAXIMUM, PREDECESSOR, SUCCESSOR, INSERT, and
DELETE. Thus, a search tree can be used both as a dictionary and as a priority
queue.

Basic operations on a binary search tree take time proportional to the height of
the tree. For a complete binary tree with n nodes, such operations run in ®(gn)
worst-case time. If the tree is a linear chain of n nodes, however, the same oper-
ations take ® (n) worst-case time. We shall see in Section 12.4 that the expected
height of a randomly built binary search tree is O (Ign), so that basic dynamic-set
operations on such a tree take ® (Ign) time on average.

In practice, we can’t always guarantee that binary search trees are built ran-
domly, but there are variations of binary search trees whose worst-case perfor-
mance on basic operations can be guaranteed to be good. Chapter 13 presents one
such variation, red-black trees, which have height O (Ign). Chapter 18 introduces
B-trees, which are particularly good for maintaining databases on random-access,
secondary (disk) storage.

After presenting the basic properties of binary search trees, the following sec-
tions show how to walk a binary search tree to print its values in sorted order, how
to search for a value in a binary search tree, how to find the minimum or maximum
element, how to find the predecessor or successor of an element, and how to insert
into or delete from a binary search tree. The basic mathematical properties of trees
appear in Appendix B.

12.1

What is a binary search tree?

A binary search tree is organized, as the name suggests, in a binary tree, as shown
in Figure 12.1. Such a tree can be represented by a linked data structure in which
each node is an object. In addition to a key field and satellite data, each node

b

Chapter 12 Binary Search Trees

(a) (b)

Figure 12.1 Binary search trees. For any node x, the keys in the left subtree of x are at most key[x],
and the keys in the right subtree of v are at least key[x]. Different binary search trees can represent
the same set of values. The worst-case running time for most search-tree operations is proportional
to the height of the tree. (a) A binary search tree on 6 nodes with height 2. (b) A less efficient binary
search tree with height 4 that contains the same keys.

contains fields left, right, and p that point to the nodes corresponding to its left
child, its right child, and its parent, respectively. If a child or the parent is missing,
the appropriate field contains the value NIL. The root node is the only node in the
tree whose parent field is NIL.

The keys in a binary search tree are always stored in such a way as to satisfy the
binary-search-tree property:

Let x be a node in a binary search tree. If y is a node in the left subtree
of x, then key[y] < key[x]. If y is a node in the right subtree of x, then
key[x] < key[y].

Thus, in Figure 12.1(a), the key of the root is 5, the keys 2, 3, and 5 in its left
subtree are no larger than 5, and the keys 7 and 8 in its right subtree are no smaller
than 5. The same property holds for every node in the tree. For example, the key 3
in Figure 12.1(a) is no smaller than the key 2 in its left subtree and no larger than
the key 5 in its right subtree.

The binary-search-tree property allows us to print out all the keys in a binary
search tree in sorted order by a simple recursive algorithm, called an inorder tree
walk. This algorithm is so named because the key of the root of a subtree is printed
between the values in its left subtree and those in its right subtree. (Similarly,
a preorder tree walk prints the root before the values in either subtree, and a
postorder tree walk prints the root after the values in its subtrees.) To use the
following procedure to print all the elements in a binary search tree 7', we call
INORDER-TREE-WALK (root[T]).

108t key[x],
n represent
roportional
ient binary

0 its left
missing,
de in the

atisfy the

Ibtree
then

n its left
) smaller
the key 3
rger than

a binary
rder tree
s printed
imilarly,
e, and a
) use the
, we call

12.1 What is a binary searchytree? 255

INORDER-TREE-WALK (x)

1 if x #£ NIL

2 then INORDER-TREE-WALK (/eft[x])
3 print key[x]

4 INORDER-TREE-WALK (right[x])

As an example, the inorder tree walk prints the keys in each of the two binary
search trees from Figure 12.1 in the order 2, 3, 5, 5, 7, 8. The correctness of the
algorithm follows by induction directly from the binary-search-tree property.

It takes ®(n) time to walk an n-node binary search tree, since after the ini-
tial call, the procedure is called recursively exactly twice for each node in the
tree—once for its left child and once for its right child. The following theorem
gives a more formal proof that it takes linear time to perform an inorder tree walk.

Theorem 12.1
If x is the root of an n-node subtree, then the call INORDER-TREE-WALK (x)
takes ®(n) time.

Proof Let T (n) denote the time taken by INORDER-TREE-WALK when it is
called on the root of an n-node subtree. INORDER-TREE-WALK takes a small, con-
stant amount of time on an empty subtree (for the test x % NIL), and so 7' (0) = ¢
for some positive constant c.

