
A Brief Introduction to the Linux Shell for Data Science

Aris Anagnostopoulos

1 Introduction

Here we will see a brief introduction of the Linux command line or shell as it is called. Linux is a Unix-like
operating system, which is open source. There exist several distributions Linux that one can install for
free, among which Ubuntu is probably the most popular for single users. Although Linux has a graphical
environment, programmers use very often the shell to perform some tasks, thus it is useful to have some
experience with it. In these notes we will see some of the basics to be able to work with the shell evenif you
have never worked on it, and we will then see some commands for performing some simple mining tasks.

If you want to install Linux in your computer, you can do it by creating a virtual machine inside your
computer, for example by using VirtualBox.

Although Python and R were initially developped on the Unix environment, now there exist versions for
all popular operating systems as well, so you most probably will not need to install Linux.

2 Some Commands to Warm Up

When you open the shell you see the command prompt or command line, which is waiting for your command.
For example, typing

pwd

shows you the current directory, for example, somehting like

/home/studente16

Similar to other operating systems, the filesystem of Linux is organized into directories or folders, in a
tree-like structure. The root directory is the /, which has several subdirectories, one of which (in the above
example) is the directory home, which n turn contains the directory stedente16.

To see the list of files in the current directory type

ls

Without any parameters, the command ls shows the contents of the current directory. To see the contents
of another directory, use

ls directory

For example

ls /

shows the contents of the root directory and

ls /home

shows the contents of directory /home.
There are two ways to specify a directory. One is to specify an absolute path way, as we did here. An

absolute path specifies the complete directory path starting from the root, so it starts with /. The second
way is to specify a relative path. A relative path is with respect to the current directory. For example, if the

1

current directory is /home/studente16, then typing

ls Music

shows the list of files in directory

/home/studente16/Music

and

ls Music/Rock

shows the list of files in directory

/home/studente16/Music/Rock

This example shows the typical structure of a command. It starts with the program that we run (here
ls), and it may have zero or more arguments, separated by one or more space characters. Some of the
arguments are options that we pass to the program, they usually start with a -, and change the behavior of
the program; we will see them later.

Let’s return to our discussion on directories. Each directory, has two special directories: . is the current
directory. .. is the directory one level up. For example, typing

ls .

shows the contents of the current directory, similarly to just typing ls. (. is useful for other commands.)
To type the contents of the directory one level up (i.e., one level closer to the root), type

ls ..

This will show the contents of /home, and

ls ../matlab

shows the contents of /home/matlab.
To change the current directory one can use the command cd. The syntax is

cd directory

where again directory can be absolute or relative. For example, typing

ls ..

has the same result as typing

ls /home

and makes /home the current directory, something that we can verify with pwd, as we saw in the beginning.
To get help for a command you can use the command man (for manual). For example,

man ls

will show the manual page for command ls. You can use the space key to move to the next page, and q to
exit.

man pwd

will show the manual page for pwd, whereas

man cd

will produce an error. The reasong is that cd is what we call an internal command, and its manual page can
be found somewhere else1

1It can be found if reading the manual page of the bash shell, by typing man bash. The discussion about what is a shell is

2

Let us go back to the command ls. Except for parameters, we can also pass to a command some options,
which change the behavior of the program. Options are usually specified by putting a -. Try to type

ls -l

The option -l says to the command ls that we want a long listing. Let us now explain the information from
this listing. Each line corresponds to a file that exists in the directory and looks like this:

drwxrw-r– 1 studente16 studente16 4096 Oct 2 06:07 Music/

Let us explain the information here. The first character gives information about the type of the file. d means
that the file is a directory, - means that the file is a regular file. The next 9 characters, show the permissions
of the files and we will talk about them in Section 3. You can ignore the number after that (here 1). Then
next two fields are the owner of the file and his group; we will talk more about it in Section 3, as well. Next
we have the size of the file in bytes, then the date and time that it was last modified, and finally the name
of the file (Music). Because the file is a directory file it also the / at the end, something also indicated in
the beginning of the line with the d, as we said.

3 Users, Groups, and Permissions

Linux has a system of users and permissions. When a user logs in with her password she has some permissions,
that is, she can edit some files or some directories but not others. Furthermore a user can belong to one or
more groups, but we will not deal with this here. Each file belongs to a user. When executing the command
ls -l and we obtain the list

drwxr-x–- 1 studente16 studente16 4096 Oct 2 06:07 Music/

then the third field (studente16) is the name of the user who owns the directory Music. (In our case there
exists also a group with the name studente16 to which the directory Music belongs and this is indicated by
the fourth field.)

