[e e et O e R e PR e e R R A
3 Growth of Functions

The order of growth of the running time of an algorithm, defined in Chapter 2,
gives a simple characterization of the algorithm’s efficiency and also allows us to
compare the relative performance of alternative algorithms. Once the input size n-
becomes large enough, merge sort, with its ®(nlgn) worst-case running time,
beats insertion sort, whose worst-case running time is ® (n?). Although we can
sometimes determine the exact running time of an algorithm, as we did for insertion
sort in Chapter 2, the extra precision is not usually worth the effort of computing
it. For large enough inputs, the multiplicative constants and lower-order terms of
an exact running time are dominated by the effects of the input size itself.

When we look at input sizes large enough to make only the order of growth of
the running time relevant, we are studying the asymptotic efficiency of algorithms.
That is, we are concerned with how the running time of an algorithm increases with
the size of the input in the limit, as the size of the input increases without bound.
Usually, an algorithm that is asymptotically more efficient will be the best choice
for all but very small inputs.

This chapter gives several standard methods for simplifying the asymptotic anal-
ysis of algorithms. The next section begins by defining several types of “asymptotic
notation,” of which we have already seen an example in ®-notation. Several no-
tational conventions used throughout this book are then presented, and finally we
review the behavior of functions that commonly arise in the analysis of algorithms.

3.1 Asymptotic notation

The notations we use to describe the asymptotic running time of an algorithm
are defined in terms of functions whose domains are the set of natural numbers
N={0,1,2,...}. Such notations are convenient for describing the worst-case
running-time function T (n), which is usually defined only on integer input sizes.
It is sometimes convenient, however, to abuse asymptotic notation in a variety of

42

Chapter 3 Growth of Functions

ways. For example, the notation is easily extended to the domain of real numbers
or, alternatively, restricted to a subset of the natural numbers. It is important, how-
ever, to understand the precise meaning of the notation so that when it is abused, it
is not misused. This section defines the basic asymptotic notations and also intro-
duces some common abuses.

©®-notation

In Chapter 2, we found that the worst-case running time of insertion sort is
T (n) = ©(n?). Let us define what this notation means. For a given function g(n),
we denote by © (g(n)) the set of functions

©(g(n)) = {f(n) : there exist positive constants c;, c,, and ny such that
0 < c1g(n) < f(n) < cag(n) forall n > ng} .!

A function f(n) belongs to the set ®(g(n)) if there exist positive constants c;
and ¢, such that it can be “sandwiched” between c;g(n) and cy8(n), for suffi-
ciently large n. Because ©(g(n)) is a set, we could write “f(n) € O(g(n))”
to indicate that f(n) is a member of ©(g(n)). Instead, we will usually write
“f(n) = ©(g(n))” to express the same notion. This abuse of equality to denote
set membership may at first appear confusmg, but we shall see later in this section
that it has advantages.

Figure 3.1(a) gives an intuitive picture of functions f(n) and g(n) where we
have that f(n) = ©(g(n)). For all values of n to the right of 7, the value of f(n)
lies at or above c;g(n) and at or below c,g(n). In other words, for all n > no, the
function f(n) is equal to g(n) to within a constant factor. We say that g(n) is an
asymptotically tight bound for f (n).

The definition of ®(g(n)) requires that every member f(n) € ©(g(n)) be
asymptotically nonnegative, that is, that f(n) be nonnegative whenever 7 is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g(n) itself must be asymptotically
nonnegative, or else the set © (g(n)) is empty. We shall therefore assume that every
function used within ®-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.

In Chapter 2, we introduced an informal notion of ®-notation that amounted
to throwing away lower-order terms and ignoring the leading coefficient of the
highest-order term. Let us briefly justify this intuition by using the formal def-
inition to show that —3n = ©(n?). To do so, we must determine positive
constants ¢y, ¢, and no such that

I Within set notation, a colon should be read as “such that.”

w

w

w

3.1 Asymptotic notation 43

c2g(n) cg(n)
f(n)
f(n) il
c1g() A
n: . n: n ni -
O fin) =0(n) f(n) = 0(g(n) O fn) = Q(em)
(a) 7 (b) (©

Figure 3.1 Graphic examples of the ®, O, and 2 notations. In each part, the value of ng shown is
the minimum possible value; any greater value would also work. (a) ®-notation bounds a function to
within constant factors. We write f (n) = ©(g(n)) if there exist positive constants ng, 1, and ¢; such
that to the right of ng, the value of f(n) always lies between ¢y g(n) and cyg(n) inclusive. (b) O-
notation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n))
if there are positive constants n(and ¢ such that to the right of ng, the value of f(n) always lies on
or below cg(n). (c) Q2-notation gives a lower bound for a function to within a constant factor. We
write f(n) = Q(g(n)) if there are positive constants n¢ and ¢ such that to the right of ng, the value
of f(n) always lies on or above cg(n). B,

2

1, 2
cin fin —3n <cn

for all n > ng. Dividing by n? yields

1 3
ci1<-——<0¢0.

