
Mining temporal networks

Aristides Gionis

Department of Computer Science, Aalto University

users.ics.aalto.fi/gionis

Nov 14, 2016

networks

• a simple abstraction used to model
many different real-world datasets

– social networks

– information networks

– technology networks

– biological networks

traditional view

• networks represented as pure graph-theory objects

– no additional vertex / edge information

• emphasis on static networks

• dynamic settings model structural changes

– vertex / edge additions / deletions

temporal networks

• ability to collect and store large volumes of network data

• available data have fine granularity

• lots of additional information associated to vertices/edges

• network topology is relatively stable, while
lots of activity and interaction is taking place

• giving rise to new concepts, new problems, and
new computational challenges

modeling activity in networks

1. network nodes perform actions (e.g., posting messages)

time

x
y

z
w

u
a c

b c a

c e b
d a b

c d a

2. network nodes interact with each other
(e.g., a “like”, a repost, or sending a message to each other)

time

x
y

z
w

u

many novel and interesting concepts

x
y

z
w

u
a

a

a
b

b

b

new pattern types

x
y

z
w

u

temporal information paths

x
y

z
w

u
a

a
a
a

new types of events

x
y

z
w

u

network evolution

temporal networks — objectives

• identify new concepts and new problems

• develop algorithmic solutions

• demonstrate revelance to real-world applications

agenda

tracking important nodes

• maintaining neighborhood profiles

• temporal PageRank

reconstructing an epidemic over time

tracking important nodes

maintaining sliding-window neighborhood profiles

R. Kumar, T. Calders, A. Gionis, and N. Tatti, ECML PKDD 2015

distance distributions in graphs

• given graph G, a node u, and distance r :

how many nodes of G are in distance r from u?

• fundamental graph-mining primitive

– median distance, diameter, effective diameter

• related to small-world phenomena

• a measure of centrality for nodes of G

distance distributions in graphs

• exact solution requires all-pairs shortest path computation

– Floyd-Warshall algorithm: O(n3)

– or, BFS for unweighted graphs: O(nm)

• clearly non scalable

• resort to approximations based on diffusion methods

diffusion-based computation

[Palmer et al., 2002]

• let Bt(x) be the ball of radius t around x
(the set of nodes at distance ≤ t from x)

• clearly B0(x) = {x}

• moreover Bt+1(x) =
⋃

(x ,y) Bt(y)
⋃{x}

• so computing Bt+1 from Bt just takes a single (sequential)
scan of the graph

diffusion-based computation

• every set requires O(n) bits, hence O(n2) bits overall

• amount of space is prohibitively large

• instead use sketching for counting distinct elements

• probabilistic counters require very small space (log log)

• HyperANF algorithm [Boldi et al., 2011]

– uses HyperLogLog counters [Flajolet et al., 2007]

– with 40 bits you can count up to 4 billion with
– standard deviation 6%

extension to temporal networks

• limitations of existing solutions

– consider static network

– multi-pass algorithm

• in this work

– extension to temporal networks

– streaming algorithm for sliding-window model :

– consider only the most recent interactions (edges)

setting

• temporal network G = (V ,E)

• stream of edges E = 〈(u1, v1, t1), (u2, v2, t2), . . .〉
with t1 ≤ t2 ≤ . . .

• sliding window length w

• snapshot network G(t ,w) at time t contains all edges
with time-stamps in (t − w , t]

problem :
given node u, window length w , and distance r , how many
nodes in G(t ,w) are within distance r from u at time t?

example

a b

c d

e

1,8

2

3 4,9

5,10
6

7

a b

c d

e

1
2

3

G3

a b

c d

e

2

3 4

G4

a b

c d

e3 4

5
G5

a toy example, 3 snapshot graphs with a window size of 3

proposed online algorithms

1. an exact but memory-inefficient streaming algorithm

2. an approximate memory-efficient streaming algorithm

– approximate algorithm uses logic of exact algorithm,
combined with hyperloglog sketches

horizons

• path horizon : time-stamp of the oldest edge on the path

• h(u, v , i) : the horizon for length i between nodes u and v :
the maximum horizon of any path of length at most i