Each file has some permissions, which are given by the first field. As we said, the first character determines
the type of the file. The other nine characters define the permissions on the file. They are grouped into three
groups of three characters: the first group defines the permissions of the owner of the file, the second group
defines the permissions of the users that belong to the group of the file (the one given by the fourth field),
and the third, the permissions for everyong else. In each group there are three characters, which indicate
whether the corresponding set of users has a permission or not. They are r, w, x. When we see the character
then this means that the corresponding group of users can read/write/execute the file. For instance, in the
above example, you (the user studente16) can read the file, write (i.e., modify it), and execute it. Execute,
for a regular file, means to run it as a program. For a directory it means that one can enter there and access
files there; usually for directories either both r and x are active or none. Users who also belong to the group
studente16 have the rights to read the directory Music but not modify it; for example they can enter there
but there cannot create a new file there. Finally, all the other users cannot access at all the directory Music.

An owner of a file can change its permissions using the command chmod. You can use the man page for
more information.

Finally, there exists a super user, called root, who is typically the administrator of the system. The
administrator has the right to read everyone’s files, change the permissions, and so on. Typically, unless one
installs her own version of Linux, she does not have super-user privileges.

4 Simple File Operations

Let us now see some simple ways to operate on files. First we create a new file by typing

man ls > help.txt

a more advanced topic and we will not talk about it here.

3

This command creates a new file, which contains the manual page of the command ls. It uses what is
called redirection and says to the system to send the output instead of the screen to a file called help.txt.
Redirection commands turn out to be very useful, and we will study them more in Section 5.

Type ls -l to see the newly created file. To check its contents one can use the the cat command:

cat help.txt

which simply shows the contents of the file. Here it is more useful to use the command

more help.txt

which can be used for longer files, and displays one window screen at a time.
Some commands allow to read parts of the file.

head help.txt

shows the top 10 lines of the file. One can change the default value of 10 by passing it as a parameter. For
instance,

head -15 help.txt

will show the top 15 lines. Similarly, to show the bottom 15 lines you can use

tail -15 help.txt

Often one would like to find a particular piece of text. For this there exists the command grep. The
format is

grep text file

For example,

grep long help.txt

shows all the lines that contain the word long. Note that if the text contains some space then we need
to enclose it into quotes, otherwise the command will take the second word as the filename. Therefore, to
search for long listing we should type

grep "long listing" help.txt

The command wc (stands for word count) shows some statistics. If we type

wc help.txt

we obtain

210 939 7689 help.txt

which tells us that the file help.txt has 210 lines, 939 words, and 7689 characters. wc can take several
parameters, one of whcih is the -l, which stands for “lines.” If you type

wc -l help.txt

the program returns just the first number, the number of lines.
There are of course a variety of editors usually installed. In our system we have the gedit. Therefore,

gedit help.txt

creates a new window with an editor, which has opened help.txt.
To copy a file you use

cp source destination

4

Try

cp help.txt newhelp.txt

and by using the ls command you can see the new file created. cp can be also used to copy a file from one
directory to another.

To rename a file you can use the mv command, similarly to the cp. Thus,

mv newhelp.txt myhelp.txt

renames the file newhelp.txt that we had created to myhelp.txt. mv can be also used to move files from
one directory to another.

To remove a file use the rm command:

rm myhelp.txt

Be careful, because usually there is no way to undo.

5 Redirection

In the previous section we saw that the command

man ls > help.txt

instead of sending the output to the screen it redirects it to a file.
Every program when it runs has what is called the standard input, which it can use to obtain some

input, and the standard output, which is where it can send the output. By default, the standard input is the
keyboard and the standard output is the window in the computer screen. When, later in Python, we use
the print command to print something to the screen, it is being sent to the standard output.

The user of a program can change this default behavior, as we did previously. We use > to say to the
program being executed (actually we say this to the operating system) to set the standard output to the file
specified. If the file does not exist then a new file will be created, with content the output of the program.
If the file already exists, then it will get overwritten. (Be careful! This is a common way to lose by mistake
a file that you needed!)

Another way to redirect the output is using >>. If the file does not exist, then is has the same behavior
as >. However, if the file exists, it opens and it appends the output to it. Try

echo Linux is cool!

which returns

Linux is cool!

