
for Deep Learning

Mara Sorella Web Algorithmics and Data Mining Lab~
@maruscia

TensorFlow

2

TensorFlow™ is an open source software library for numerical computation using data flow graphs.
Originally developed (for internal use) by researchers and engineers working on the
Google Brain Team for the purposes of conducting machine learning and deep
neural networks research.

It was released under the Apache 2.0 open source license on November 2015.

What is a Tensor?

3

• Nodes in the graph represent operations

• Edges are directed and represent passing the result of an operation (a tensor)
as an operand to another operation

Data flow graph

takes zero or more Tensors, performs some computation, and produces zero or more Tensors

a typed multi-dimensional array.

i.e. a mini-batch of images

a 4-D array of floating point numbers with dimensions [batch_size, height, width, channels]

Operation

Tensor

TensorFlow architecture

4

High-level, OOP API

Libraries for common model components

Lower-level
APIs

TensorFlow consists of the following two components:
• a graph prototype

• a runtime that executes the (distributed) graph

a computation specification.

TensorFlow architecture

4

High-level, OOP API

Libraries for common model components

Lower-level
APIs

TensorFlow consists of the following two components:
• a graph prototype

• a runtime that executes the (distributed) graph

a computation specification.

Today

MNIST: Handwritten digits recognition

5

Righteously identified as the Hello World of machine learning.

• 60K labeled examples

• 28x28 pixel
grayscale image

• 1-ch intensity matrix

label: 5 label: 0 label: 4 label: 1

A case of multilabel classification

6

We know that every image in MNIST is a handwritten digit between zero and nine: 10 classes

We want to be able to look at an image and know the probabilities for it being each digit.

A case of multilabel classification

6

We know that every image in MNIST is a handwritten digit between zero and nine: 10 classes

We want to be able to look at an image and know the probabilities for it being each digit.

A case of multilabel classification

6

We know that every image in MNIST is a handwritten digit between zero and nine: 10 classes

We want to be able to look at an image and know the probabilities for it being each digit.

A case of multilabel classification

6

We know that every image in MNIST is a handwritten digit between zero and nine: 10 classes

We want to be able to look at an image and know the probabilities for it being each digit.

0.02 0.01

0 1. …. 5 6 …. 9

0.5 0.45 0.01

A case of multilabel classification

6

We know that every image in MNIST is a handwritten digit between zero and nine: 10 classes

We want to be able to look at an image and know the probabilities for it being each digit.

0.02 0.01

0 1. …. 5 6 …. 9

0.5 0.45 0.01

unwrap

Input

A case of multilabel classification

6

We know that every image in MNIST is a handwritten digit between zero and nine: 10 classes

We want to be able to look at an image and know the probabilities for it being each digit.

0.02 0.01

0 1. …. 5 6 …. 9

0.5 0.45 0.01

unwrap

Input

Evidence for a class i

weight bias
one per pixel one per class

Softmax regression for MLC

7

Probability distribution
of class belonging

Our promise: build a neural network that achieves 99% accuracy in this task

1-Layer simple NN for MLC

8

softmax

Activation function: a function (in this case softmax, yet also sigmoid, ReLu,…) that takes in the weighted sum of all of
the inputs from the previous layer and then generates and passes an output value (typically nonlinear) to the next layer.

10 neurons (1 per class)

Working on a batch

9

Working on a batch

9

[100,10] [1,10]

b0+ b1 b2 … b9

Working on a batch

9

[100,10] [1,10]

b0+ b1 b2 … b9

broadcast

Softmax over a batch of images

10

…in TensorFlow (Python)

11

A loss function for MLC

12

Cross Entropy =

Labeled instances

NN output

Training

minimize CE, across
all training examples

• MNIST: 60K images train, 10K test

Demo: mnist_1.0_softmax.py

13

Demo: mnist_1.0_softmax.py

13

TensorFlow: init

14

Low level TF APIs

Model

15

Optimizer

16

TF: full python code

17

Go deep! 5-layer NN

18

Note: 5 layers are overkill for this task

Init

19

Model

20

our previous
unique layer

.. yet with a different activation function

Demo: mnist_2.0_five_layers_sigmoid.py

21

Demo: mnist_2.0_five_layers_sigmoid.py

21

Slow convergence

22

Vanishing gradients problem

The ReLU activation function can help prevent vanishing gradients.