example

a b

c d

e

2

65

4
3

1

−∞,−∞, 3, 3, 3 ∞,∞,∞,∞,∞

−∞,3, 3, 3, 3 −∞,2, 2, 3, 3

−∞,−∞, 3, 3, 3

a b

c d

e

7
2

65

4
3

1

−∞,7, 7, 7, 7 ∞,∞,∞,∞,∞

−∞,3, 4, 4, 4 −∞,2, 2, 3, 4

−∞, −∞, 3, 4, 4

two snapshot graphs along with h(u,b, i) for i = 0, . . . ,4

neighborhood summaries

• observation : if for a node u we know all horizons h(u, v , i),
for all distances i and all nodes v , we can give complete
neighborhood profile for u for any window length

• neighborhood summary : Su
t = (Su

t [0], . . . ,S
u
t [r])

where Su
t [i] = {(v ,ht(u, v , i)) | ht(u, v , i) > −∞}

updating neighborhood summaries

• edge deletion : simply delete entries from summaries

• edge addition : a change in summary at distance i for
a node u will introduce a change in the summary of its
neighbors at distance i + 1

– updates propagate in a BFS fashion

exact algorithm

• update time : O(rmn log n)

• space complexity : O(rn2)

– where r an upper bound on max distance

• quadratic dependence not acceptable for large graphs

– hence approximation algorithm

approximate algorithm

• sliding HyperLogLog sketch : extension of HyperLogLog to
maintain a distinct set counter over sliding window

• if number of buckets in the HLL counter is k then the
worst case complexity changes to

– update time :

– O(rm2k log log n) from O(rmn log n)

– space complexity :

– O(rn2k log log n) from O(rn2)

empirical evaluation — quality

nodes dist total clus diam eff avg rel
dataset edges edges coef diam error

(k=7)

Facebook 4 039 88 234 88 234 0.60 8 4.7 0.08
Cit-HepTh 27 771 352 801 352 801 0.31 13 5.3 0.10
Higgs 166 840 249 030 500 000 0.19 10 4.7 0.14
DBLP 192 357 400 000 800 000 0.63 21 8.0 0.09

empirical evaluation — running time 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 10 20 30 40 50 60 70 80 90

tim
e

(s
ec

)
edges (in thousands)

k = 4
k = 5
k = 6
k = 7

(a) Facebook

 0

 50

 100

 150

 200

 250

 50 100 150 200 250 300 350

tim
e

(s
ec

)

edges (in thousands)

k = 4
k = 5
k = 6
k = 7

(b) Cit-HepTh

 0

 10

 20

 30

 40

 50

 60

 100 200 300 400 500

tim
e

(s
ec

)

edges (in thousands)

k = 4
k = 5
k = 6
k = 7

(c) Higgs

 0

 1

 2

 3

 4

 5

 6

 7

 100 200 300 400 500 600 700 800

tim
e

(s
ec

)

edges (in thousands)

k = 4
k = 5
k = 6
k = 7

(d) DBLP

Fig. 4. Time needed to process 1 000 edges for di↵erent `

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70 80 90

tim
e

(s
ec

)

edges (in thousands)

Serial
Parallel

Fig. 5. Running times for DBLP with parallelized version of the algorithm.

8 Concluding remarks

We studied the problem of maintaining the neighborhood profile of the nodes
of an interaction network—a graph with a sequence of interactions, in the form
of a stream of time-stamped edges. The model is appropriate for many modern
graph datasets, like social networks where interaction between users is one of the
most important aspects. We focused on the sliding-window data-stream model,
which allows to forget past interactions and adapt to new drifts in the data.
Thus, the proposed problem and approach can be applied to monitoring large
networks with fast-evolving interactions, and used to reason how the network
structure and the centrality of the important nodes change over time.

contrast (DBLP)
– offline HyperANF : 3.6 sec / sliding window
– proposed approach : 0.003 sec / sliding window

tracking important nodes

temporal PageRank

P. Rozenshtein and A. Gionis, ECML PKDD 2016

PageRank

• classic approach for measuring node importance

• listed in the top-10 most important data-mining algorithms
[Wu et al., 2008]

• numerous applications

– ranking web pages
– trust and distrust computation
– finding experts in social networks
– . . .