The right-hand inequality can be made to hold for any value of n > 1 by choosing
¢, > 1/2. Likewise, the left-hand inequality can be made to hold for any value
of n > 7 by choosing ¢; < 1/14. Thus, by choosing ¢; = 1/14, ¢; = 1/2, and
no = 7, we can verify that 3n*> — 3n = ©(n?). Certainly, other choices for the
constants exist, but the important thing is that some choice exists. Note that these
constants depend on the function %nz — 3n; a different function belonging to ® (n?)
would usually require different constants.

We can also use the formal definition to verify that 6n3 # @ (n?). Suppose for
the purpose of contradiction that ¢, and ng exist such that 61> < cyn? forall n > ny.
But then n < ¢,/6, which cannot possibly hold for arbitrarily large #, since c; is
constant.

Intuitively, the lower-order terms of an asymptotically positive function can be
ignored in determining asymptotically tight bounds because they are insignificant
for large n. A tiny fraction of the highest-order term is enough to dominate the

3

44

Chapter 3 Growth of Functions

lower-order terms. Thus, setting c; to a value that is slightly smaller than the co-
efficient of the highest-order term and setting c; to a value that is slightly larger
permits the inequalities in the definition of ®-notation to be satisfied. The coef-
ficient of the highest-order term can likewise be ignored, since it only changes c;
and ¢, by a constant factor equal to the coefficient.

As an example, consider any quadratic function f(n) = an® + bn + ¢, where
a, b, and c are constants and a > 0. Throwing away the lower-order terms and
ignoring the constant yields f(n) = ®(n?). Formally, to show the same thing, we
take the constants ¢; = a/4, ¢, = 7a/4, and ng = 2-max((|b| /a), v/ (Ic| /a)). The
reader may verify that 0 < ¢;n? < an® 4+ bn + ¢ < con? for all n > no. In general,
for any polynomial p(n) = Z?:o a;n', where the a; are constants and a; > 0, we
have p(n) = ®(n¢) (see Problem 3-1).

Since any constant is a degree-0 polynomial, we can express any constant func-
tion as ®(n°), or ®(1). This latter notation is a minor abuse, however, because it is
not clear what variable is tending to infinity.> We shall often use the notation ® (1)
to mean either a constant or a constant function with respect to some variable.

O-notation

The ©-notation asymptotically bounds a function from above and below. When
we have only an asymptotic upper bound, we.use O-notation. For a given func-
tion g(n), we denote by O(g(n)) (pronounced “big-oh of g of n” or sometimes just
“oh of g of n”) the set of functions

O(g(n)) = {f(n) : there exist positive constants ¢ and ng such that
0 < f(n) < cg(n) foralln > ne} .

We use O-notation to give an upper bound on a function, to within a constant
factor. Figure 3.1(b) shows the intuition behind O-notation. For all values 7 to the
right of ny, the value of the function f(n) is on or below cg(n).

We write f(n) = O(g(n)) to indicate that a function f(n) is a member of
the set O(g(n)). Note that f(n) = ©(g(n)) implies f(n) = O(g(n)), since O-
notation is a stronger notion than O-notation. Written set-theoretically, we have
©(g(n)) € O(g(n)). Thus, our proof that any quadratic function an* + bn + c,
where a > 0, is in ®(n2) also shows that any such quadratic function is in O (n?).
What may be more surprising is that any linear function an + b is in O (n?), which
is easily verified by taking ¢ = a + |b| and ny = 1.

2The real problem is that our ordinary notation for functions does not distinguish functions from
values. In A-calculus, the parameters to a function are clearly specified: the function n? could be
written as An.n2, or even Ar.r2. Adopting a more rigorous notation, however, would complicate
algebraic manipulations, and so we choose to tolerate the abuse.

3.1 Asymptotic notation ‘ 45

Some readers who have seen O-notation before may find it strange that we
should write, for example, n = O (n?). In the literature, O-notation is sometimes
used informally to describe asymptotically tight bounds, that is, what we have de-
fined using ®-notation. In this book, however, when we write f(n) = 0(g(n)),
we are merely claiming that some constant multiple of g () is an asymptotic upper
bound on f(n), with no claim about how tight an upper bound it is. Distinguish-
ing asymptotic upper bounds from asymptotically tight bounds has now become
standard in the algorithms literature.

