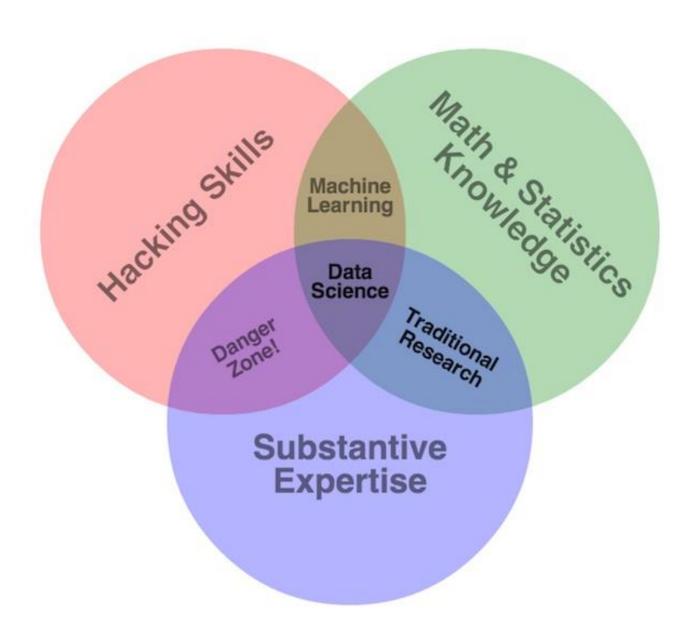
DATA MINING INTRO LECTURE

Introduction

Instructors

Aris (Aris Anagnostopoulos)


ChaTo (Carlos Castillo)



Yiannis (Ioannis Chatzigiannakis)

Boh...

From Wikipedia:

Data science incorporates varying elements and builds on techniques and theories from many fields, including signal processing, mathematics, probability models, machine learning, computer programming, statistics, data engineering, pattern recognition and learning, visualization, uncertainty modeling, data warehousing, and high performance computing with the goal of extracting meaning from data and creating data products.

Applications

Applications in a lot of areas:

Computer science

Biology

Epidemiology

Medicine

Social sciences

Politics

. . .

Let's see what we can do with data science!

Politics – Nate Silver

Politics – Obama campaign

Obama performed a targeted campaign.

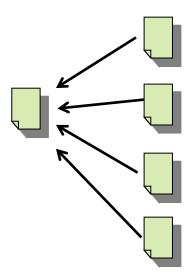
They gathered data and demographic info from voters

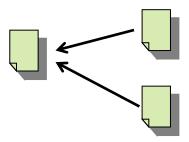
They controlled tweets

They would send related messages to voters

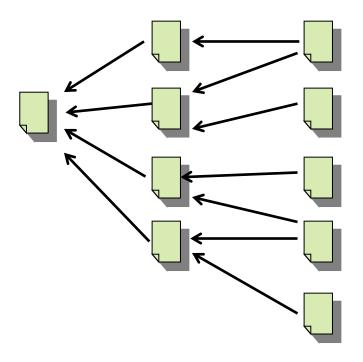
Recommender systems

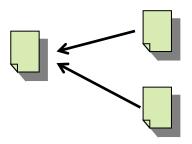
You buy something in Amazon and they propose other items you may be interested in.

