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Consider a set of n samples x1, . . . xn, with xi ∈ R. The empirical mean of these samples is
defined as
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4
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and the empirical variance is defined as
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As a matter of fact, we often normalize the data such that the mean is 0 and then the variance
reduces to 1

n

∑n
i=1 x

2
i . In this case, we may interpret the variance as the (scaled) squared

Euclidean norm of the vector containing the samples. In general, for a vector x ∈ Rn, with
x = (x1, . . . , xn)T , ‖x‖p = p

√∑n
i=1 |xi|

p, hence for normalized data sets, Var[xi] = 1
n ‖x‖

2
2,

where x is the vector containing all the samples: x = (x1, . . . xn). We also note that xTx = ‖x‖22
for any vector x.

Let us now consider these notions in higher dimensions, that is, the samples of A(i) are no

longer numbers, but vectors in Rd. The empirical mean translates straightforwardly and is also
commonly known as the centroid. The notion of variance is not as easy to generalize. Ideally,
we would like to retain the notion that the variance quantifies the spread of the data set with
respect to the mean (or centroid). The difficulty of extending this notion is that the spread is
different along different directions. This is properly captured by the covariance matrix. Our
notion of generalization will be simpler, as we are looking for a single number, rather than
the more complex spectral structure included in the covariance matrix. Instead, we define the
directional variance along an arbitrary unit vector v as

Varv
[
A(i)

]
= E

[
(A(i) −E

[
A(i)

]
)Tv)2

]
.

Again, for normalized inputs with E
[
A(i)

]
= 0, this reduces to

Varv
[
A(i)

]
= E

[
(A(i)

Tv)2
]
.

Geometrically, this expression means that we project all points along the direction v and com-
pute the variance of a (now) 1-dimensional set of samples. To capture the entire variance of the
point set, we pick an arbitrary orthogonal basis V = {v1,v2, . . . ,vd} of Rd and compute

Var
[
A(i)

] 4
=

d∑
j=1

Var
[
(A(i)

Tvj)
2
]
.

We note that this definition is invariant under any choice of orthogonal basis, that is, for
two distinct candidates V = {v1,v2, . . . ,vd} and W = {w1,w2, . . . ,wd}, the evaluation of
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Var
[
A(i)

]
is still identical. Let us prove this. First, observe that vector vk can be expressed

as a linear combination vk =
∑d

j=1 αk,j · wj and any vector wj can be expressed as a linear

combination wj =
∑d

k=1 βj,k · vk. Notice that, because wr
Twr = 1 and wr

Twj = 0 for r 6= j,
we have that:

vk
Twj =

d∑
r=1

αk,r ·wr
Twj = αk,j

and, similarly, that

wj
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Therefore, βj,k = αk,j , so
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and for j 6= r
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Then,
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if we define x = A(i) −E
[
A(i)

]
. Summing up over all vk, we we then obtain
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using Equations (1) and (2).
As in the one dimensional case, our notion of high dimensional variance has an algebraic

interpretation. The Frobenius norm of a matrix A ∈ Rn×d is defined as

‖A‖F =

√√√√ n∑
i=1

d∑
j=1

A2
i,j .

If the centroid is equal to the origin, the squared Frobenius norm is, up to scale, equal to the
multidimensional variance, as well as the 1-means cost. To see the former, consider the basis
{ek}nk=1, where ek is the vector that is equal to 1 at the kth coordinate and 0 everywhere else.
We have

Varek
[
A(i)

]
= E

[
A(i)

Tek
]

=
1

n

n∑
i=1

A(i)
2
k

=
1

n

n∑
i=1

A2
i,k

and

‖A‖2F =
d∑

k=1

n∑
i=1

A2
i,k = n

d∑
k=1

Varek
[
A(i)

]
= Var[A]

Principal Component Analysis is all about dimensionality reduction. As a tentative step,
let us consider reducing the dimension down to 1. The main question is which direction is the
most important one. Our notion of directional variance helps us in this regard. If a direction
has extremely low directional variance, we can confidently say that the centroid (or origin if
our data are normalized) will approximate the point set well enough. The most uncertainty is
with respect to directions of high directional variance. Hence, if we are only allowed to choose
a single direction, we should choose the one with maximum directional variance. Phrased as an
optimization problem, we aim to solve the following.

max
v∈Rd,‖v‖=1

Varv
[
A(i)

]
.