For n > 0, suppose that INORDER-TREE-WALK is called on a node x whose
left subtree has k nodes and whose right subtree has n — k — 1 nodes. The time to
perform INORDER-TREE-WALK (x) is T (n) = T (k) + T (n — k — 1) + d for some
positive constant d that reflects the time to execute INORDER-TREE-WALK (x),
exclusive of the time spent in recursive calls.

We use the substitution method to show that 7 (n) = ©(n) by proving that
T'(n)=(c+dn+c.Forn=0,wehave (c+d)-0+c=c=T(0).Forn >0,
we have

T(n) = Thk)+Tn—k—-1)+d
= (c+dk+c)+(c+d)(n—k—-1)+¢)+d

(c+dn+c—(c+d)+c+d
= (c+dn+c,

which completes the proof. |

256

Chapter 12 Binary Search Trees

Exercises

12.1-1
For the set of keys {1,4, 5,10, 16, 17,21}, draw binary search trees of height
2,3,4,5,and 6.

12.1-2

What is the difference between the binary-search-tree property and the min-heap
property (see page 129)? Can the min-heap property be used to print out the keys
of an n-node tree in sorted order in O (n) time? Explain how or why not.

12.1-3

Give a nonrecursive algorithm that performs an inorder tree walk. (Hint: There is
an easy solution that uses a stack as an auxiliary data structure and a more compli-
cated but elegant solution that uses no stack but assumes that two pointers can be
tested for equality.)

12.1-4
Give recursive algorithms that perform preorder and postorder tree walks in © (1)
time on a tree of 7 nodes.

12.1-5

Argue that since sorting n elements takes €2(nlgn) time in the worst case in
the comparison model, any comparison-based algorithm for constructing a binary
search tree from an arbitrary list of n elements takes €2 (n1gn) time in the worst
case.

12.2 Querying a binary search tree

A common operation performed on a binary search tree is searching for a key
stored in the tree. Besides the SEARCH operation, binary search trees can support
such queries as MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR. In this
section, we shall examine these operations and show that each can be supported in
time O (k) on a binary search tree of height /.

Searching

We use the following procedure to search for a node with a given key in a binary
search tree. Given a pointer to the root of the tree and a key k, TREE-SEARCH
returns a pointer to a node with key & if one exists; otherwise, it returns NIL.

12.2 Querying a binary searchA tree 257

Figure 12.2 Queries on a binary search tree. To search for the key 13 in the tree, we follow the
path 15 — 6 — 7 — 13 from the root. The minimum key in the tree is 2, which can be found by
following left pointers from the root. The maximum key 20 is found by following right pointers from
the root. The successor of the node with key 15 is the node with key 17, since it is the minimum key
in the right subtree of 15. The node with key 13 has no right subtree, and thus its successor is its
lowest ancestor whose left child is also an ancestor. In this case, the node with key 15 is its successor.

TREE-SEARCH (x, k)

1 if x = NIL or k = key[x]

2 then return x

3 ifk < key[x]

4 then return TREE-SEARCH (left[x], k)
5 else return TREE-SEARCH (right[x], k)

The procedure begins its search at the root and traces a path downward in the
tree, as shown in Figure 12.2. For each node x it encounters, it compares the
key k with key[x]. If the two keys are equal, the search terminates. If k is smaller
than key[x], the search continues in the left subtree of x, since the binary-search-
tree property implies that k could not be stored in the right subtree. Symmetrically,
if k is larger than key[x], the search continues in the right subtree. The nodes
encountered during the recursion form a path downward from the root of the tree,
and thus the running time of TREE-SEARCH is O (h), where £ is the height of the
tree.

The same procedure can be written iteratively by “unrolling” the recursion into
a while loop. On most computers, this version is more efficient.

ITERATIVE-TREE-SEARCH (x, k)

1 while x # NIL and k # key[x]
2 do if £ < key[x]

3 then x <« left[x]

4 else x < right[x]
5 return x

el
258 Chapter 12 Binary Seaych Trees

Minimum and maximum

An element in a binary search tree whose key is a minimum can always be found
by following left child pointers from the root until a NIL is encountered, as shown
in Figure 12.2. The following procedure returns a pointer to the minimum element
in the subtree rooted at a given node x.

TREE-MINIMUM ()

1 while /eft[x] # NIL
2 do x < left[x]
3 return x

The binary-search-tree property guarantees that TREE-MINIMUM is correct. If a
node x has no left subtree, then since every key in the right subtree of x is at least
as large as key[x], the minimum key in the subtree rooted at v is key[x]. If node x
has a left subtree, then since no key in the right subtree is smaller than key[x] and
every key in the left subtree is not larger than key[x], the minimum key in the
subtree rooted at x can be found in the subtree rooted at /eft[x].