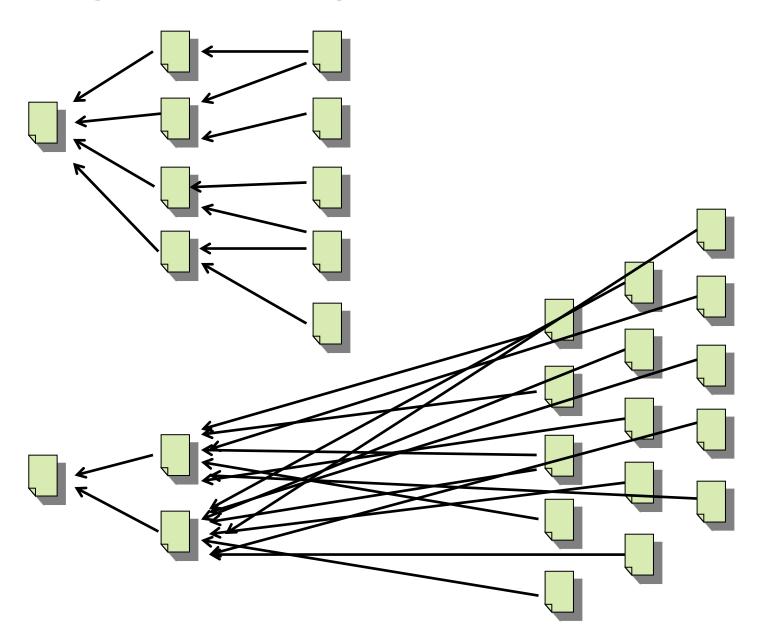

You watch youtube videos, it will recommend others.


You make a google query, it will propose others.

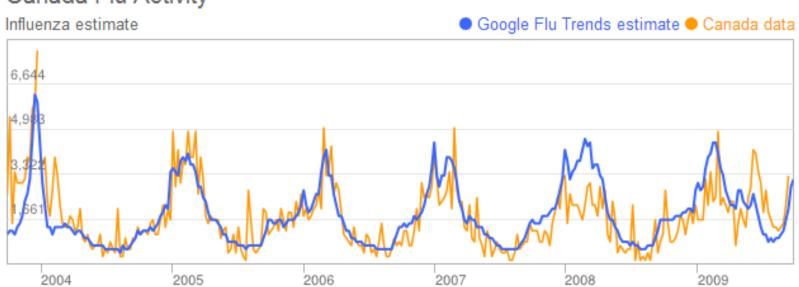
How do they do it?


(They analyze what previous **similar** users have done!)