Again, this has an algebraic interpretation. Specifically, the maximum directional variance is
(up to scaling) known as the squared spectral norm, where for any n by d matrix A the spectral
norm is defined as

‖A‖2 = max
v∈Rd,‖v‖2=1

‖Av‖2 = max
v∈Rd,‖v‖2=1

√√√√ n∑
i=1

(
A(i)

Tv
)2
.

The connection to algebra is deeper. We will see shortly that the vector v that induces the
spectral norm of A is an eigenvector of ATA and a right singular vector of A. The directional
variance itself is (up to scaling) also the largest eigenvalue of ATA. Let us first recall the
following definitions.

Definition 1 (Singular Vectors and Values). Let A ∈ Rn×d. Two vectors u ∈ Rn and v ∈ Rd
with unit Euclidean norm are respectively called left and right singular vectors of A if the
following two equations hold
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• Av = σu

• uTA = σvT .

σ is known as a singular value of A.

Definition 2 (Eigenvectors and Eigenvalues). Let A ∈ Rd×d. A vector v ∈ Rd with unit
Euclidean norm is an eigenvector with eigenvalue e if

• Av = σv and

• vTA = σvT .

Proposition 3. Let A be a matrix with right singular vector v and singular value σ. Then v
is an eigenvector of ATA with eigenvalue σ2.

Proof. ATAv = ATuσ = vTσ2 and vTATA = σuTA = σ2vT .

This shows that the largest eigenvalue of ATA and the squared largest singular value of A
are equivalent. Let us further show that these are equivalent to the squared spectral norm.

Theorem 4. Let A be a matrix. Then the spectral norm ‖A‖2 is equal to the largest singular
value of A.

Proof. Let v be the vector that induces the spectral norm of A. Then ‖Av‖22 = vTATAv.

Let us consider v as a linear combination of eigenvectors of ATA, that is, v =
∑d

i=1 αivi with∑d
i=1 α

2
i = 1 and {v1, . . . ,vj} being an orthogonal basis of eigenvectors of ATA. Then

vTATAv =

(
d∑
i=1

αiv
T
i

)
ATA

 d∑
j=1

αjvj


=

(
d∑
i=1

αiσiv
T
i

) d∑
j=1

αjσjv
T
j


=

d∑
i=1

α2
iv

T
i viσ

2
i +

∑
i 6=j

αiαjvi
Tvjσiσj .

Since V is an orthogonal basis vi
Tvj = 0 and vi

Tvi = 1. Hence

vTATAv =
d∑
i=1

α2
i σ

2
i ≤

d∑
i=1

α2
i max
1≤j≤d

σ2j = max
1≤j≤d

σ2j .

Theorem 4 and Proposition 3 tell us that it is sufficient to find the largest eigenvalue of
ATA and associated eigenvector to determine the maximum directional variance. Obviously,
this is a very well studied problem and we will not discuss this in detail. We will only present
a simple algorithm known as the power method.

1. Pick a random unit vector x

2. Repeat x← ATAx
‖ATAx‖2
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To analyze this algorithm, we require two steps. First, we will show that a random unit vector x
is not too far off from the target eigenvector v. Second, we show that under certain assumptions,
this method will quickly converge.

To pick a random unit vector in d dimensions, we choose d random and independent Gaussian
variables X1, . . . , Xd with mean 0 and variance 1. We then set xT = (X1, . . . , Xd) · 1√∑d

i=1X
2
i

.

Then the following holds

Lemma 5. Fix a unit vector v. For any random unit vector x, we have E
[
(xTv)2

]
≥ 1

d .