The command echo simply prints to the standard output whatever is passed as an arguments. (It is not
very useful from the command line and it is mostly used inside programs to print something.) Now try

echo Linux is cool! > linux.txt

We now created a file linux.txt containing the text Linux is cool!, as we can check using cat.

echo Linux is fun! > linux.txt

We have now overwrited the file and now linux.txt contains the phrase Linux is fun!. If now we type

echo Linux is useful! >> linux.txt

we can check and see that we have added the phrase Linux is useful! at the end of linux.txt.
We can also redirect the standard input using <. Let us see some examples. Many of the commands that

we have seen take a file as a parameter (cat, head, tail, wc, etc.). If we do not specify the file, then the
programs take the input from the standard input. To see this, type simply

5

cat

Since the default standard input is the keyboard, the program waits for you to type. Type something and
press <Enter>. You see that whatever you typed gets at the output. You can continue typing, and everything
gets repeated. Thus, without any arguments, cat simply copies the standard input to the standard output.
To finish, press together <Ctrl>-D, which says to cat that we reached the end of the file. We can now
redirect the input and type

cat < linux.txt

We see as output the content of linux.txt. Note that the behavior is the same as if we type

cat linux.txt

However, what happens is different. In this case, it is the program cat that sees that there is an argument,
takes it, opens the file with that name, and sends the content to the standard output. Instead, in the case
that we use <, the program cat does not even see any argument! When you type the command, the operating
system sees the < linux.txt, and runs the program cat, after setting the standard input to come from the
file instead of the keybord.

It is also possible to combine the redirections. For example, just running

cat < linux.txt > unix.txt

simply copies the file linux.txt to unix.txt.
There is also another useful redirection which is called the pipe and is specified by |. A pipe take

command in both sides, and sends the standard output of the command on the left side to the standard
input of the command of the right one. Therefore, if you try

man ls | grep long

you will get as output the lines of the ls command that contain the text long. (Recall that if you pass
two arguments, grep searches for the text specified in the first one to the file specified in the second one.
Similarly to cat, if you give only one argument, then grep will search for the text that you gave into the
standard input.) You can also chain more than two redirections. For example, typing

man ls | grep long | wc -l

will display the number of lines in the manual page of ls that contain the text long.

6 A Few More Hints

The following are also useful when working the Linux shell.
The command clear clears the shell window.
Previous commands: You can go to the previous commands and move between them using the up (↑)

and down (↓) keys.
Autocomplte: When you start typing a file, pressing <Tab> it autocompletes the filename.
Break: If you want to stop a program running you use <Ctrl>-C. Try to close a program normally, as

with this you may loose data if they have not been saved, but sometimes it is needed.
As we said, arguments are passed to a program and they are separated with one or more <space>

characters. But what if we want to pass an argument that has a space? We did that before, when we used

grep "long listing" help.txt

If we put some text into quotes then it is taken as a single argument. Thus, the previous command passes
two arguments to grep.

Except for the regular characters (letters, numbers, etc.), which are the characters that we can see in the
screen, there are also special characters, such as the tab or the new line characters. To show to a program

6

that we want these characters, we use what is called an escape sequence. Escape sequences are words that
start with the backslash \. The main ones that we will need are

• \t: Tab. We will use the tab character very often to separate different fields in a file.

• \n: New line. It is an invisible character that says that a line finishes and a new line must start. Thus,
it exists in the end of every line.

• \r: Return character. There is a difference with files that are created in Linux and Windows systems.
In the former the end-of-line character is, as we said, \n. Instead, files created in Windows, the end-of-
line is marked by the combination of two characters, \r\n. Sometimes when you write programs you
must make sure you handle both cases, although often this is taken care by the programming language.

• \\: This is the standard \ character.

• \": This is the quotes character; we will see right away why we need it.

In Linux we use two types of quotes, double quotes (") and single quotes (’). The difference has to do
with the escape characters. The double quotes recognize the escape characters, whereas the single do not.2

Thus, if we want to search a file names.txt for Maria<Tab>Greco we should use

grep "Maria\tGreco" names.txt

If instead we use the single quotes

grep ’Maria\tGreco’ names.txt

we search for all lines containing the text Maria\tGreco. If we want to search for double quotes, we need to
either use single quotes, or to escape the double quotes. Thus, to search file data mining.txt for What is

"data"?

grep "What is \"data\"?" "data mining.txt"

or

grep ’What is "data"?’ "data mining.txt"

Notice that the file data mining.txt has a space inside, so we put it into quotes to pass it as one argument
to grep. (We can use, of course, either double or single quotes.) For the text string, in the second case we
just type the quotes without needing to escape them, as we did when we use the double quotes.