PageRank

• PageRank defined as the stationary distribution of
a random walk in the graph

• inherently a static process

• however, many modern networks can be viewed as
a sequence (stream) of edges

– temporal network : G = (V ,E), with E = {(u, v , t)}
– examples : twitter, instagram, IMs, email, . . .

• what is an appropriate PageRank definition for
temporal networks?

temporal networks

network nodes interact with each other
(e.g., a “like”, a repost, or sending a message to each other)

time

x
y

z
w

u

motivating example

a

b

c

g

e

f

hd

a

b

c

g

e

f

hd

1

2
3

4

5

6

7

8

9

10

11

12

a

b

c

g

e

f

hd

1

2

3
4

5
6

7

89

10
11

12

(a) (b) (c)

Fig. 1: (a) A static graph, in which hubs a and e have the highest static PageRank
score; (b) and (c) represent two di↵erent temporal networks: in (b) the temporal
PageRank score of nodes a and e are expected to be stable over time; in (c)
node e becomes more important than a as the time goes by, and the temporal
PageRank scores of a and e are expected to change accordingly.

and it has inspired a family of fixed-point computation algorithms, such as,
TopicRank [6], TrustRank [8], SimRank [11], and more.

PageRank is defined to be the steady-state distribution of a random walk.
As such, it is implied that the underlying network structure is fixed and does
not change over time. Even though numerous works have studied the problem of
computing PageRank on dynamic graphs, the emphasis has been given on main-
taining PageRank e�ciently under network updates [12, 19], or on computing
PageRank e�ciently in streaming settings [22]. Instead there has not been much
work on how to incorporate temporal information and network dynamicity in
the PageRank definition.

To make the previous claim more clear imagine that starting from an initial
network G we observe k elementary updates in the network structure e

1

, . . . , ek

(such as edge additions or deletions), resulting on a modified network G

0. A
typical question is how to compute the PageRank of G0 e�ciently, possibly by
taking into consideration the PageRank of G, and the incremental updates. Nev-
ertheless, the PageRank of G0 is defined as a steady-state distribution and as
the network G

0 would “freeze” at that time instance.
Our goal in this paper is to extend PageRank so as to incorporate temporal

information and network dynamics in the definition of node importance. The
proposed measure, called temporal PageRank, is designed to provide estimates
of the importance of a node u at any given time t. If the network dynamics and
the importance of nodes change over time, so does temporal PageRank, and it
duly adapts to reflect these changes.

An example illustrating the concept of temporal PageRank, and presenting
the main di↵erence with classic PageRank, is shown in Figure 1. First, a static
(directed) graph is shown in Figure 1(a). Vertices a and e are the hubs of the
graph, and thus, the nodes with the highest static PageRank score. Figures 1(b)

static network temporal network temporal network

research questions and objectives

• extend PageRank to incorporate temporal information
and network dynamics

• adapt PageRank to reflect changes in network dynamics
and node importance

• estimate importance of a node u at any given time t

dynamic PageRank vs. temporal PageRank

• extensive work on dynamic PageRank

• dynamic PageRank computation :
– maintain correct PageRank during network updates
– e.g., edge additions / deletions

• computation should return the static PageRank at a
given network snapshot

• for edges present in a snapshot, order does not matter

static PageRank

• graph G = (V ,E)

• corresponding row-stochastic matrix P ∈ Rn×n

• personalization vector h ∈ Rn

• PageRank is the stationary distribution of a random walk,
with restart probability (1− α)

π(u) =
∑

v∈V

∞∑

k=0

(1− α)αk
∑

z∈Z(v ,u)
|z|=k

h(v)Pr[z | v]

where, Z(v ,u) is the set of all paths from v to u

and Pr[z | v] = ∏
(i,j)∈z P(i , j)

temporal PageRank

• make a random walk only on temporal paths
– e.g., time-respecting paths
– time-stamps increase along the path

a

b

c

g

e

f

hd

a

b

c

g

e

f

hd

1

2
3

4

5

6

7

8

9

10

11

12

a

b

c

g

e

f

hd

1

2

3
4

5
6

7

89

10
11

12

(a) (b) (c)

Fig. 1: (a) A static graph, in which hubs a and e have the highest static PageRank
score; (b) and (c) represent two di↵erent temporal networks: in (b) the temporal
PageRank score of nodes a and e are expected to be stable over time; in (c)
node e becomes more important than a as the time goes by, and the temporal
PageRank scores of a and e are expected to change accordingly.

and it has inspired a family of fixed-point computation algorithms, such as,
TopicRank [6], TrustRank [8], SimRank [11], and more.

