10

Elementary Data Structures

In this chapter, we examine the representation of dynamic sets by simple data struc-
tures that use pointers. Although many complex data structures can be fashioned
using pointers, we present only the rudimentary ones: stacks, queues, linked lists,
and rooted trees. We also discuss a method by which objects and pointers can be
synthesized from arrays.

10.1 Stacks and queues

Stacks and queues are dynamic sets in which the element removed from the set
by the DELETE operation is prespecified. In a stack, the element deleted from
the set is the one most recently inserted: the stack implements a last-in, first-out,
or LIFO, policy. Similarly, in a queue, the element deleted is always the one that
has been in the set for the longest time: the queue implements a first-in, first-out,
or FIFO, policy. There are several efficient ways to implement stacks and queues
on a computer. In this section we show how to use a simple array to implement
each.

Stacks

The INSERT operation on a stack is often called PUSH, and the DELETE opera-
tion, which does not take an element argument, is often called POP. These names
are allusions to physical stacks, such as the spring-loaded stacks of plates used
in cafeterias. The order in which plates are popped from the stack is the reverse
of the order in which they were pushed onto the stack, since only the top plate is
accessible.

As shown in Figure 10.1, we can implement a stack of at most n elements with
an array S[1..n]. The array has an attribute zop[S] that indexes the most recently
inserted element. The stack consists of elements S[1..7op[S]], where S[1] is the
element at the bottom of the stack and S[zop[S]] is the element at the top.

10.1 Stacks and queues 201

1 -2 3 4.5.6. .7
s1s[e]2]9]
!

top[S] =4 top[S] =6 top[S] =5

() (b) (©

Figure 10.1 An array implementation of a stack S. Stack elements appear only in the lightly shaded
positions. (a) Stack S has 4 elements. The top element is 9. (b) Stack S after the calls PUSH(S, 17)
and PUSH(S, 3). (c) Stack S after the call POP(S) has returned the element 3, which is the one most
recently pushed. Although element 3 still appears in the array, it is no longer in the stack; the top is
element 17.

When 70p[S] = 0, the stack contains no elements and is empty. The stack can
be tested for emptiness by the query operation STACK-EMPTY. If an empty stack
is popped, we say the stack underflows, which is normally an error. If top[S] ex-
ceeds n, the stack overflows. (In our pseudocode implementation, we don’t WOITY
about stack overflow.)

The stack operations can each be implemented with a few lines of code.

STACK-EMPTY (S) N

1 iftop[S]1=0
2 then return TRUE
3 else return FALSE

PUSH(S, x)
1 top[S] < top[S]+ 1
2 S[top[S]] < x

Popr(S)

1 if STACK-EMPTY (S)

2 then error “underflow”

3 else top[S] < top[S]—1
4 return S[zop[S] + 1]

Figure 10.1 shows the effects of the modifying operations PUSH and POP. Each of
the three stack operations takes O (1) time.

Queues

We call the INSERT operation on a queue ENQUEUE, and we call the DELETE
operation DEQUEUE; like the stack operation POP, DEQUEUE takes no element

202

Chapter 10 Elementary Data Structures

LereDinsanBinendrminsS s 6wy Tonwi 8 1249 2110 el o] 2.
@ 0 15]6[9[8]4]
} A

head[Q] =17 tail[Q] = 12

1 2 3 4 5 6 7 8 9 10 11 12
® o[3]5] 15]6]9[8]4]17]
A A

taillQ]1=3 head[Q] =17

40 5.6 <78 910111 12

1021 113
© 0 [6]9]8[4]17]
! !

tail[Q] =3 head[Q] =8

Figure 10.2 A queue implemented using an array Q[1..12]. Queue elements appear only in the
lightly shaded positions. (a) The queue has 5 elements, in locations Q[7..11]. (b) The configuration
of the queue after the calls ENQUEUE(Q, 17), ENQUEUE(Q, 3), and ENQUEUE(Q, 5). (c) The
configuration of the queue after the call DEQUEUE(Q) returns the key:value 15 formerly at the head
of the queue. The new head has key 6. N
argument. The FIFO property of a queue causes it to operate like a line of people
in the registrar’s office. The queue has a head and a tail. When an element is
enqueued, it takes its place at the tail of the queue, just as a newly arriving student
takes a place at the end of the line. The element dequeued is always the one at
the head of the queue, like the student at the head of the line who has waited the
longest. (Fortunately, we don’t have to worry about computational elements cutting
into line.)

Figure 10.2 shows one way to implement a queue of at most n — 1 elements us-
ing an array Q[1..n]. The queue has an attribute head[Q] that indexes, or points
to, its head. The attribute zail[Q] indexes the next location at which a newly ar-
riving element will be inserted into the queue. The elements in the queue are in
locations head[Q), head[Q] +1, ..., tail[Q] — 1, where we “wrap around” in the
sense that location 1 immediately follows location n in a circular order. When
head[Q] = tail[Q], the queue is empty. Initially, we have head[Q] = tail[Q] = 1.
When the queue is empty, an attempt to dequeue an element causes the queue to
underflow. When head[Q] = tail[Q] + 1, the queue is full, and an attempt to
enqueue an element causes the queue to overflow.

10.1 Stacks and queues 203

In our procedures ENQUEUE and DEQUEUE, the error checking for underflow
and overflow has been omitted. (Exercise 10.1-4 asks you to supply code that
checks for these two error conditions.)

ENQUEUE(Q, x)

1 Qltail[Q]] < x

2 if tail[Q] = length[Q]

3 then tail[Q] < 1

4 else tail[Q] < tail[Q] + 1

DEQUEUE(Q)

1 x <« Qlhead[Q]]

if head[Q] = length[Q]

3 then fead[Q] < 1

4 else head[Q] < head[Q] + 1
5 return x

[\

Figure 10.2 shows the effects of the ENQUEUE and DEQUEUE operations. Each
operation takes O (1) time.

Exercises

10.1-1

Using Figure 10.1 as a model, illustrate the result of each operation in the sequence
PUsH(S, 4), PusH(S, 1), PUSH(S, 3), Popr(S), PUSH(S, 8), and POP(S) on an
initially empty stack S stored in array S[1 .. 6].

10.1-2

Explain how to implement two stacks in one array A[l..n] in such a way that
neither stack overflows unless the total number of elements in both stacks together
is n. The PUSH and POP operations should run in O (1) time.

10.1-3

Using Figure 10.2 as a model, illustrate the result of each operation in the
sequence ENQUEUE(Q, 4), ENQUEUE(Q, 1), ENQUEUE(Q, 3), DEQUEUE(Q),
ENQUEUE(Q, 8), and DEQUEUE(Q) on an initially empty queue Q stored in array

o113 6].

10.1-4
Rewrite ENQUEUE and DEQUEUE to detect underflow and overflow of a queue.