Google and PageRank



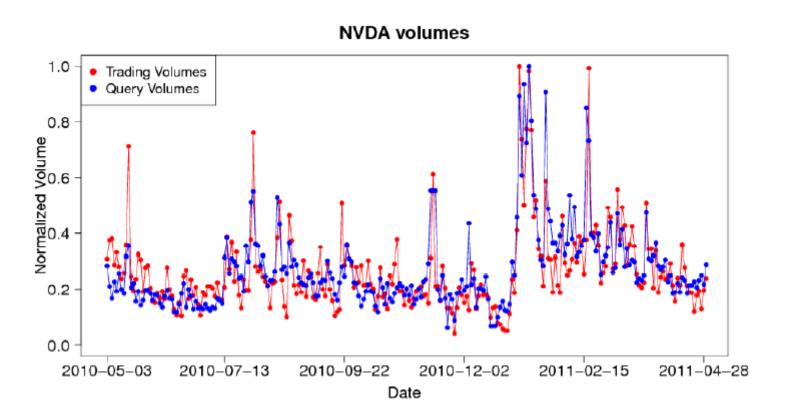
Google and PageRank



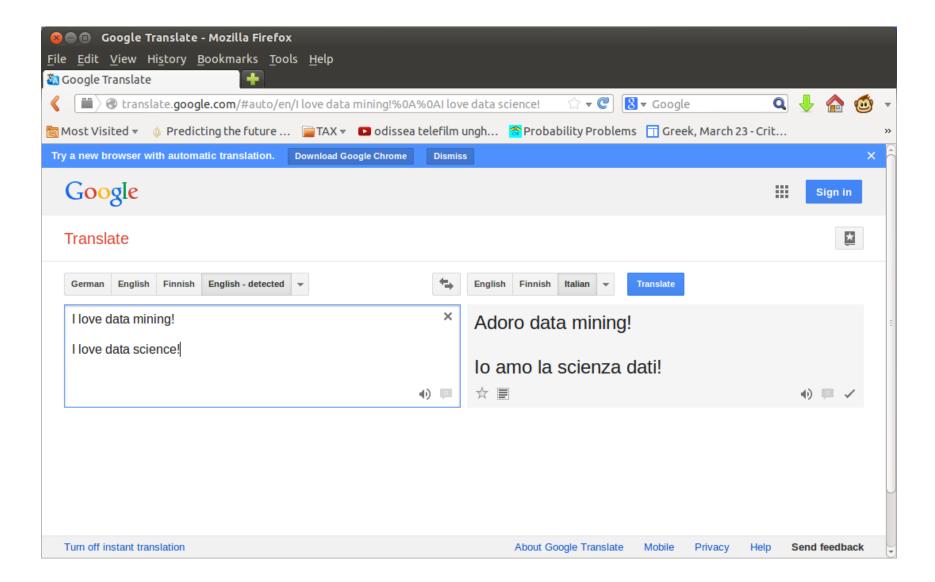
Google and PageRank

Google flu

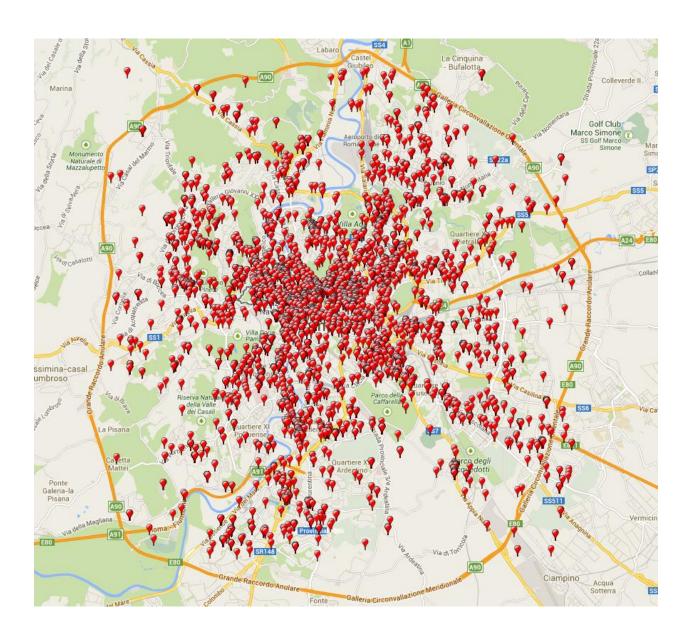
Canada Flu Activity



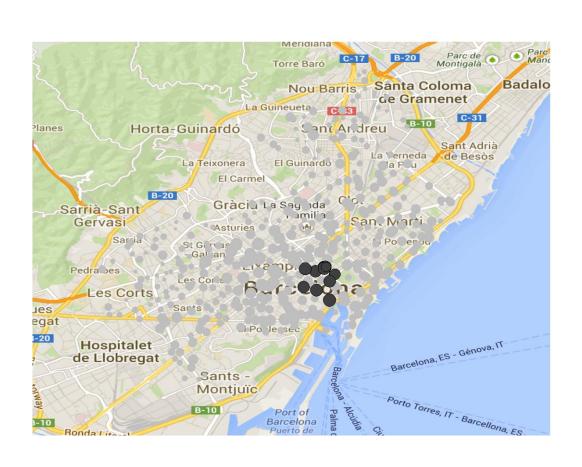
Canada: Influenza-like illness (ILI) data provided publicly by the Public Health Agency of Canada.