PageRank is defined to be the steady-state distribution of a random walk.
As such, it is implied that the underlying network structure is fixed and does
not change over time. Even though numerous works have studied the problem of
computing PageRank on dynamic graphs, the emphasis has been given on main-
taining PageRank e�ciently under network updates [12, 19], or on computing
PageRank e�ciently in streaming settings [22]. Instead there has not been much
work on how to incorporate temporal information and network dynamicity in
the PageRank definition.

To make the previous claim more clear imagine that starting from an initial
network G we observe k elementary updates in the network structure e

1

, . . . , ek

(such as edge additions or deletions), resulting on a modified network G

0. A
typical question is how to compute the PageRank of G0 e�ciently, possibly by
taking into consideration the PageRank of G, and the incremental updates. Nev-
ertheless, the PageRank of G0 is defined as a steady-state distribution and as
the network G

0 would “freeze” at that time instance.
Our goal in this paper is to extend PageRank so as to incorporate temporal

information and network dynamics in the definition of node importance. The
proposed measure, called temporal PageRank, is designed to provide estimates
of the importance of a node u at any given time t. If the network dynamics and
the importance of nodes change over time, so does temporal PageRank, and it
duly adapts to reflect these changes.

An example illustrating the concept of temporal PageRank, and presenting
the main di↵erence with classic PageRank, is shown in Figure 1. First, a static
(directed) graph is shown in Figure 1(a). Vertices a and e are the hubs of the
graph, and thus, the nodes with the highest static PageRank score. Figures 1(b)

c → b → a→ c : time respecting

a→ c → b → a : not time respecting

temporal PageRank

• intuition : probability of visiting node u at time t
given a random walk on temporal paths

• need to model probability of following next temporal edge
– we use an exponential distribution

• temporal PageRank definition

r(u, t) =
∑

v∈V

t∑

k=0

(1− α)αk
∑

z∈ZT (v ,u|t)
|z|=k

Pr′[z| t]

ZT (v ,u | t) set of temporal paths from v to u until time t

computation

• simple online algorithm
• r(u, t) : temporal PageRank estimate of u at time t
• s(u, t) : count of active walks visiting u at time t

Algorithm 2: stream processing

input : E, transition probability �, jumping probability ↵
1 r = 0, s = 0;
2 foreach (u, v, t) 2 E do
3 r(u) = r(u) + (1 � ↵);
4 r(v) = r(v) + (s(u) + (1 � ↵))↵;
5 s(v) = s(v) + (s(u) + (1 � ↵))(1 � �)↵;
6 s(u) = (s(u) + (1 � ↵))�;

7 normalize r;
8 return r;

3.2 Temporal vs. static PageRank

Temporal PageRank is defined to handle network dynamics and concept drifts.
An intuitive property that one may expect is that if the edge distribution of the
temporal edges remains constant, then temporal PageRank approximates static
PageRank. In this section we show that indeed this is the case.

Consider a weighted directed graph Gs = (V, Es, w) and a time period
T = [1, .., T]. Without loss of generality assume

P
e2Es

w(e) = 1 and let Nout(u)
be the out-link neighbors of u. Let edges e 2 Es be associated with a sampling
distribution SE : p[e = (u, v)] = w(e). A temporal graph G = (V, E) is con-
structed by sampling T edges from Gs using SE (probability to pick an edge
into E is proportional to the weight of this edge in the static graph). We will
consider a simple case of transition probability � = 1: a random walk takes the
first suitable interaction to continue.

In the setting described above we can prove the following statement.

Proposition 2. The expected values of temporal PageRank on graph G = (V, E)
converge to the values of static PageRank on graph Gs = (V, Es, w), with per-
sonalization vector h(u) =

P
v2Nout(u) w(e = (u, v)) (weighted out-degree).