Using O-notation, we can often describe the running time of an algorithm
merely by inspecting the algorithm’s overall structure. For example, the doubly
nested loop structure of the insertion sort algorithm from Chapter 2 immediately
yields an O (n?) upper bound on the worst-case running time: the cost of each it-
eration of the inner loop is bounded from above by O (1) (constant), the indices i
and j are both at most 7, and the inner loop is executed at most once for each of
the n? pairs of values for i and ;.

Since O-notation describes an upper bound, when we use it to bound the worst-
case running time of an algorithm, we have a bound on the running time of the
algorithm on every input. Thus, the O (rn2) bound on worst-case running time of
insertion sort also applies to its running time on every input. The ®(n2) bound
on the worst-case running time of insertion sort, however, does not imply a © (n?)
bound on the running time of insertion sort on every ‘input. For example, we saw
in Chapter 2 that when the input is already sorted, insertion sort runs in ® (n) time.

Technically, it is an abuse to say that the running time of insertion sort is 0o (n?),
since for a given n, the actual running time varies, depending on the particular
input of size n. When we say “the running time is O (n2),” we mean that there is a
function f (n) that is O (n?) such that for any value of n, no matter what particular
input of size n is chosen, the running time on that input is bounded from above by
the value f(n). Equivalently, we mean that the worst-case running time is O (n?).

Q-notation

Just as O-notation provides an asymptotic upper bound on a function, Q-notation
provides an asymptotic lower bound. For a given function g(n), we denote by
$2(g(n)) (pronounced “big-omega of g of n” or sometimes just “omega of g of n”)
the set of functions

Q2(g(n)) = {f(n) : there exist positive constants ¢ and ng such that
0<cgn) < f(n)forall n > ng} .

The intuition behind Q2-notation is shown in Figure 3.1(c). For all values 7 to the
right of n, the value of f(n) is on or above cg(n).

From the definitions of the asymptotic notations we have seen thus far, it is easy
to prove the following important theorem (see Exercise 3.1-5).

46

Chapter 3 Growth of Functions

Theorem 3.1
For any two functions f(n) and g(n), we have f(n) = ®(g(n)) if and only if
f(n) = 0(g(n)) and f(n) = Q(g(n)). "

As an example of the application of this theorem, our proof that an?4+bn+c=
©(n?) for any constants a, b, and ¢, where a > 0, immediately implies that
an? + bn + ¢ = Q(n?) and an® 4+ bn + ¢ = O(n?). In practice, rather than using
Theorem 3.1 to obtain asymptotic upper and lower bounds from asymptotically
tight bounds, as we did for this example, we usually use it to prove asymptotically
tight bounds from asymptotic upper and lower bounds.

Since -notation describes a lower bound, when we use it to bound the best-case
running time of an algorithm, by implication we also bound the running time of the
algorithm on arbitrary inputs as well. For example, the best-case running time of
insertion sort is §2(n), which implies that the running time of insertion sort is €2 ().

The running time of insertion sort therefore falls between €2 (n) and O (n?), since
it falls anywhere between a linear function of n and a quadratic function of n.
Moreover, these bounds are asymptotically as tight as possible: for instance, the
running time of insertion sort is not Q(n?), since there exists an input for which -
insertion sort runs in ®(n) time (e.g., when the input is already sorted). It is not
contradictory, however, to say that the worst-case running time of insertion sort
is §2(n?), since there exists an input that causes the algorithm to take €2 (n?) time.
When we say that the running time (no modifier) of an algorithm is €2(g(n)), we
mean that no matter what particular input of size n is chosen for each value of n,
the running time on that input is at least a constant times g(n), for sufficiently
large n.

Asymptotic notation in equations and inequalities

We have already seen how asymptotic notation can be used within mathematical
formulas. For example, in introducing O-notation, we wrote “n = 0(n*».” We
might also write 2n? +3n+1 = 212 4+ ®(n). How do we interpret such formulas?

When the asymptotic notation stands alone on the right-hand side of an equation
(or inequality), asinn = O (n?), we have already defined the equal sign to mean set
membership: n € O(n?). In general, however, when asymptotic notation appears
in a formula, we interpret it as standing for some anonymous function that we do
not care to name. For example, the formula 2n? +3n + 1 = 2n? + ©(n) means
that 2n2 + 3n + 1 = 2n% + f(n), where f(n) is some function in the set © (). In
this case, f(n) = 3n + 1, which indeed is in © (n). ,

Using asymptotic notation in this manner can help eliminate inessential detail
and clutter in an equation. For example, in Chapter 2 we expressed the worst-case
running time of merge sort as the recurrence

T(n)=2T(n/2)+ O(n).