Google and stockmarket

Web Search Queries Can Predict Stock Market Volumes


Ilaria Bordino¹, Stefano Battiston², Guido Caldarelli^{3,4,5}, Matthieu Cristelli^{3*}, Antti Ukkonen¹, Ingmar Weber¹

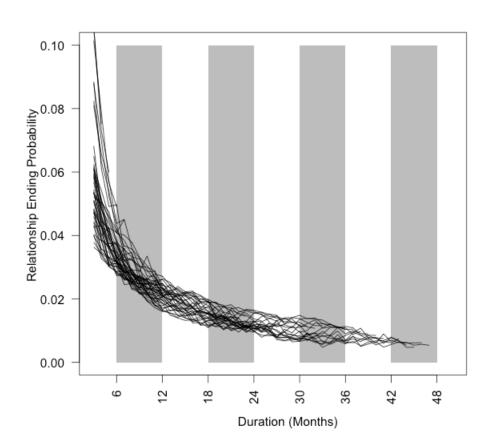
Google translate



- People tweet about anything...
- Tweets provide a LOT of info
- Can we use it to obtain info about places, events, etc.?

Event detection with twitter

Psychology and Sociology


- Psychological and sociology studies have been revolutionalized with the incorporation of data science techniques
- Before based on surveys
- Now, with systems such as facebook, online games, etc. we can observe the behavior of hundreds of millions of people

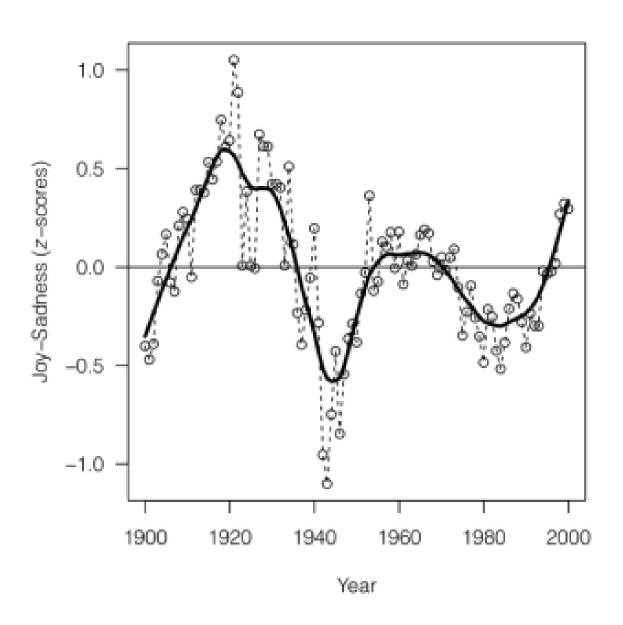
What can fb say about relationships?

Facebook Can Predict With Scary Accuracy If Your Relationship Will Last

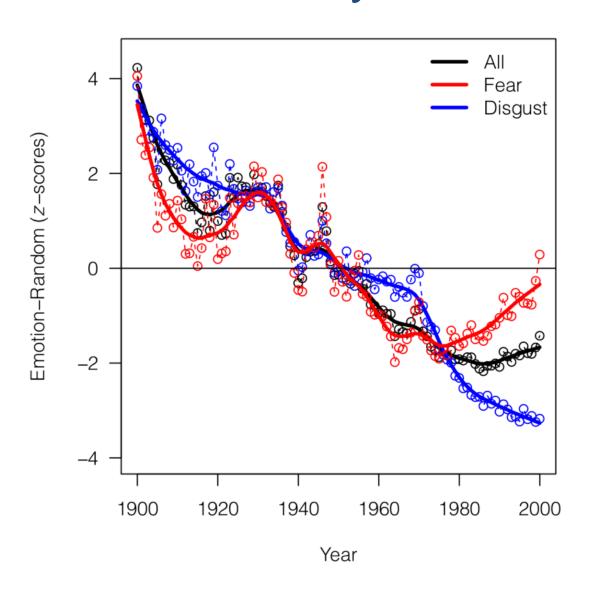
The Huffington Post | by Alexis Kleinman

Posted: 02/14/2014 10:37 am EST | Updated: 02/14/2014 4:59 pm EST

Journalism


- Journalism is based on more and more data
- Twitter
- Wikileaks

Literature and history


Researchers analyzed the words of thousands of books written in the 20th century.