Proof. At any time moment t every vertex u 2 V has PageRank score r(u, t)
and active mass (number of walkers that wait to continue) equal to s(u, t).

The expected value E(r(v, T)) of the PageRank count of node v at time T is
a sum over expected increments of r(v) over time:

E(r(v, T)) =
TX

t=1

E(�r(v, t)).

At time t the increment of r(v) can be caused by selecting an edge e(t) =
(v, q) with starting point in v and q 2 V . In this case r(v) is incremented by
(1 � ↵). Another possibility to increment r(v) is to select an edge e(t) = (q, v)
with u as an end point and q 2 V . In this case r(v) is incremented by ↵s(q, t),
where s(q, t) is a value of active mass in node q at time t. Let p(u) be a probability

static vs. temporal PageRank

• temporal PageRank is designed to capture changes
in network dynamics and concept drifts

• what if the edge distribution is stable?

static vs. temporal PageRank

• consider static network GS = (V ,ES,w)

• time period [1, . . . ,T]

• construct temporal network G = (V ,E) by sampling edges
proportionally to their weight

proposition :

as T →∞, the temporal PageRank on G
converges to the static PageRank on GS,
with personalization vector equal to weighted out-degree

experiment — adaptation to concept drift

(a) Facebook (b) Twitter (c) Students

Fig. 5: Adaptation for the change of sampling distribution.

(a) Facebook (b) Twitter (c) Students

Fig. 6: Convergence to static PageRank with increasing number of random scans
of edges.

Measures. To evaluate the settings in which temporal PageRank is expected to
converge to the static PageRank of a corresponding graph, we compare temporal
and static PageRank using three di↵erent measures: we use (i) Spearman’s ⇢ to
compare the induced rankings, we also use (ii) Pearson’s correlation coe�cient r,
and (iii) Euclidean distance ✏ on the PageRank vectors.

All the reported experimental results are averaged over 100 runs. Damping
parameter is set of ↵ = 0.85. Waiting probability � for temporal PageRank is
set to 0 unless specified otherwise.

4.1 Results

Convergence. In the first set of experiments we test how fast the tempo-
ral PageRank algorithm converges to corresponding static PageRank. In this
setting we process datasets with m temporal edges and compare the tempo-
ral PageRank ranking with the corresponding static PageRank ranking. In the
plots of Figure 2 we report Pearson’s r, Spearman’s ⇢ and Euclidean error ✏.
The first column corresponds to the calculation of temporal PageRank without
any a priori knowledge of personalization vector. Thus, the resulting temporal
PageRank corresponds to the static PageRank with out-degree personalization:

reconstructing an epidemic over time

P. Rozenshtein, A. Gionis, B.A. Prakash, J. Vreeken, KDD 2016

video

https://www.youtube.com/watch?v=ptvv_ibyy8E&feature=youtu.be

motivation

• consider a sequence of timestamped edges
– an edge between people represents some interaction
– phonecall, email, retweet, . . .

• infection reconstruction :
– consider a unknown dynamic propagation process
– virus, idea, topic, gossip, . . .
– incomplete reported cases of infection

• goal :
– reconstruct paths of infection,
– which explains cases of reported infection, and
– recovers missing infected nodes and interactions

model

• interaction (temporal) network G = (V ,E)

n nodes V ; m directed interactions E = {(u, v , t)}
convenient to consider timestamped nodes V = {(ui , ti)}

model

• infection (activity)
– infection starts externally
– it may propagate only via interactions
– infected nodes remain infected
– no assumption about the model

• reports
– reported infections R = {(u, t)}
– report can be later than activation
– not all infected nodes are reported

problem definition

EPIDEMICRECOSTRUCTION

• input : given
– interactions E = {(u, v , t)}
– set of reported infections R = {(u, t)}
– set of candidate seeds C ⊆ V
– integer k

• find : set of temporal paths P such that
– set of paths P spans R
– seeds in P are in C
– number of seeds in P is at most k
– cost(P | R) = ∑

e∈P w(e) minimized

EPIDEMICRECOSTRUCTION is NP-hard

problem definition

EPIDEMICRECOSTRUCTION

• input : given
– interactions E = {(u, v , t)}
– set of reported infections R = {(u, t)}
– set of candidate seeds C ⊆ V
– integer k