1.If the gradient at each step is too small, then greater repetitions will be needed until convergence,
because the weight is not changing enough at each iteration.

2.In deep networks, computing these gradients can involve taking the product of many small terms.
and when you do so repeatedly, neuron outputs and their gradients can vanish entirely starting
from the first layers (close to input).

descending a flat curve

ReLU

23

Simply swap tf.nn.sigmoid with tf.nn.relu in code.

W = tf.Variable(tf.truncated_normal([K,L], stddev=0.1))

B = tf.Variable(tf.ones([L])/10)

Biases initialization with small positive weights (just for ReLUs)

How to use ReLU

A better optimizer

24

In very high dimensional spaces like here - we have in the order of 10K weights and biases - "saddle points"
are frequent.

These are points that are not local minima but where the gradient is nevertheless zero and the gradient
descent optimizer stays stuck there.

TensorFlow has a full array of available optimizers, including some that work with an amount of inertia and will safely
sail past saddle points.

e.g.,

You can replace tf.train.GradientDescentOptimiser with a tf.train.AdamOptimizer

From sigmoid to ReLU

25

First 300 iterations

From sigmoid to ReLU

25

First 300 iterations

Noisy accuracy

26

0.98

Learning rate decay

27

If we reduce the learning rate, say by a factor of 10, we might slow down our learning by a factor of 10.

Right approach

Start fast, then decay.

Learning rate decay

27

If we reduce the learning rate, say by a factor of 10, we might slow down our learning by a factor of 10.

Right approach

Start fast, then decay.

Fixed learning rate lr = 0.003 (no decay)

Learning rate decay

27

If we reduce the learning rate, say by a factor of 10, we might slow down our learning by a factor of 10.

Right approach

Start fast, then decay.

Start with lr=0.003 then drop exponentially to 0.0001 lr = lrmin+(lrmax-lrmin)*exp(-i/2000)

Overfitting?

28

The system is getting better and better on training data but performance on test data is not improving anymore
ML handbook solution: regularization

Dropout: shooting neurons

29

At each iteration:
drop fraction (1-pkeep)
of neurons (with all their
weights and biases)
(boosting the output of remaining neurons)

effect: those weights will not change for that iteration

pkeep = tf.Placeholder(float32)

TF code

applied after each layer

When testing, all neurons are put back in

All progress we have made so far

30

All progress we have made so far

30

All progress we have made so far

30

All progress we have made so far

30

31

Overfitting: the system is getting better and better on training data but
performance on test data is not improving anymore.

At its core overfitting happens when you have too many degrees of freedom (weights and biases) for the problem at
hand.

Questions:
1. too few data? (no)
2. too many layers? (maybe)
3. faulty design?

At the present state, apparently by some faulty design our NN is not capable to constrain the d.o.f. and extract the
structure we need. In other words it cannot learn categories in a sufficient way to generalize well to data it has never seen
before.

Causes of overfitting

31

Overfitting: the system is getting better and better on training data but
performance on test data is not improving anymore.

At its core overfitting happens when you have too many degrees of freedom (weights and biases) for the problem at
hand.

Questions:
1. too few data? (no)
2. too many layers? (maybe)
3. faulty design?

Why?

At the present state, apparently by some faulty design our NN is not capable to constrain the d.o.f. and extract the
structure we need. In other words it cannot learn categories in a sufficient way to generalize well to data it has never seen
before.

Causes of overfitting

31

Overfitting: the system is getting better and better on training data but
performance on test data is not improving anymore.

At its core overfitting happens when you have too many degrees of freedom (weights and biases) for the problem at
hand.

Questions:
1. too few data? (no)
2. too many layers? (maybe)
3. faulty design?

Why?

At the present state, apparently by some faulty design our NN is not capable to constrain the d.o.f. and extract the
structure we need. In other words it cannot learn categories in a sufficient way to generalize well to data it has never seen
before.

Hint: We did something very stupid

Causes of overfitting

31

Overfitting: the system is getting better and better on training data but
performance on test data is not improving anymore.

At its core overfitting happens when you have too many degrees of freedom (weights and biases) for the problem at
hand.

Questions:
1. too few data? (no)
2. too many layers? (maybe)
3. faulty design?

Why?

