24.3  Dijkstra’s algorithm 595

straints; that is, edge (u, v) would indicate that job u must be performed before
job v. Weights would then be assigned to vertices, not edges. Modify the DAG-
SHORTEST-PATHS procedure so that it finds a longest path in a directed acyclic
graph with weighted vertices in linear time.

24.2-4
Give an efficient algorithm to count the total number of paths in a directed acyclic
graph. Analyze your algorithm.

24.3 Dijkstra’s algorithm

Dijkstra’s algorithm solves the single-source shortest-paths problem on a weighted,
directed graph G = (V, E) for the case in which all edge weights are nonnegative.
In this section, therefore, we assume that w(u, v) > 0 for each edge (u,v) € E. As
we shall see, with a good implementation, the running time of Dijkstra’s algorithm
is lower than that of the Bellman-Ford algorithm.

Dijkstra’s algorithm maintains a set S of vertices whose final shortest-path
weights from the source s have already been determined. The algorithm repeat-
edly selects the vertex u € V — S with the minimum shortest-path estimate, adds u
to S, and relaxes all edges leaving u. In the following implementation, we use a
min-priority queue Q of vertices, keyed by their d values.

DUKSTRA(G, w, )

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S<«0

3 Q <« VI[G]

4 while Q # 0

5 do u < EXTRACT-MIN(Q)
6 S <« S U {u}

7 for each vertex v € Adj[u]
8 do RELAX (u, v, w)

Dijkstra’s algorithm relaxes edges as shown in Figure 24.6. Line 1 performs the
usual initialization of d and 7 values, and line 2 initializes the set S to the empty
set. The algorithm maintains the invariant that Q = V — S at the start of each
iteration of the while loop of lines 4-8. Line 3 initializes the min-priority queue Q
to contain all the vertices in V; since S = { at that time, the invariant is true
after line 3. Each time through the while loop of lines 4-8, a vertex u is extracted
from Q = V — S and added to set S, thereby maintaining the invariant. (The first
time through this loop, u = s.) Vertex u, therefore, has the smallest shortest-path
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Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates are shown within the vertices, and shaded edges indicate predecessor val-
ues. Black vertices are in the set S, and white vertices are in the min-priority queue Q =V — S,
(a) The situation just before the first iteration of the while loop of lines 4-8. The shaded vertex has
the minimum d value and is chosen as vertex u in line 5. (b)—(f) The situation after each successive
iteration of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next
iteration. The d and 7 values shown in part (f) are the final values.

estimate of any vertex in V — S. Then, lines 7-8 relax each edge (u, v) leaving u,
thus updating the estimate d[v] and the predecessor 7 [v] if the shortest path to v
can be improved by going through u. Observe that vertices are never inserted
into Q after line 3 and that each vertex is extracted from Q and added to § exactly
once, so that the while loop of lines 4-8 iterates exactly |V| times.

Because Dijkstra’s algorithm always chooses the “lightest” or “closest™ vertex
in V — S to add to set S, we say that it uses a greedy strategy. Greedy strategies
are presented in detail in Chapter 16, but you need not have read that chapter to
understand Dijkstra’s algorithm. Greedy strategies do not always yield optimal
results in general, but as the following theorem and its corollary show, Dijkstra’s
algorithm does indeed compute shortest paths. The key is to show that each time a
vertex u is added to set S, we have d[u] = §(s, u).
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Figure 24.7 The proof of Theorem 24.6. Set S is nonempty just before vertex « is added to it. A

. p .
shortest path p from source s to vertex u can be decomposed into s By y £ u, where y is

the first vertex on the path that is not in S and x € S immediately precedes y. Vertices x and y are
distinct, but we may have s = x or y = u. Path p may or may not reenter set S.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)

Dijkstra’s algorithm, run on a weighted, directed graph G = (V, E) with non-
negative weight function w and source s, terminates with d[u] = (s, u) for all
vertices u € V.

Proof We use the following loop invariant:

At the start of each iteration of the while loop of lines 4-8, d[v] = (s, v)
for each vertex v € S.

It suffices to show for each vertex u € V, we have d[u] = (s, u) at the time
when u is added to set S. Once we show that d[u] = §(s, u), we rely on the
upper-bound property to show that the equality holds at all times thereafter.

Initialization: Initially, S = ¢, and so the invariant is trivially true.