• find : set of temporal paths P such that
– set of paths P spans R
– seeds in P are in C
– number of seeds in P is at most k
– cost(P | R) = ∑

e∈P w(e) minimized

EPIDEMICRECOSTRUCTION is NP-hard

related problem

MINDIRSTEINERTREE

• input : given
– directed graph H = (U,F ,w) with edge weights w
– root node r ∈ U
– set of terminal nodes R ⊆ U

• find : directed tree T rooted at r such that
– T contais paths from r to all nodes in R
–

∑
e∈T w(e) is minimized

EPIDEMICRECOSTRUCTION can be mapped to
MINDIRSTEINERTREE

related problem

MINDIRSTEINERTREE

• input : given
– directed graph H = (U,F ,w) with edge weights w
– root node r ∈ U
– set of terminal nodes R ⊆ U

• find : directed tree T rooted at r such that
– T contais paths from r to all nodes in R
–

∑
e∈T w(e) is minimized

EPIDEMICRECOSTRUCTION can be mapped to
MINDIRSTEINERTREE

transformation

add a dummy node, and
connect it with the earliest occurrence of each candidate seed,
with zero cost

solution idea

input

interactions E , reports R, candidates C, integer k

transformation

1. construct a static graph H = (U,F ,w), where
U = V ∪ {d} time-stamped nodes and dummy node d

2. edges from d to earliest occurrence candidate seeds
set weight to α

solve MINDIRSTEINERTREE on H

– subtrees of d are temporal paths P

– number of subtrees monotonic on weight α

– binary search on α, until less than k subtrees

solving MINDIRSTEINERTREE

– MINDIRSTEINERTREE is NP-hard

– recursive algorithm [Charikar et al., 1999]

– defined for recursion depth i > 1

– approximation guarantee i(i − 1)|X | 1i
– running time O(|V |i |X |i) [Huang et al., 2015]

we use i = 2

main result

speedup

• MINDIRSTEINERTREE pre-computes transitive closure of H
– running time O(m2)

• need to calculate shortest paths for ‘only’ O(n2) pairs
– a scan on E requiring O(nm) time [Huang et al., 2015]

proposition

for the EPIDEMICRECOSTRUCTION problem, we can obtain

approximation 2|n| 12 in time O(mn)

experimental evaluation

– datasets : synthetic, facebook, tumblr, students, and enron

– weights : w(u, v , t) = 1
2(|t − tR(u)|+ |t − tR(v)|)

– setting : simulate epidemic cascades with different models
– sample infections reports
– compare with ground truth

– baseline : one-hop extension

– evaluation metric : Matthews correlation coefficient

MCC =
TP · TN− FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

experimental evaluation — results
Facebook Students Enron Tumblr

10-3 10-2 10-1 100

fract ion of relevant interact ions

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CulT
reports
baseline

10-3 10-2 10-1 100

fract ion of relevant interact ions

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10-3 10-2 10-1 100

fract ion of relevant interact ions

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10-3 10-2 10-1 100

fract ion of relevant interact ions

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3: E↵ect of the fraction of interactions in interaction history E that are relevant to the propagation.
Quality of reconstruction measured in MCC for four datasets, with the SI model used to simulate propagations.

SI Shortest path FF IC

10-3 10-2 10-1 100

fract ion of relevant interact ions

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CulT
reports
baseline

10-3 10-2 10-1 100

fract ion of relevant interact ions

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10-3 10-2 10-1 100

fract ion of relevant interact ions

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10-3 10-2 10-1 100

fract ion of relevant interact ions

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4: E↵ect of the fraction of interactions in the interaction history E that are relevant to the propagation.
Reconstruction quality measured by MCC on the Facebook dataset, for di↵erent infection models.

Second, we evaluate how well we can reconstruct propaga-
tions generated by di↵erent models. We simulate cascades
on the Facebook network using all four models: SI , SP, IC,
and FF. We again vary the number of relevant interactions.
The results are shown in Figure 4. CulT performs very
consistently, regardless of the generating model.

Last, we check how the delay between a node activation
and its reporting a↵ects performance. We simulate the SI
model on the four real datasets, and vary the delay between 0
and 5000 time steps. Results are provided in Figure 5. CulT
is almost not a↵ected at all by delays in reports, whereas the
performance of Baseline deteriorates quickly.