3.1 Asymptotic notation 47

If we are interested only in the asymptotic behavior of T (n), there is no point in
specifying all the lower-order terms exactly; they are all understood to be included
in the anonymous function denoted by the term © (n).

The number of anonymous functions in an expression is understood to be equal
to the number of times the asymptotic notation appears. For example, in the ex-
pression

Y 06,
i=1

there is only a single anonymous function (a function of 7). This expression is thus
not the same as O(1) + O(2) + --- + O(n), which doesn’t really have a clean
interpretation.

In some cases, asymptotic notation appears on the left-hand side of an equation,
asin

2 +0O(n) = 0n?).

We interpret such equations using the following rule: No matter how the anony-
mous functions are chosen on the left of the equal sign, there is a way to choose
the anonymous functions on the right of the equal sign to make the equation valid.
Thus, the meaning of our example is that for any function f(n) € ©(n), there
is some function g(n) € ©(n?) such that 2n% + f(n) = g(n) for all n. In other
words, the right-hand side of an equation provides a coarser level of detail than the
left-hand side.
A number of such relationships can be chained together, as in

202 +3n+1 = 2n*+0(n)
On?) .

We can interpret each equation separately by the rule above. The first equation says
that there is some function f(n) € ©(n) such that 2n% + 3n + 1 = 2n?> + f(n) for
all n. The second equation says that for any function g(n) € ©(n) (such as the f(n)
just mentioned), there is some function 4 (n) € ©(n?) such that 2n? + g(n) = h(n)
for all n. Note that this interpretation implies that 2n? 4+ 3n + 1 = ® (n?), which is
what the chaining of equations intuitively gives us.

o-notation

The asymptotic upper bound provided by O-notation may or may not be asymp-
totically tight. The bound 21n%> = O(n?) is asymptotically tight, but the bound
2n = O(n?) is not. We use o-notation to denote an upper bound that is not asymp-
totically tight. We formally define o(g(n)) (“little-oh of g of n”’) as the set

48

Chapter 3 Growth of Functions

o(g(n)) = {f(n) : for any positive constant ¢ > 0, there exists a constant
ng > 0 such that 0 < f(n) < cg(n) forall n > no} .

For example, 21 = o(n?), but 2n% # o(n?).

The definitions of O-notation and o-notation are similar. The main difference is
that in f(n) = O(g(n)), the bound 0 < f(n) < cg(n) holds for some constant
¢ > 0,butin f(n) = o(g(n)), the bound 0 < f(n) < cg(n) holds for all con-
stants ¢ > 0. Intuitively, in the o-notation, the function f(n) becomes insignificant
relative to g(n) as n approaches infinity; that is,

lim AL

(D 3.1)

Some authors use this limit as a definition of the o-notation; the definition in this
book also restricts the anonymous functions to be asymptotically nonnegative.

w-notation

By analogy, w-notation is to 2-notation as o-notation is to O-notation. We use -
w-notation to denote a lower bound that is not asymptotically tight. One way to
define it is by :

f(n) € w(g(n)) if and only if g(n) € o(f(n))\
Formally, however, we define w(g(n)) (“little-omega of g of n”) as the set

w(g(n)) = {f(n) : for any positive constant ¢ > 0, there exists a constant
no > O such that 0 < cg(n) < f(n) forall n > no} .

For example, n%/2 = w(n), but n2/2 # w(n?). The relation f(n) = w(g(n))
implies that

’ fn)
1m =0
n—o0 g(n)

if the limit exists. That is, f(n) becomes arbitrarily large relative to g(n) as n
approaches infinity.
Comparison of functions

Many of the relational properties of real numbers apply to asymptotic comparisons
as well. For the following, assume that f(n) and g(n) are asymptotically positive.

3.1 Asymptotic notation 49

Transitivity:

f(n) = ©(g(m) and g(n) = Oh(n)) imply f(n) = O(n),
f(n) = 0(g(n)) and g(n) = O(h(n)) imply f(n) = Oh(n)),
f(n) = Q(gm) and g(n) = Qh®) imply f(n) = QLh®),
f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n)),
f(n) = w(gn) and g(n) = w(h(m)) imply f(n) = w(h(®n)).