Proof. We first observe that because x is chosen uniformly at random from all unit vectors, we
may assume v to be the unit vector along the first axis, that is, vT = (1, 0 . . . , 0). Then

E
[
(xTv)2

]
= E

[
X2

1 ·
1∑d

i=1X
2
i

]
= E

 1

1 +
∑d

i=2
X2

i

X2
1

 ≥ 1

E
[
1 +

∑d
i=2

X2
i

X2
1

] =
1

1 +
∑d

i=2

E[X2
i ]

E[X2
1 ]

=
1

d

where the inequality follows from Jensen’s inequality1 and the last two equalities from the fact
that X1 and Xi (for i ≥ 2) are independent and identically distributed.

We cannot give good converge speeds of the power method in general. But if the gap
between first and second eigenvalue is small, the method works pretty well. To see this, let
x =

∑d
i=1 αivi be the initial choice of x. Let us now consider the vector x(k), that is, the

current candidate x after k iterations. We have (up to scaling)

x(k) = (ATA)kx =

d∑
i=1

αiviσ
2k
i = σ2k1 ·

(
α1v1 +

d∑
i=2

αivi

(
σi
σ1

)2k
)
.

We note that since σ21 is the largest eigenvalue, the term
∑d

i=2 αivi

(
σi
σ1

)2k
will eventually

converge to zero. The time required for this to happen depends on the ratio between σ21 and the
next largest eigenvalue σ22. In practice, we may assume that σ2 · (1 + ε) < σ1 for a few reasons.
First, data are often noisy, so the bad case of having an extremely small gap between the two
eigenvalues is unlikely. Second, if the values are sufficiently close, we may simply be satisfied
with any vector that is a linear combination of v1 and v2 (and possibly v3,v4, . . . , if more
eigenvalues are extremely close). We note that α1 must not be equal to 0 for this algorithm to
converge to the largest eigenvector. Hence, the random initialization.

Best-Fit Subspaces We now consider dimension reduction onto more than just a single
dimension. Here, we reuse many of the notions we have seen before.

Again, formulated as an optimization problem, we are looking for k vectors v1, . . . ,vk such
that the directional variances

∑k
j=1 Varvj

[
A(i)

]
are maximized. Algebraically, we aim to find

a d× k orthogonal matrix V, such that ‖AV‖2F is maximized. To see this, consider

n ·
k∑
j=1

Varvj

[
A(i)

]
=

k∑
j=1

‖Avj‖22 = ‖AV‖2F .

The solution to this problem essentially boils down to finding a the maximum directional vari-
ance, and then projecting the entire point set onto the orthogonal subspace.

1Jensen’s inequality says that if a function f(x) is convex, then for a random variable X we have that
E[f(X)] ≥ f(E[X]).

5



Theorem 6. Let A ∈ Rn×d be a matrix. Then the best fit subspace is characterized as follows.

v1 = argmax
‖v‖2=1

‖Av‖2

v2 = argmax
‖v‖2=1,vTv1=0

‖Av‖2

...

vk = argmax
‖v‖2=1,

vTvi=0,i∈{1,...,k−1}

‖Av‖2

Further, any matrix may be written as
UDVT

where U and V are orthogonal matrices containing the singular vectors and D is a diagonal
matrix whose entries contain the singular values. This decomposition is known as the singular
value decomposition.

Proof. We prove this by induction. The base case was proven in Theorem 4. Assume that Wk

is an optimal subspace with basis vectors w1, . . . ,wk, and let Wk be the matrix in Rk×d with
rows w1, . . . ,wk.

We then have

‖AWk‖2F =

k∑
i=1

‖Awi‖22 .

By assumption ‖Awi‖22 ≤ ‖Avi‖22 for all i ∈ {1, . . . , k − 1}. Hence

‖AWk‖2F ≤
k−1∑
i=1

‖Avi‖22 + ‖Awk‖22 .

By optimality of Wk, we can conclude that Wk is in the subspace spanned by {v1, . . . ,vk−1,wk}.
Then there exists a vector x in that subspace orthogonal to v1, . . . ,vk−1 such that

‖AWk‖2F −
k−1∑
i=1

‖Avi‖22 = ‖Ax‖22 .

Since vk optimized over the entire space (and not just the space Wk, we know that ‖Avk‖22 ≥
‖Ax‖22, which concludes the proof of the first statement.