Maintenance: We wish to show that in each iteration, d[u] = §(s,u) for the
vertex added to set S. For the purpose of contradiction, let u be the first vertex
for which d[u] # §(s, u) when it is added to set S. We shall focus our attention
on the situation at the beginning of the iteration of the while loop in which u
is added to S and derive the contradiction that d[u] = (s, u) at that time by
examining a shortest path from s to . We must have u # s because s is the
first vertex added to set S and d[s] = §(s, s) = O at that time. Because u # s,
we also have that S # ) just before u is added to S. There must be some path
from s to u, for otherwise d[u] = 8(s, u) = oo by the no-path property, which
would violate our assumption that d[u] # &(s,u). Because there is at least
one path, there is a shortest path p from s to u. Prior to adding u to S, path p
connects a vertex in S, namely s, to a vertex in V — S, namely u. Let us consider
the first vertex y along p such that y € V — S, and let x € S be y’s predecessor.

Thus, as shown in Figure 24.7, path p can be decomposed as s Bxoy L.
(Either of paths p; or p, may have no edges.)
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We claim that d[y] = §(s, y) when u is added to S. To prove this claim,
observe that x € S. Then, because u is chosen as the first vertex for which
d[u] # (s, u) when it is added to S, we had dlx] = 8(s,x) when x was
added to S. Edge (x, y) was relaxed at that time, so the claim follows from the
convergence property.

We can now obtain a contradiction to prove that d[u] = §(s, u). Because y oc-
curs before u on a shortest path from s to u and all edge weights are nonnegative
(notably those on path p,), we have 3(s,y) <8(s, u), and thus

dlyl] = 68(s,y)
< (s, u) (24.2)
< dlu] (by the upper-bound property) .

But because both vertices 1 and y were in V — S when u was chosen in line 5,
we have d[u] < d[y]. Thus, the two inequalities in (24.2) are in fact equalities,
giving

dly] =6(s,y) =8(s,u) =d[u] .

Consequently, d[u] = §(s, u), which contradicts our choice of u. We conclude
that d[u] = 6(s, u) when u is added to S, and that this equality is maintained at
all times thereafter.

Termination: At termination, QO = ¥ which, along with our earlier invariant that
Q =V — S, implies that S = V. Thus, d[u] = d(s, u) for all verticesu € V. =

Corollary 24.7
If we run Dijkstra’s algorithm on a weighted, directed graph G = (V, E) with
nonnegative weight function w and source s, then at termination, the predecessor
subgraph G is a shortest-paths tree rooted at s.

Proof Immediate from Theorem 24.6 and the predecessor-subgraph property. m

Analysis

How fast is Dijkstra’s algorithm? It maintains the min-priority queue Q by call-
ing three priority-queue operations: INSERT (implicit in line 3), EXTRACT-MIN
(line 5), and DECREASE-KEY (implicit in RELAX, which is called in line 8). IN-
SERT is invoked once per vertex, as is EXTRACT-MIN. Because each vertex v eV
is added to set S exactly once, each edge in the adjacency list Adj[v] is examined in
the for loop of lines 7-8 exactly once during the course of the algorithm. Since the
total number of edges in all the adjacency lists is |E |, there are a total of |E]| itera-
tions of this for loop, and thus a total of at most |E| DECREASE-KEY operations.
(Observe once again that we are using aggregate analysis.)
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im, : The running time of Dijkstra’s algorithm depends on how the min-priority queue
1ich is implemented. Consider first the case in which we maintain the min-priority
was queue by taking advantage of the vertices being numbered 1 to |[V|. We simply
the store d[v] in the vth entry of an array. Each INSERT and DECREASE-KEY opera-

tion takes O (1) time, and each EXTRACT-MIN operation takes O (V') time (since
we have to search through the entire array), for a total time of O (V2+E) = O (V?).

If the graph is sufficiently sparse—in particular, £ = o(V?/1gV)—it is practi-
cal to implement the min-priority queue with a binary min-heap. (As discussed in
Section 6.5, an important implementation detail is that vertices and corresponding
heap elements must maintain handles to each other.) Each EXTRACT-MIN opera-
1.2) tion then takes time O(Ig V). As before, there are |V| such operations. The time
to build the binary min-heap is O (V). Each DECREASE-KEY operation takes time
O(lg V), and there are still at most |E| such operations. The total running time is

[ive

;ei’ therefore O ((V + E)1gV), which is O(E 1g V) if all vertices are reachable from
’ the source. This running time is an improvement over the straightforward 0(V?)-

time implementation if £ = o(V?/1g V).
We can in fact achieve a running time of O(V 1gV + E) by implementing the
min-priority queue with a Fibonacci heap (see Chapter 20). The amortized cost
1de of each of the |V | EXTRACT-MIN operations is O (IgV'), and each DECREASE-
L at KEY call, of which there are at most |E|, takes only O (1) amortized time. His-
torically, the development of Fibonacci heaps was motivated by the observation
hat that in Dijkstra’s algorithm there are typically many more DECREASE-KEY calls
| : than EXTRACT-MIN calls, so any method of reducing the amortized time of each
DECREASE-KEY operation to o(lg V) without increasing the amortized time of
EXTRACT-MIN would yield an asymptotically faster implementation than with bi-

ith nary heaps.