Reflexivity:

fn)y = 6(f(n),
fn) = 0(f(n),
fln)y = Q(f(n).

Symmetry:
f(n) = ©(g(n) if and only if g(n) = O(f(n)) .
Transpose symmetry:

f(n) = 0(g(n)) ifandonlyif g(n) = Q(f(n)),
f(n) = o(g(n)) ifandonlyif g(n) = w(f(n)).
Because these properties hold for asymptotic notations, one can draw an analogy

between the asymptotic comparison of two functions f and g and the comparison
of two real numbers a and b:

f) =00 . &, ..asb,
fim)y=Q@Egn) ~ az=b,
fn)=0@¢Mm) ~ a=b,
f(n)y=o0(gm) ~ a<b,
fm)=w@nh) ~ a>b.

We say that f(n) is asymptotically smaller than g (n) if f(n) = o(g(n)), and f(n)
is asymptotically larger than g(n) if f(n) = w(g(n)).

One property of real numbers, however, does not carry over to asymptotic nota-
tion:

Trichotomy: For any two real numbers a and b, exactly one of the following must
hold: @ < b,a =b,ora > b.

50

Chapter 3 Growth of Functions

Although any two real numbers can be corripared, not all functions are asymptoti-
cally comparable. That is, for two functions f(n) and g(n), it may be the case that
neither f(n) = O(g(n)) nor f(n) = Q2(g(n)) holds. For example, the functions n
and n'*"" cannot be compared using asymptotic notation, since the value of the
exponent in 775" oscillates between 0 and 2, taking on all values in between.

Exercises

3.1-1
Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic defi-
nition of ®@-notation, prove that max(f(n), g(n)) = O(f (n) + g(n)).

3.1-2

Show that for any real constants a and b, where b > 0,

(n+a) =00 . (3.2)
3.1-3

Explain why the statement, “The running time of algorithm A is at least O (n?),” is
meaningless. '

™~

3.1-4
Is2r! = 0(2M)? Is 22" = 0 (2")?

3.1-5
Prove Theorem 3.1.

3.1-6
Prove that the running time of an algorithm is ® (g (n)) if and only if its worst-case
running time is O (g(n)) and its best-case running time is 2(g(n)).

3.1-7
Prove that o(g(n)) N w(g(n)) is the empty set.

3.1-8

We can extend our notation to the case of two parameters n and m that can go to
infinity independently at different rates. For a given function g(n, m), we denote
by O(g(n, m)) the set of functions

O(g(n,m)) = {f(n,m) : there exist positive constants c, o, and mg
such that 0 < f(n,m) < cg(n, m)
for all n > ng and m > my} .

Give corresponding definitions for €2 (g(n, m)) and ©(g(n, m)).

3.2 Standard notations and common functions Sk

3.2 Standard notations and common functions

This section reviews some standard mathematical functions and notations and ex-
plores the relationships among them. It also illustrates the use of the asymptotic
notations.

Monotonicity

A function f(n) is monotonically increasing if m < n implies f(m) < f(n).
Similarly, it is monotonically decreasing if m < n implies f(m) > f(n). A
function f(n) is strictly increasing if m < n implies f(m) < f(n) and strictly
decreasing if m < n implies f(m) > f(n).

Floors and ceilings

For any real number x, we denote the greatest integer less than or equal to x by |x |
(read “the floor of x”*) and the least integer greater than or equal to x by [x] (read
“the ceiling of x”). For all real x,

x—1 < |x] <x < [x] <x+1. (3.3)
For any integer #,
[n/21+ |n/2] =n,

and for any real number n > 0 and integers a, b > 0,

[[n/al/b] = [n/abl, (3.4)
Lln/a] /b] = |n/ab], 3.5)
[a/b] < (a+@®B-1)/b, (3.6)
la/b] > ((@a—OB-1)/b. (3.7

The floor function f(x) = |x| is monotonically increasing, as is the ceiling func-
tion f(x) = [x].
Modular arithmetic

For any integer a and any positive integer 7, the value @ mod 7 is the remainder
(or residue) of the quotient a/n:

amodn=a—la/nln. 3.8)

Given a well-defined notion of the remainder of one integer when divided by an-
other, it is convenient to provide special notation to indicate equality of remainders.

52

Chapter 3 Growth of Functions

If (@ mod n) = (b mod n), we write @ = b (mod n) and say that a is equivalent
to b, modulo 7. In other words, a = b (mod n) if a and b have the same remainder
when divided by n. Equivalently, a = b (mod r) if and only if n is a divisor of
b —a. We write a # b (mod n) if a is not equivalent to b, modulo 7.