For the second statement, we simply let k = d.

To compute the best subspace, we may run the power method k times, projecting onto the
orthogonal subspace whenever we converge.

Applications to k-means We first would like to consider the sister minimization problem.
We first observe that by the Pythagorean theorem, for any unit vector v we have

‖A‖2F =
∥∥AvvT

∥∥2
2

+
∥∥A(I − vvT )

∥∥2
F

= ‖Av‖22 +
∥∥A−AvvT

∥∥2
F
.

Hence maximizing ‖Av‖22 is equivalent to minimizing
∥∥A−AvvT

∥∥2
F

. These notions straight-
forwardly extend to subspaces, that is,

‖A‖2F = ‖AW‖22 +
∥∥A−AWWT

∥∥2
F
.
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Minimizing ∥∥A−AWWT
∥∥2
F

for a rank k subspace W is known in literature as finding the best rank-k approximation.
Let us now study the relationship between A and AVkVk

T . We first note that AVkVk
T =

UDVTVkVk
T = UDVk

T = UkDkVk
T = UkUk

TA, where Uk is obtained from U be just
taking the first k singular vectors and setting everything else to 0 and Dk is the diagonal matrix
obtained from D such that all but the first k diagonal entries of D were set to 0. Note that
we may also remove the 0 entries from Uk just like we do in Vk, that is, consider Uk to be a
n× k matrix. Maximizing ‖AW‖2F for some rank k column subspace W is therefore equivalent
to maximizing ‖TA‖2F for some rank k row subspace T.

Now consider the 1-means objective function, where we aim to find a point µ such that∑n
i=1

∥∥A(i) − c
∥∥2 is minimized. We know that c = µ = 1

n

∑n
i=1 A(i) is optimal. Can we express

this problem algebraically? Indeed, we can. Let us rewrite the one means objective as
n∑
i=1

∥∥A(i) − c
∥∥2 = ‖A−C‖2F

with the contraint that every row of C is identical. Consider the vector X = 1√
n
· 1. Then the

optimal matrix C, that is, the matrix where every row is µ can be expressed as XXTA. More-
over, X is a unit vector. 1-means is therefore nothing but a constrained low-rank approximation
problem.

For k-means we have a similar picture. Consider the n by k clustering matrix X defined as

Xi =


1√
|Cj |

if point Ai is in cluster Cj

0 otherwise
.

The columns of X are orthogonal, that is, the jth column Xj satisfies
∥∥Xj

∥∥
2

= 1 and any

column Xi has a zero entry whenever a column Xj has a non-zero entry. Notice how Xi(Xi)TA
is mapped to the centroid of the cluster Ci. k-means can be therefore viewed as

min
rank k clustering matrix X

∥∥A−XXTA
∥∥2
F
.

By lifting the constraint that X need be a clustering matrix, we are back to solving the
low-rank approximation. Hence if we only cluster in the best k-dimensional subspace instead
of the original d-dimensional space, we preserve most of the cost. This is made formal in the
following theorem.

Theorem 7. Let k be an integer and A ∈ Rn×d. Suppose we have an algorithm Alg that
computes an α-approximation. Let Ak = UAVk

T be the best rank-k approximation. Then
running Alg on Ak yields a α+ 1 approximation.

Proof. Let X be the optimal clustering matrix. We observe that the optimal k-means cost∥∥A−XXTA
∥∥2
F

is lower bounded by ‖A−Ak‖2F . Let Y be the clustering matrix obtained by
Alg. Then∥∥A−YYTA

∥∥2
F
≤

∥∥A−YYTAk

∥∥2
F
≤
∥∥Ak −YYTAk

∥∥2
F

+ ‖A−Ak‖2F
≤ α ·

∥∥Ak −XXTAk

∥∥2
F

+
∥∥A−XXTA

∥∥2
F

≤ α ·
∥∥A−XXTA

∥∥2
F

+
∥∥A−XXTA

∥∥2
F
≤ (α+ 1)

∥∥A−XXTA
∥∥2
F
.

We remark that using Am instead of Ak for m > k/ε, we obtain an (α+ ε) approximation.
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