The studied the words that express emotions over time.

Literature and history

Literature and history

Intro

Web page: http://aris.me

Protected:

User: *****

Pwd: *****

Register to the mailing list

Lectures

Books

What do you need to know

Office hours

Exams

Collaboration policy

What is data mining?

 After years of data mining there is still no unique answer to this question.

A tentative definition:

Data mining is the use of efficient techniques for the analysis of very large collections of data and the extraction of useful and possibly unexpected patterns in data.

Why do we need data mining?

- Really, really huge amounts of raw data!!
 - In the digital age, TB of data are generated by the second
 - Mobile devices, digital photographs, web documents.
 - Facebook updates, Tweets, Blogs, User-generated content
 - Transactions, sensor data, surveillance data
 - Queries, clicks, browsing
 - Cheap storage has made possible to maintain this data
- Need to analyze the raw data to extract knowledge

Why do we need data mining?

- Large amounts of data can be more powerful than complex algorithms and models
 - Google has solved many Natural Language Processing problems, simply by looking at the data
 - Example: misspellings, synonyms
- Data is power!
 - Today, collected data is one of the biggest assets of an online company
 - Query logs of Google
 - The friendship and updates of Facebook
 - Tweets and follows of Twitter
 - Amazon transactions
 - We need a way to harness the collective intelligence
 - Data are transforming many other fields: biology, sociology, marketting

The data are also very complex

- Multiple types of data: tables, time series, images, graphs, etc.
- Spatial and temporal aspects
- Interconnected data of different types:
 - From the mobile phone we can collect, location of the user, friendship information, check-ins to venues, opinions through twitter, images though cameras, queries to search engines

Example: transaction data

- Billions of real-life customers:
 - WALMART: 20 million transactions per day
 - AT&T 300 million calls per day
 - Credit card companies: billions of transactions per day.
- The point cards allow companies to collect information about specific users

Example: document data

- Web as a document repository: estimated 50 billions of web pages
- Wikipedia: 5 million english articles (and counting)
- Online news portals: steady stream of 100's of new articles every day
- Twitter: >500 million tweets every day

Example: network data

- Web: 50 billion pages linked via hyperlinks
- Facebook: 1.5 billion users
- Twitter: 300 million active users
- Instant messenger: ~1 billion users
- WhatsApp: 900 million users
- Blogs: 250 million blogs worldwide, presidential candidates run blogs

Example: genomic sequences

- http://www.1000genomes.org/page.php
- Full sequence of 1000 individuals
- 3*10⁹ nucleotides per person → 3*10¹² nucleotides
- Lots more data in fact: medical history of the persons, gene expression data

Example: environmental data

Climate data (just an example)

http://www.ncdc.noaa.gov/ghcnm/

- "A database of temperature, precipitation and pressure records managed by the National Climatic Data Center, Arizona State University and the Carbon Dioxide Information Analysis Center"
- "6000 temperature stations, 7500 precipitation stations, 2000 pressure stations"
 - Spatiotemporal data

Example: behavioral data

- Mobile phones today record a large amount of information about the user behavior
 - GPS records position
 - Camera produces images
 - Communication via phone and SMS
 - Text via facebook updates
 - Association with entities via check-ins
- Amazon collects all the items that you browsed, placed into your basket, read reviews about, purchased.
- Google and Bing record all your browsing activity via toolbar plugins. They also record the queries you asked, the pages you saw and the clicks you did.
- Data collected for millions of users on a daily basis

So, what is "Data"?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.