Polynomials

Given a nonnegative integer d, a polynomial in n of degree d is a function p(n) of
the form

d
p(n) = Zatn' ;
i=0

where the constants ag, ay, ..., a, are the coefficients of the polynomial and
aq # 0. A polynomial is asymptotically positive if and only if a; > 0. For an
asymptotically positive polynomial p(n) of degree d, we have p(n) = ©(n¢). For
any real constant a > 0, the function n* is monotonically increasing, and for any
real constant @ < 0, the function n“ is monotonically decreasing. We say that a
function f (n) is polynomially bounded if f(n) = O (n*) for some constant k.

Exponentials

For all real a > 0, m, and n, we have the followi‘r'lg identities:

a@ =1 ,
al a,
al = 1/a,
(am)n = qg™m
=]
(@ = (aH",
ata® = a™m".

For all n and @ > 1, the function a” is monotonically increasing in n. When
convenient, we shall assume 0° = 1.

The rates of growth of polynomials and exponentials can be related by the fol-
lowing fact. For all real constants a and b such that a > 1,

b
im Z =0, (3.9)

n—o00 g"
from which we can conclude that

n® =o(@a").

Thus, any exponential function with a base strictly greater than 1 grows faster than
any polynomial function.

3.2 Standard notations and common functions 53

Using e to denote 2.71828.. ., the base of the natural logarithm function, we
have for all real x,

2
e—Hﬁ+§+ + Zf (3.10)

where “1” denotes the factorial function defined later in this section. For all real x,
we have the inequality

&= 1l+x, (3.11)
where equality holds only when x = 0. When |x| < 1, we have the approximation
l+x<e" <1l4x+x>. (3.12)
When x — 0, the approximation of ¢* by 1 + x is quite good:
eF=1+x+00x?.

(In this equation, the asymptotic notation is used to describe the limiting behavior
as x — 0 rather than as x — 00.) We have for all x,

Tim (1 + %) = ¢t * (3.13)

Logarithms
We shall use the following notations:

lgn = logy,n (binary logarithm) ,
Inn = log,n (natural logarithm) ,
lgk n = (g n)k (exponentiation) ,

lglgn = 1g(lgn) (composition) .
An important notational convention we shall adopt is that logarithm functions will
apply only to the next term in the formula, so that 1g n 4+ k will mean (Ig n) + k and
not 1g(n + k). If we hold b > 1 constant, then for n > 0, the function log, n is
strictly increasing.

Forallreala > 0,b > 0, ¢ > 0, and n,

a — blogba ,
log,(ab) = log,a+log.b,
log,a" = nlog,a,
1
logja = ebe? (3.14)

log.b’

54

Chapter 3 Growth of Functions

log,(1/a) = -—log,a,
1
1 = —,
WA= log, b
alog,,c — clogba , (315)

where, in each equation above, logarithm bases are not 1.

By equation (3.14), changing the base of a logarithm from one constant to an-
other only changes the value of the logarithm by a constant factor, and so we shall
often use the notation “lg n” when we don’t care about constant factors, such as in
O-notation. Computer scientists find 2 to be the most natural base for logarithms
because so many algorithms and data structures involve splitting a problem into
two parts.

There is a simple series expansion for In(1 + x) when [x| < 1:

2 x3 x4 x5

X
In(1 b L B SO A0 U e A RIS S
n(l+x)=x 2+3 4+5

We also have the following inequalities for x > —1:

< n(+x) < x, : (3.16)

X
14+x
where equality holds only for x = 0.

We say that a function f(n) is polyloganthmtcally bounded if f(n) = O(1g" n)
for some constant k. We can relate the growth of polynomials and polylogarithms
by substituting 1g 7 for n and 2¢ for a in equation (3.9), yielding

~

1g® 1
E N~ fim 22 iy

m
n—>oo (29)187 n—oco pa

From this limit, we can conclude that

1g°n = o(n%)

for any constant @ > 0. Thus, any positive polynomial function grows faster than
any polylogarithmic function.

Factorials

The notation »! (read “n factorial”) is defined for integers n > 0 as

ol = 1 ifn=0,
T ln-(n=1! ifn>0.

Thus,n!=1-2-3...n.