The pseudocode for TREE-MAXIMUM is symmetric.

TREE-MAXIMUM (x)

1 while right[x] # NIL
2 do x < right[x]
3 return x

Both of these procedures run in O (1) time on a tree of height / since, as in TREE-
SEARCH, the sequence of nodes encountered forms a path downward from the
root.

Successor and predecessor

Given a node in a binary search tree, it is sometimes important to be able to find
its successor in the sorted order determined by an inorder tree walk. If all keys
are distinct, the successor of a node x is the node with the smallest key greater
than key[x]. The structure of a binary search tree allows us to determine the suc-
cessor of a node without ever comparing keys. The following procedure returns the
successor of a node x in a binary search tree if it exists, and NIL if x has the largest
key in the tree.

1t

E_
he

nd

ter
1C-

est

122 Querying a binary searchtree 259

TREE-SUCCESSOR (x)

1 if right[x] # NIL

2 then return TREE-MINIMUM (right[x])
3 y <« plx]

4 while y # NIL and x = right[y]

5 dox <y

6 y < plyl

7 return y

The code for TREE-SUCCESSOR is broken into two cases. If the right subtree
of node x is nonempty, then the successor of x is just the leftmost node in the
right subtree, which is found in line 2 by calling TREE-MINIMUM (right[x]). For
example, the successor of the node with key 15 in Figure 12.2 is the node with
key 17.

On the other hand, as Exercise 12.2-6 asks you to show, if the right subtree of
node x is empty and x has a successor y, then y is the lowest ancestor of x whose
left child is also an ancestor of x. In Figure 12.2, the successor of the node with
key 13 is the node with key 15. To find y, we simply go up the tree from x until
we encounter a node that is the left child of its parent; this is accomplished by
lines 3—7 of TREE-SUCCESSOR.

The running time of TREE-SUCCESSOR on a tree of height % is O (h), since
we either follow a path up the tree or follow a path down the tree. The proce-
dure TREE-PREDECESSOR, which is symmetric to TREE-SUCCESSOR, also runs
in time O (h).

Even if keys are not distinct, we define the successor and predecessor of any
node x as the node returned by calls made to TREE-SUCCESSOR (x) and TREE-
PREDECESSOR(x), respectively.

In summary, we have proved the following theorem.

Theorem 12.2

The dynamic-set operations SEARCH, MINIMUM, MAXIMUM, SUCCESSOR, and
PREDECESSOR can be made to run in O (k) time on a binary search tree of
height /. =

Exercises

12.2-1

Suppose that we have numbers between 1 and 1000 in a binary search tree and
want to search for the number 363. Which of the following sequences could not be
the sequence of nodes examined?

a. 2,252,401, 398, 330, 344, 397, 363.
b. 924,220, 911, 244, 898, 258, 362, 363.

R

260

Chapter 12 Binary Search Trees

c. 925,202,911, 240, 912, 245, 363.
d. 2,399, 387,219, 266, 382, 381, 278, 363.
e. 935,278,347, 621,299, 392, 358, 363.

12.2-2
Write recursive versions of the TREE-MINIMUM and TREE-MAXIMUM proce-
dures.

12.2-3
Write the TREE-PREDECESSOR procedure.

12.2-4

Professor Bunyan thinks he has discovered a remarkable property of binary search
trees. Suppose that the search for key & in a binary search tree ends up in a leaf.
Consider three sets: A, the keys to the left of the search path; B, the keys on the
search path; and C, the keys to the right of the search path. Professor Bunyan
claims that any three keys a € A, b € B, and ¢ € C must satisfy a < b < c. Give
a smallest possible counterexample to the professor’s claim.

12.2-5
Show that if a node in a binary search tree has two children, then its successor has
no left child and its predecessor has no right child.

12.2-6

Consider a binary search tree 7 whose keys are distinct. Show that if the right
subtree of a node x in T is empty and x has a successor y, then y is the lowest
ancestor of x whose left child is also an ancestor of x. (Recall that every node is
its own ancestor.)

12.2-7

An inorder tree walk of an n-node binary search tree can be implemented by finding
the minimum element in the tree with TREE-MINIMUM and then making 7 — 1 calls
to TREE-SUCCESSOR. Prove that this algorithm runs in ®(n) time.

12.2-8
Prove that no matter what node we start at in a height-4 binary search tree, k suc-
cessive calls to TREE-SUCCESSOR take O (k + h) time.

12.2-9

Let T be a binary search tree whose keys are distinct, let x be a leaf node, and let y
be its parent. Show that key[y] is either the smallest key in T larger than key[x] or
the largest key in 7' smaller than key[x].