Objects

- Attribute is also known as variable, field, characteristic, or feature
- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

Attributes

1				
Tid	₹efund	M arital Status	Taxable Incom e	Cheat
1	Yes	Single	125K	N o
2	N o	Married	100K	N o
3	N o	Single	70K	N o
4	Yes	Married	120K	N o
5	N o	Divorced	95K	Yes
6	N o	Married	60K	N o
7	Yes	Divorced	220K	N o
8	N o	Single	85 K	Yes
9	N o	Married	75 K	N o
1 0	N o	Single	90K	Yes

Size: Number of objects

Dimensionality: Number of attributes

Sparsity: Number of populated

object-attribute pairs

Types of Attributes

There are different types of attributes

Categorical

- Examples: eye color, zip codes, words, rankings (e.g, good, fair, bad), height in {tall, medium, short}
- Nominal (no order or comparison) vs Ordinal (order but not comparable)

Numeric

- Examples: dates, temperature, time, length, value, count.
- Discrete (counts) vs Continuous (temperature)
- Special case: Binary attributes (yes/no, exists/not exists)

Numeric Record Data

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an n-by-d data matrix, where there are n rows, one for each object, and d columns, one for each attribute

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Categorical Data

 Data that consists of a collection of records, each of which consists of a fixed set of categorical attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	High	No
2	No	Married	Medium	No
3	No	Single	Low	No
4	Yes	Married	High	No
5	No	Divorced	Medium	Yes
6	No	Married	Low	No
7	Yes	Divorced	High	No
8	No	Single	Medium	Yes
9	No	Married	Medium	No
10	No	Single	Medium	Yes

Document Data

- Each document becomes a `term' vector,
 - each term is a component (attribute) of the vector,
 - the value of each component is the number of times the corresponding term occurs in the document.
 - Bag-of-words representation no ordering

	team	coach	pla y	ball	score	game	wi n	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Transaction Data

Each record (transaction) is a set of items.

TID	Item s
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

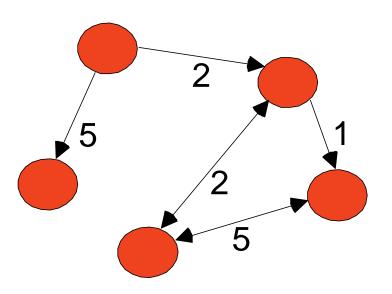
- A set of items can also be represented as a binary vector, where each attribute is an item.
- A document can also be represented as a set of words (no counts)

Sparsity: average number of products bought by a customer

Ordered Data

Genomic sequence data

Data is a long ordered string


Ordered Data

- Time series
 - Sequence of ordered (over "time") numeric values.

Graph Data

Examples: Web graph and HTML Links

Data Mining

Graph Partitioning

Parallel Solution of Sparse Linear System of Equations

N-Body Computation and Dense Linear System Solvers

Types of data

- Numeric data: Each object is a point in a multidimensional space
- Categorical data: Each object is a vector of categorical values
- Set data: Each object is a set of values (with or without counts)
 - Sets can also be represented as binary vectors, or vectors of counts
- Ordered sequences: Each object is an ordered sequence of values.
- Graph data

What can you do with the data?

 Suppose that you are the owner of a supermarket and you have collected billions of market basket data. What information would you extract from it and how would you use it?

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Product placement

Catalog creation

Recommendations

What if this was an online store?

What can you do with the data?

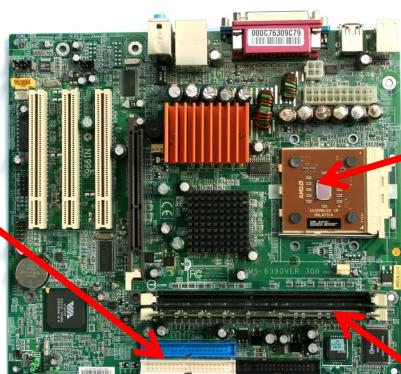
- Suppose you are a search engine and you have a toolbar log consisting of
 - pages browsed,
 - queries,
 - pages clicked,
 - ads clicked


Ad click prediction

Query reformulations

each with a user id and a timestamp. What information would you like to get our of the data?