3.2 Standard notations and common functions 55

A weak upper bound on the factorial function is n! < n”, since each of the n
terms in the factorial product is at most n. Stirling’s approximation,

n 1

n = 27 (f) <1 +e (-)) : (3.17)
e n

where e is the base of the natural logarithm, gives us a tighter upper bound, and a

lower bound as well. One can prove (see Exercise 3.2-3)

n! = o("),
n = w2,
lg(n!) = O(nlgn), (3.18)

where Stirling’s approximation is helpful in proving equation (3.18). The following
equation also holds for all n > 1:

n\" o |
n! = ~2mn <Z) e (3.19)
where

L <o, < L . ; (3.20)
12n + 1 12n

Functional iteration

We use the notation f®(n) to denote the function f (n) iteratively applied i times
to an initial value of n. Formally, let f(n) be a function over the reals. For non-
negative integers i, we recursively define

0) _ n if i =O,
f (")‘{f(f@'—l)(n)) ifi>0.

For example, if f(n) = 2n, then f@(n) = 2in.

The iterated logarithm function

We use the notation 1g* n (read “log star of n”) to denote the iterated logarithm,
which is defined as follows. Let lg(i) n be as defined above, with f(n) = Ign.
Because the logarithm of a nonpositive number is undefined, 1g # is defined only
if 1g"Yn > 0. Be sure to distinguish 1g n (the logarithm function applied i
times in succession, starting with argument 7) from lg’ z (the logarithm of # raised
to the ith power). The iterated logarithm function is defined as

lg"n=min{i >0:1g9n <1} .

56

Chapter 3 Growth of Functions

The iterated logarithm is a very slowly growing function:

Igh2 '='1,

Ig“d = 2,
1g*16 = 3,

1g* 65536 = 4,
1g* (2055%6) o

Since the number of atoms in the observable universe is estimated to be about 108,
which is much less than 265336, we rarely encounter an input size n such that
lg*n > 5.

Fibonacci numbers

The Fibonacci numbers are defined by the following recurrence:

Fpb = 0,
FLo= 1, (3.21)
Fi = Fi1+F fori >2.

Thus, each Fibonacci number is the sum of the two previous ones, yielding the
sequence

0", 2,85, 8, 18 20, 34,35 &

Fibonacci numbers are related to the golden ratio ¢ and to its conjugate $, which
are given by the following formulas:

1
3 .= +2“/§ (3.22)
= 1.61803...,
. 1-+/5
¢ = >
= —.61803....
Specifically, we have
¢ — ai
F; = ; 3.23
7 (3.23)

vgllich can be proved by induction (Exercise 3.2-6). Since |$| < 1, we .have
161/4/5 < 1/4/5 < 1/2, so that the ith Fibonacci number F; is equal to ¢ /+/5
rounded to the nearest integer. Thus, Fibonacci numbers grow exponentially.

Problems for Chapter 3 57

Exercises

3.2-1

Show that if f(n) and g(n) are monotonically increasing functions, then so are the
functions f(n) + g(n) and f(g(n)), and if f(n) and g(n) are in addition nonneg-
ative, then f(n) - g(n) is monotonically increasing.

3.2-2
Prove equation (3.15).

3.2-3
Prove equation (3.18). Also prove that n! = @ (2") and n! = o(n").

3.2-4 x
Is the function [1g n]! polynomially bounded? Is the function [lglgn]! polynomi-
ally bounded?

3.2-5
Which is asymptotically larger: 1g(lg* n) or 1g*(1gn)?

3.2-6 7
Prove by induction that the ith Fibonacci number satisfies the equality

¢ — ¢
\/g 9

where ¢ is the golden ratio and $ is its conjugate.

Fi=

3.2-7
Prove that for i > 0, the (i + 2)nd Fibonacci number satisfies Fi» > ¢

Problems

3-1 Asymptotic behavior of polynomials
Let

d
p(n) = Za,-n’)
i=0

where a; > 0, be a degree-d polynomial in 7, and let k be a constant. Use the
definitions of the asymptotic notations to prove the following properties.

a. If k > d, then p(n) = O(n").

58

Chapter 3 Growth of Functions

b.

C.

d.

e.

If k < d, then p(n) = Q(n*).
If k = d, then p(n) = O (n").
If £ > d, then p(n) = o(n*).

If k < d, then p(n) = w(n).

3-2 Relative asymptotic growths

Indicate, for each pair of expressions (A, B) in the table below, whether A is 0,o,
2, w,or © of B. Assume that k > 1, ¢ > 0, and ¢ > 1 are constants. Your answer
should be in the form of the table with “yes” or “no” written in each box.

a.
b.
e
d.

e.

f

A B o 0 Q W ®
1gk n nt |
ok o
Jno opsion
on on/2
nige clen
lg(n!) Ig(n™)),

3-3 Ordering by asymptotic growth rates

a.

