
Data Mining

Homework 3

Due: 8/12/2019, 23:59

Instructions

You must hand in the homework electronically and before the due date and time.

This homework has to be done by each person individually.

Handing in: You must hand in the homework by the due date and time by an email to Andrea
(mastropietro@diag.uniroma1.it) that will contain as attachment (not links to some file-
uploading server!) a .zip file with your answers. The filename of the attachment should be
DM Homework 1 StudentID StudentName StudentLastname.zip;
for example:
DM Homework 1 1235711 Robert Anthony De Niro.zip.
The email subject should be
[Data Mining] Homework 1 StudentID StudentName StudentLastname;
For example:
[Data Mining] Homework 1 1235711 Robert Anthony De Niro.
After you submit, you will receive an acknowledgement email that your project has been received
and at what date and time. If you have not received an acknowledgement email within 2 days after
you submit then contact Andrea.

The solutions for the theoretical exercises must contain your answers either typed up or hand
written clearly and scanned.

For information about collaboration, and about being late check the web page.

Problem 1. We are given a set of points V ⊂ Rd, with |V | = N , and a clustering C = C1, . . . ,CK

in K clusters, that is, a partition of the points into sets Ck such that ∪Kk=1Ck = V and Ck ∩C` = ∅
for k 6= `. Recall that the k-means cost function for clustering C is the

K∑
k=1

∑
xi∈Ck

‖xi − µk‖22 ,

where µk is the average of the points in Ck.

1. Assume instead that we use the objective function

K∑
k=1

∑
xi∈Ck

‖xi − µk‖1 ,

that is, we try to minimize the `1 distance between the points and the cluster center. How
should we modify the k-means algorithm? Justify your answer.

2. Assume that the optimal solution for the k-means cost function has cost C. You are now
asked to cluster the points, but under the constraint that the cluster representative (i.e., the
point corresponding to µk) has to be one of the input points in V . Prove that there exists a
solution with cost at most 4C.

Problem 2.

Benchmark Data Set Consider an instance generated as follows. Let Ik be the k × k identity
matrix. Let N k,d(0,σ2) be the k × d matrix in which every entry is a Gaussian random variable
with mean 0 and variance σ2. We now consider the instance A obtained by stacking n copies of the
matrix Ik N (0,σ2)k,d, that is,

A =


Ik N k,d(0,σ2)
Ik N k,d(0,σ2)
...
Ik N k,d(0,σ2)


A has k · n points and k+ d dimensions. The ”correct” clustering of the rows of A is to simply

put Ai into cluster imod k, that is, the matrix Ik is also an indicator matrix for cluster membership
and the correct clustering matrix satisfies

Xi,j =

{
1√
n

if i mod k = j + 1

0 otherwise
.

To set n, k, d, and σ2, we suggest the following values (experiment with them).

• k = 50, 100, 200

• n = 1.000, 10.000, 100.000 (go to a million if your computer is too good)

• d = k, 100k, 100k2

• σ2 = 1/k, 1/
√
k, 0.5

To generate this data set, we recommend the loosely python inspired pseudocode (do not
copy/paste, check for errors):

import numpy as np
import math
from random import gauss
set n,k,d and σ as necessary
data = np.ndarray(shape=(k*n, d+k), dtype=float, order=’F’)
for i in range(k*n): do

for j in range(d): do
data[i][k+j] = gauss(0,σ)

end for
for j in range(k): do

if i%k == l: then
data[i][j] = 1

else
data[i][j] = 0

end if
end for

end for

Algorithms We have seen the following two algorithms in class:

PCA: project the data onto the first m principal components. Recall that m ≥ k. If we set m
close to k we remove more noise. If m ≈ k/ε, we remove less noise but have more accuracy wrt the
k-means objective.

import numpy as np
set m as necessary
u,s,vh = np.linalg.svd(data, full matrices=True)
smat = np.zeros((k*n, d+k), dtype=float)
smat[:s.size, :s.size] = np.diag(s)
for i in range(0,s.size): do

if i > m-1: then
s[i] = 0

end if
end for
smat[:d+k, :d+k] = np.diag(s)
projected = np.dot(u, np.dot(smat, vh))

k-means++:

C={random input point}
for i=1 to k-1 do

pick point p proportionate to minc∈C ‖p− c‖2
add p to C

end for

Tasks Experiment with a data analysis chain. In particular, try the following two options:

1. Run k-means++ on the data set.

2. Apply PCA and then apply k-means++.

For all variants, consider whether the algorithm was able to recover the ground clustering. Try
to explain why certain combinations were more successful than others.

Finally, consider the running time of the various steps. Which parts were the most expensive
parts? Did this behavior change, depending on the order in which the algorithms were executed?
Remember, you can log the running time using:

from datetime import datetime
tStart = datetime.now()
run Algorithm
tEnd = datetime.now()