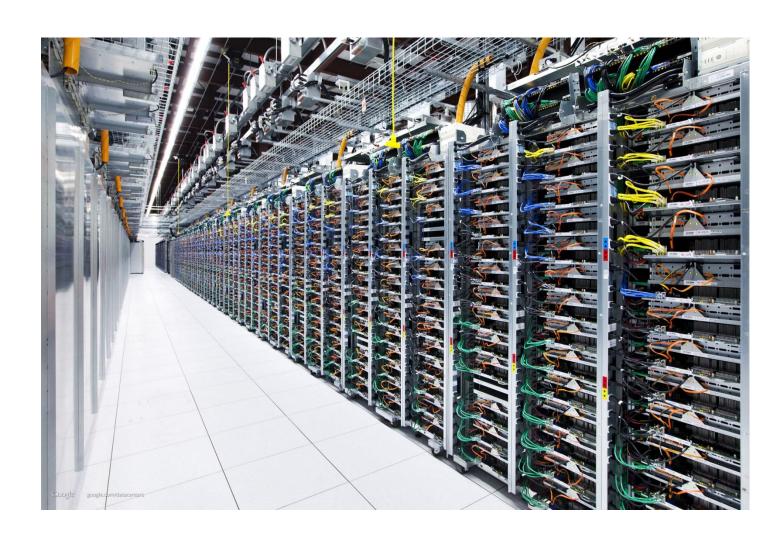
What can you do with the data?


 Suppose you are a stock broker and you observe the fluctuations of multiple stocks over time. What information would you like to get our of your data?

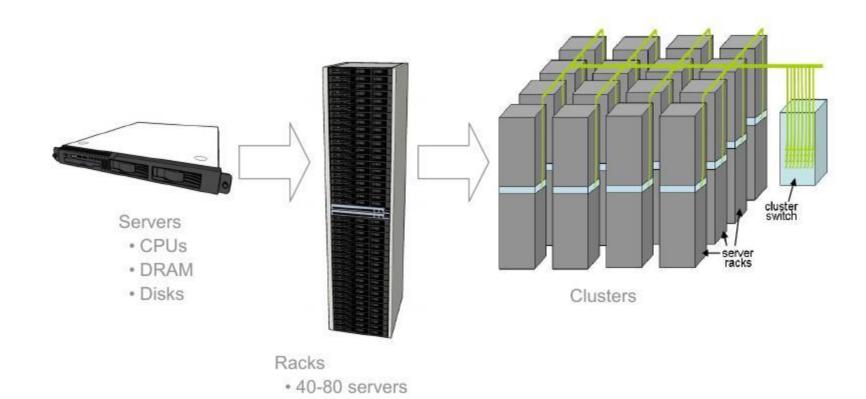
Basics of Computer Architecture

Hard Disk (HD)

Memory (RAM)


The Cloud

There exist large datacenters for storing data and making computations


• Gmail, dropbox, ...

The Cloud

The Cloud

· Ethernet switch

Some useful numbers

Operation	Time
Main memory reference	100ns
Send 2K bytes over 1 Gbps network	250ns
Read 1 MB sequentially from memory	150µs
Round trip within same datacenter	500µs
Disk seek	4ms
Read 1 MB sequentially from disk	2ms
Send packet CA->Netherlands->CA	150ms

Topics we will cover

3 Units

- Text [5 weeks]
 - Text mining
 - Document Clustering
 - Searching
- Graphs and networks [4 weeks]
 - Graph mining
 - Epidemics
- Sequences of actions [3 weeks]
 - Frequent itemset mining
 - Recommendation systems
 - Anomaly detection

Laboratory

- Via Tiburtina 205, aula 16, 12.00 15.30
- We will start a bit later, sometimes we will finish a bit earlier
- Mostly done by Yannis
- Also organized into 3 units. At the end of each unit you'll have a project
 - 30/10 13/11 (subject to change)
 - 25/11 8/12 (subject to change)
 - 16/12 12/1 (subject to change)
- Collaboration policy
- Mostly Python (but also shell programming, SQL)
- Programming: You need to work a lot on it especially in the beginning