Sometimes we may want to search for a more complicated pattern. For such searches we can use a regular

expression. For instance, the command

grep -P ’\b[A-Z]6\d\d[A-Z]\d\d[A-Z]\d3[A-Z]\b’ filename

will search for an italian fiscal code (codice fiscale) into the file provided: It searches for a word that start
with six capital letters, followed by two digits, then one more capital letter, and so on. The parameter -P

informs grep that the argument passed should be interpreted as a (Perl-type) regular expression. Regular
expressions are very powerful and can express much more complicated patterns. For more information on
regular expressions, you can check online, for example at http://www.regular-expressions.info.

7 Some Simple Analysis

We will now see how we can use Linux tools to do some simple data-mining tasks. Let us start by downloading
a file that we will be using. It can be found here:

http://aris.me/contents/teaching/data-mining-ds-2016/protected/beers.txt

2Note that this is different from what happens in Python. In Python, both of them are equivalent, and they behave like the

double quotes in Linux, although there is a way to make them behave like the Linux:w single quotes.

7

http://www.regular-expressions.info

One can download it by using a web browser. Instead we can download it with the command wget. wget
allows to download multiple files, follow links and so on, so it can be very useful. Here we will just use it to
download our file. Run

wget –user username –password pass url

where username and pass are the username and password that we said in class (needed because the file is
password protected), and url is the address of the file written above. After you wait a bit the file will be
downloaded.

After we download it we can get some information. Using head beers.txt we can see that it contains
two fields separated by tab character: a name of the beer and a score. To make sure that the fields are
separated by the tab character, and not spaces, we can use the option -T of cat, which prints ˆI whenever
it sees a tab. We don’t want to do it to the entire file, so we use a pipe.

head beers.txt | cat -T

Try also

wc -l beers.txt

and see that the file has about 3 million beer ratings.
Let us assume that we want to find the 10 beers with the highest number of ratings. How can we do it?

We will comnine three commands. sort orders (alphabetically or numerically) the lines of the input. uniq

removes duplicate lines and produces counts if asked. cut extracts one or more fields.
Let us start with sort. If we run

sort beers.txt

we obtain a list of the beers sorted alphabetically. (Press <Ctrl>-C to stop.) We can combine the output
with the command uniq. This command takes the input and removes contiguous lines that are the same,
leaving only one copy of the line. In addition, if we add the option -c, we obtain also the number of times
that the line was repeated. By sorting the beers, we have put all the ratings of the same beer next to each
other, thus with uniq we can see how many repetitions we have.

However there is a small issue: Two ratings that have different scores will lead to different lines, so uniq

will not be able to distinguish them. Thus we would like to obtain only the beer name and ingore the score.
For this we use the cut command, with which we can extract the first field:

cut -f 1 beers.txt

takes the input and extracts the first field (assumes that the fields are separated with the tab character, as
in our case) and sends it to the output.

We can now combine all these commands:

cut -f 1 beers.txt | sort | uniq -c

The output is the list of beers, with the number of times that each appears on the left. We want the top-10
beers, so we can sort once again (numerically) and obtain the top-10. The full command is the following:

cut -f 1 beers.txt | sort | uniq -c | sort -nr | head

We have passed two options to the second sort by specifying -nr. The option -n says that we want to order
the lines numerically (so that 10 appears after 9). The option -r (we can specify either -n -r or -nr) says
that we want to do reverse sorting, so that we obtain the order from the highest to the smallest. The final
output gives us the values that we wanted.

8

8 What’s Next

We just saw the very basics. There are several other commands that one can use: curl, sed, awk, paste,
join, variants of grep, ... You can look at the manual pages for these commands or search online.

We will not cover them, as we will start using Python to do more advanced operations, although knowing
them allows us sometimes to perform some operations without spending time writing an entire program.

9

	Introduction
	Some Commands to Warm Up
	Users, Groups, and Permissions
	Simple File Operations
	Redirection
	A Few More Hints
	Some Simple Analysis
	What's Next