At the present state, apparently by some faulty design our NN is not capable to constrain the d.o.f. and extract the
structure we need. In other words it cannot learn categories in a sufficient way to generalize well to data it has never seen
before.

Hint: We did something very stupid with the input.

Causes of overfitting

When shape matters

32

Remember how we are using our images, all pixels flattened into a single long vector ?
That was a really bad idea.

Handwritten digits are made of shapes and we discarded the shape information when we flattened the pixels.
However, there is a type of neural network that can take advantage of shape information: convolutional networks.

These network are specifically designed for > 1D datasets (images) where shape information (locality) is important.

33

Getting up 98% accuracy: CNN

RGB pixels

33

Getting up 98% accuracy: CNN

RGB pixels

33

Getting up 98% accuracy: CNN

RGB pixels

33

Getting up 98% accuracy: CNN

RGB pixels

Convolutional Neural Networks

34

Convolutional Neural Networks

34

shape of one convolutional layer

Convolutional Neural Networks

34

shape of one convolutional layer

Piping information down

35

subsample the neuron outputs
by keeping only outputs where the
signal is strongest

An alternative way that allows using only convolutional layers:
Directly slide the patches across the image with a stride of
2 pixels instead of 1: this allows to retain less outputs

This approach has proven just as effective and today's convolutional
networks use convolutional layers only (see next slide)

Traditional approach: “max pooling”

Piping information down

35

subsample the neuron outputs
by keeping only outputs where the
signal is strongest

An alternative way that allows using only convolutional layers:
Directly slide the patches across the image with a stride of
2 pixels instead of 1: this allows to retain less outputs

This approach has proven just as effective and today's convolutional
networks use convolutional layers only (see next slide)

Traditional approach: “max pooling”

A CNN for MNIST (all convolutional)

36

each neuron w.s. all 7x7x12 input using its own weights

CNN in TF (Init)

37

= number of patches we
produce in output

CNN in TF (Model)

38

conv2d: you give it batch of input values (images), a set of weights, it will scan
input in both directions and produce the weighted sums

activation functions

Demo: mnist_3.0_convolutional.py

39

Results -CNN

40

Results -CNN

40

WTFH?

41

Solutions?

Go bigger

42

patch size

why not apply dropout to previous layers?

Go bigger

42

patch size

why not apply dropout to previous layers?

Go bigger

42

patch size

why not apply dropout to previous layers?

Demo: mnist_3.1_convolutional_bigger_dropout.py

43

Improvements

44

Improvements

44

Success?

45

Our model now misses only 72 out of the 10,000 test digits, with 99.3% accuracy

The world record, which you can find on the MNIST website is around 99.7%.
We are only 0.4 percentage points away from it with our model built with 100 lines of Python / TensorFlow.

Another technique that we didn't mention is batch normalization, that can lead us up to 99.5 accuracy.

TF.Learn, TF High level APIs

46

Simple but constrained.

Tensorflow higher-level APIs
too called tf.learn.

Example: DNNRegressor

https://www.tensorflow.org/tutorials/tflearn/

References and pointers

47

• largely (and aggressively) borrowed by work by Martin Görner

• https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd

• Deep Learning: Advanced machine learning course on neural networks, with extensive coverage of image and text models

• Rules of ML: Best practices for machine learning engineering

• deeplearn.js: Open-source toolkit for interactive model training and inference in the browser

• distill.pub: Web journal presenting recent research in ML & AI in a divulgative way (reactive diagrams, visualizations, mind diagrams)

• colah.github.io: Blog by Chris Olah, (Google Brain team, also editor at distill)

- In particular check out this blog post for (quite old, yet still very informative) visualizations of the MNIST

• TensorFlow Programmer's Guide: In-depth guides to key TensorFlow features, including variables, threading, and debugging
• TensorFlow Dev Summit 2017: Series of tech talks and demos highlighting TensorFlow APIs and real-world applications

TensorFlow resources

git clone https://github.com/maruscia/tensorflow-mnist-tutorial
Code

https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd
https://www.udacity.com/course/deep-learning--ud730
https://developers.google.com/machine-learning/rules-of-ml?authuser=1
https://pair-code.github.io/deeplearnjs/
http://colah.github.io/posts/2014-10-Visualizing-MNIST/
https://www.tensorflow.org/programmers_guide/
http://www.apple.com
https://github.com/maruscia/tensorflow-mnist-tutorial