5.5 Order of infection
Next, we evaluate how well we can reconstruct the order

of infections in our temporal network. We use the fron-
tier (FR) reporting scheme, while varying the fraction of
reported frontier nodes. Figure 6 shows that the precision
for both temporal order and static order is quite robust. In
both cases the fraction of reported frontier nodes a↵ects only
the recall. When the number of the frontier nodes in the re-
ports is low, CulT ignores many activated “leaves,” which
are neither in the reports, nor on the path to any other re-
ported node. Thus, the number of false negative increases.

Naturally, the accuracy for static order is higher than for
temporal order: an interaction between the same two nodes
can occur at several time moments and it is di�cult to select
the correct one into a reconstructed propagation path.

5.6 Real cascades
Next we present our results on the Flixster dataset. The

sequence of interactions E is divided into epochs (t0, t1, . . . , T).
At the end of each epoch ti we consider a snapshot of the
network and compare the set of discovered activated nodes

with the set of ground-truth activated nodes in V (A[t0, ti]).
Results shown in Figure 7 indicate that CulT gives high
quality solution during the whole time interval, while the
performance of Baseline degrades significantly with time.

5.7 Scalability
Last, but not least, we evaluate the scalability of CulT.

We conducted these experiments on a 3.30GHz Intel Xeon
machine with 16GB of memory.

First, we consider running time with respect to the num-
ber of interactions E in the temporal network. We construct
a set E of a required length by increasing � on the Facebook
dataset. We show the results in the left-most plot of Fig-
ure 8. As the plot shows, CulT scales well with |E|.

In the center plot of Figure 8 we show the running time
on the Facebook dataset, where we vary the number of acti-
vated nodes up till all nodes in the network are included. We
see again a graceful increase in running time, almost linear.

Third, we investigate the applicability of CulT in a stream-
ing scenario: we therefore report the running time per up-
date, as the number of newly-arrived interactions increases.
To this end we use the Facebook data, and vary the � param-
eter to create a sequence of 3 000 interactions. We run CulT
on the first 1000 interactions, and use the rest to test the
update times. The total update time consists of two com-
ponents, 1) the time needed to update the global shortest
paths, and 2) the time needed for performing binary search.
As can be seen in the right-most plot of Figure 8, the time
for binary search remains constant regardless of the size of
the batch of new interactions. On the other hand, as ex-
pected, the time needed for path updates increases with the
batch size. Note, however, that even for larger batch sizes
the total update time is less than a second.

conclusions (epidemic reconstruction)

• scalable and effective algorithm suited for online settings

• explicitly takes into account the exact time of interaction

• requires only a small sample of node state reports

• no assumption of the underlying propagation model

summary

• examples of mining temporal networks

– maintaining sliding-window neighborhood profiles

– temporal PageRank

– reconstructing an epidemic over time

• potential for new concepts, new problem definitions,
new computational methods, and new applications

references

Boldi, P., Rosa, M., and Vigna, S. (2011).
HyperANF: approximating the neighborhood function of very large
graphs on a budget.
In WWW.

Charikar, M., Chekuri, C., Cheung, T.-y., Dai, Z., Goel, A., Guha, S., and
Li, M. (1999).
Approximation algorithms for directed steiner problems.
Journal of Algorithms.

Flajolet, F., Fusy, E., Gandouet, O., and Meunier, F. (2007).
Hyperloglog: the analysis of a near-optimal cardinality estimation
algorithm.
In Proceedings of the 13th conference on analysis of algorithm (AofA).

Huang, S., Fu, A. W.-C., and Liu, R. (2015).
Minimum spanning trees in temporal graphs.
In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data.

references (cont.)

Palmer, C. R., Gibbons, P. B., and Faloutsos, C. (2002).
ANF: a fast and scalable tool for data mining in massive graphs.
In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 81–90, New York, NY,
USA. ACM Press.

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H.,
McLachlan, G. J., Ng, A., Liu, B., Philip, S. Y., et al. (2008).
Top 10 algorithms in data mining.
KAIS.

http://dx.doi.org/10.1145/775047.775059