50T Dijkstra’s algorithm bears some similarity to both breadth-first search (see Sec-

tion 22.2) and Prim’s algorithm for computing minimum spanning trees (see Sec-

tion 23.2). It is like breadth-first search in that set S corresponds to the set of black

= vertices in a breadth-first search; just as vertices in S have their final shortest-path

weights, so do black vertices in a breadth-first search have their correct breadth-

first distances. Dijkstra’s algorithm is like Prim’s algorithm in that both algorithms

use a min-priority queue to find the “lightest” vertex outside a given set (the set S

1I- in Dijkstra’s algorithm and the tree being grown in Prim’s algorithm), add this ver-

iy tex into the set, and adjust the weights of the remaining vertices outside the set
accordingly.
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Exercises

24.3-1

Run Dijkstra’s algorithm on the directed graph of Figure 24.2, first using vertex s
as the source and then using vertex z as the source. In the style of Figure 24.6,
show the d and 7 values and the vertices in set S after each iteration of the while
loop.

24.3-2

Give a simple example of a directed graph with negative-weight edges for which
Dijkstra’s algorithm produces incorrect answers. Why doesn’t the proof of Theo-
rem 24.6 go through when negative-weight edges are allowed?

24.3-3
Suppose we change line 4 of Dijkstra’s algorithm to the following.

4  while |Q] > 1

This change causes the while loop to execute |V | — 1 times instead of |V | times.
Is this proposed algorithm correct?

24.3-4

We are given a directed graph G = (V, E) on which each edge (1, v) € E has an
associated value r(u, v), which is a real number in the range 0 < r(«, v) < | that
represents the reliability of a communication channel from vertex u to vertex v. We
interpret 7 (1, v) as the probability that the channel from u to v will not fail, and we
assume that these probabilities are independent. Give an efficient algorithm to find
the most reliable path between two given vertices.

24.3-5
Let G = (V,E) be a weighted, directed graph with weight function w
E — {1,2,..., W} for some positive integer W, and assume that no two vertices

have the same shortest-path weights from source vertex s. Now suppose that we
define an unweighted, directed graph G’ = (V U V', E’) by replacing each edge
(u,v) € E with w(u, v) unit-weight edges in series. How many vertices does G’
have? Now suppose that we run a breadth-first search on G’. Show that the order
in which vertices in V are colored black in the breadth-first search of G’ is the
same as the order in which the vertices of V are extracted from the priority queue
in line 5 of DIJKSTRA when run on G.

24.3-6
Let G = (V,E) be a weighted, directed graph with weight function w
E — {0, 1,..., W} for some nonnegative integer W. Modify Dijkstra’s algorithm

to compute the shortest paths from a given source vertex s in O(WV + E) time.
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24.3-7

Modify your algorithm from Exercise 24.3-6 to run in O((V + E )1g W) time.
(Hint: How many distinct shortest-path estimates can there be in V' — § at any
point in time?)

24.3-8

Suppose that we are given a weighted, directed graph G = (V, E) in which edges
that leave the source vertex s may have negative weights, all other edge weights
are nonnegative, and there are no negative-weight cycles. Argue that Dijkstra’s
algorithm correctly finds shortest paths from s in this graph.

24.4 Difference constraints and shortest paths

Chapter 29 studies the general linear-programming problem, in which we wish to
optimize a linear function subject to a set of linear inequalities. In this section,
we investigate a special case of linear programming that can be reduced to finding
shortest paths from a single source. The single-source shortest-paths problem that
results can then be solved using the Bellman-Ford algorithm, thereby also solving
the linear-programming problem.

Linear programming

In the general linear-programming problem, we are given an m X n matrix A,
an m-vector b, and an n-vector c. We wish to find a vector x of n elements that
maximizes the objective function 3 !_ c;x; subject to the m constraints given by
Ax < b.

Although the simplex algorithm, which is the focus of Chapter 29, does not
always run in time polynomial in the size of its input, there are other linear-
programming algorithms that do run in polynomial time. There are several rea-
sons that it is important to understand the setup of linear-programming problems.
First, knowing that a given problem can be cast as a polynomial-sized linear-
programming problem immediately means that there is a polynomial-time algo-
rithm for the problem. Second, there are many special cases of linear programming
for which faster algorithms exist. For example, as shown in this section, the single-
source shortest-paths problem is a special case of linear programming. Other prob-
lems that can be cast as linear programming include the single-pair shortest-path
problem (Exercise 24.4-4) and the maximum-flow problem (Exercise 26.1-8).

Sometimes we don’t really care about the objective function; we just wish to find
any feasible solution, that is, any vector x that satisfies Ax < b, or to determine
that no feasible solution exists. We shall focus on one such feasibility problem.