Rank the following functions by order of growth; that is, find an arrangement
81, 82, - - ., 830 of the functions satisfying g; = Q(g,), g» = Q(g3)s ..., 89 =
§2(g30). Partition your list into equivalence classes such that f(n) and g(n) are
in the same class if and only if f(n) = O(g(n)).

lglg'n) 2¢7 (V2" w2 al (g
)" n’ Ig?n gty 2% pler
Inlnn Ig*n n-2" pleler o qpp 1
2en (gm)len e 4lsn 1! Jign
lg*lgn) 2vV2Er 2 nlgn 22

Give an example of a single nonnegative function f(n) such that for all func-
tions g;(n) in part (a), f(n) is neither O (gi(n)) nor Q(g;(n)).

Problems for Chapter 3 59

3-4 Asymptotic notation properties
Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of
the following conjectures.

a. f(n) = 0(g(n)) implies g(n) = O(f(n)).
b. f(n)+ g(n) = G (min(f (n), g(n))).

c. f(n) = 0(g(n)) implies Ig(f(n)) = O(Ig(g(n))), where Ig(g(n)) > 1 and
f(n) > 1 for all sufficiently large n.

d. f(n) = 0(g(n)) implies 2/® = 0 (28™).
e. f(n)=0((f(m)).

f. f(n) = 0(g(n)) implies g(n) = Q(f(n)).
g f(n)=0(f(n/2).

h. f(n)+o(f(n)) = O(f(n)).

3-5 Variations on O and 2
Some authors define 2 in a slightly different way than we do; let’s use & (read

“omega infinity”) for this alternative definition. We say that f(n) = Q(g (n)) if
there exists a positive constant ¢ such that f(n) > cg(n) > 0 for infinitely many
integers n.

a. Show that for any two functions f(n) and g(n) that are asymptotically nonneg-
ative, either f(n) = O(g(n)) or f(n) = ﬁ(g(n)) or both, whereas this is not
true if we use €2 in place of &

b. Describe the potential advantages and disadvantages of using $ instead of € to
characterize the running times of programs.

Some authors also define O in a slightly different manner; let’s use O’ for the alter-
native definition. We say that f(n) = O’(g(n)) if and only if | f (n)| = O(g(n)).

¢. What happens to each direction of the “if and only if” in Theorem 3.1 if we
substitute O’ for O but still use Q2?

Some authors define O (read “soft-oh”) to mean O with logarithmic factors ig-
nored:

0 (g(n)) = {f(n) : there exist positive constants c, k, and nq such that
0 < f(n) < cg(n)lgt(n) forall n > ne} .

60

Chapter 3 Growth of Functions

d. Define Q and © in a similar manner. Prove the corresponding analog to Theo-
rem 3.1.

3-6 Iterated functions

The iteration operator * used in the 1g* function can be applied to any monotoni-
cally increasing function f (1) over the reals. For a given constant ¢ € R, we define
the iterated function f* by

fXn)y=min{i >0: fOm) <},

which need not be well-defined in all cases. In other words, the quantity fX(n)is
the number of iterated applications of the function f required to reduce its argu-
ment down to ¢ or less.

For each of the following functions f(n) and constants c, give as tight a bound
as possible on f*(n).

f(n)

n—1

fc*(n)

s 8

c

0

Ign 1
n/2 1
n/2 2
2

1

2

2

& 9

-
Jr

1/3

n

SRS oe

n/lgn

Chapter notes

Knuth [182] traces the origin of the O-notation to a number-theory text by P. Bach-
mann in 1892. The o-notation was invented by E. Landau in 1909 for his discussion
of the distribution of prime numbers. The 2 and ® notations were advocated by
Knuth [186] to correct the popular, but technically sloppy, practice in the litera-
ture of using O-notation for both upper and lower bounds. Many people continue
to use the O-notation where the ®-notation is more technically precise. Further
discussion of the history and development of asymptotic notations can be found in
Knuth [182, 186] and Brassard and Bratley [46].

Not all authors define the asymptotic notations in the same way, although the
various definitions agree in most common situations. Some of the alternative def-

l

Notes for Chapter 3 61

initions encompass functions that are not asymptotically nonnegative, as long as
their absolute values are appropriately bounded.

Equation (3.19) is due to Robbins [260]. Other properties of elementary math-
ematical functions can be found in any good mathematical reference, such as
Abramowitz and Stegun [1] or Zwillinger [320], or in a calculus book, such as
Apostol [18] or Thomas and Finney [296]. Knuth [182] and Graham, Knuth, and
Patashnik [132] contain a wealth of material on discrete mathematics as used in
computer science.

