Epidemics in Social Networks
Epidemic Processes

Epidemics, Influence, Propagation

• Viruses, diseases
• Online viruses, worms
• Fashion
• Adoption of technologies
• Behavior
• Ideas
Example: Ebola virus

- First emerged in Zaire 1976 (now Democratic Republic of Kongo)
- Very lethal: it can kill somebody within a few days
- A small outbreak in 2000
- From 10/2000 – 01/2009 173 people died in African villages
Example: HIV

- Less lethal than Ebola
- Takes time to act, lots of time to infect
- First appeared in the 70s
- Initially confined in special groups: homosexual men, drug users, prostitutes
- Eventually escaped to the entire population
Example: Melissa computer worm

- Started on March 1999
- Infected MS Outlook users
- The user
 - Receives email with a word document with a virus
 - Once opened, the virus sends itself to the first 50 users in the outlook address book
- First detected on Friday, March 26
- On Monday had infected >100K computers
Example: Hotmail

- Example of Viral Marketing: Hotmail.com
- Jul 1996: Hotmail.com started service
- Aug 1996: 20K subscribers
- Dec 1996: 100K
- Jan 1997: 1 million
- Jul 1998: 12 million

Bought by Microsoft for $400 million

Marketing: At the end of each email sent there was a message to subscribe to Hotmail.com “Get your free email at Hotmail"
Example: Hotmail

Hotmail Users

May-96 Dec-96 Jun-97 Jan-98 Jul-98 Feb-99

0 20K 100K 1M 12M
The Bass model

- Introduced in the 60s to describe product adoption
- Can be applied for viruses
- No network structure

\[F(t + 1) = F(t) + p(1 - F(t)) + q(1 - F(t))F(t) \]

- \(F(t) \): Ratio of infected at time \(t \)
- \(p \): Rate of infection by outside
- \(q \): Rate of contagion

\[
\frac{dF}{dt} = p(1 - F) + qF(1 - F) \\
= (p + qF)(1 - F)
\]
The Bass model

- $F(t)$: Ratio of infected at time t
- p: Rate of infection by outside
- q: Rate of contagion

\[
\frac{dF(t)}{dt} = (p + qF(t))(1 - F(t))
\]

\[
F(t) = \frac{1 - e^{-(p+q)t}}{1 + \frac{q}{p}e^{-(p+q)t}}
\]
Network Structure

• The Bass model does not take into account network structure

• Let’s see some examples
Example: Black Death (Plague) (Pestilenza)

- Started in 1347 in a village in South Italy from a ship that arrived from China
- Propagated through rats, etc.
Example: Mad-cow disease

- Jan. 2001: First cases observed in UK
- Feb. 2001: 43 farms infected
- Sep. 2001: 9000 farms infected
- Measures to stop: Banned movement, killed millions of animals
Example: H1N1

http://www.youtube.com/watch?v=tWKdSQilFj4
Example: H1N1
Network Impact

- In the case of the plague it moves on the plain
- In the mad cow we have weak ties, so we have a small world
 - Animals being bought and sold
 - Soil from tourists, etc.

- To protect:
 - Make contagion harder
 - Remove weak ties (e.g., mad cows, HIV)
Example: Join an online group
Example: obesity study

• Data set of 12,067 people from 1971 to 2003 as part of Framingham Heart Study

• Results
 – Having an obese friend increases chance of obesity by 57%.
 – Obese sibling \rightarrow 40%, obese spouse \rightarrow 37%

• Methodology
 – Logistic regression, taking many attributes into account (e.g., age, sex, education level, smoking cessation)
 – Taking advantage of data that is available over time
 – “edge-reversal test”
Obesity study
Obesity study

![Graph showing the increase in risk of obesity in ego for different alter types.](image-url)
Modeling Approaches

Two main types of mathematical models

Game theoretic
• Users are rational players in a “game”
• Answer why

Probabilistic
• There is a random process that governs the user actions
• Allow fitting the model to data to estimate parameters
• Can be used to make predictions
• Answer how
Models of Influence

- We saw that often decision is correlated with the number/fraction of friends
- This suggests that there might be influence: the more the number of friends, the higher the influence
- Models to capture that behavior:
 - Linear threshold model
 - Independent cascade model
Independent Cascade Model

- We have a weighted directed graph with weight p_{uv} on edge (u,v).

- When node u becomes active, it has a single chance of activating each currently inactive neighbor v.

- The activation attempt succeeds with probability p_{uv}.
Linear Threshold Model

• A node u has threshold $\theta_u \sim \text{Uniform}[0,1]$

• A node v is influenced by each neighbor u according to a weight b_{uv} such that

$$\sum_{u: (u,v) \in E} b_{uv} \leq 1$$

• A node v becomes active when at least (weighted) θ_v fraction of its neighbors are active

$$\sum_{u: (u,v) \in E \land u: \text{active}} b_{uv} \geq \theta_v$$

Examples: riots, WIND / TIM
Example

Stop!
Optimization problems

• Given a particular model, there are some natural optimization problems.

1. How do I select a set of users to give coupons to in order to maximize the total number of users infected?
2. How do I select a set of people to vaccinate in order to minimize influence/infection?
3. If I have some sensors, where do I place them to detect an epidemic ASAP?