
Università La Sapienza – 18 October 2016

Information Storage and
Processing for Web Search

Nicola Tonellotto
ISTI-CNR

nicola.tonellotto@isti.cnr.it

1

mailto:nicola.tonellotto@isti.cnr.it

Università La Sapienza – 18 October 2016

• Some info about ISTI-CNR

• Introduction to Information Retrieval and Web Search

• Classical query processing

• Learning to Rank and query processing

Outline

2

Università La Sapienza – 18 October 2016

CNR -> ISTI -> HPC

3

Università La Sapienza – 18 October 2016
4

l a b o r a t o r y

7 researchers

2 post-doc fellows

3 research associates

6 PhD students

Università La Sapienza – 18 October 2016

Web Search & data mining

• Responsiveness of large-scale search systems

• (Machine learned) ranking, prediction, recommendation, diversification

• Social media analysis

• Semantic Enrichment and Entity Linking

• Storage and Indexing of large amounts of data

Cloud and Distributed computing

• Cloud federations, Resource Management

• Network overlays for P2P and Big Data

• Scalable data analysis with Hadoop Map-Reduce, Giraph, Spark, etc

Main Research Topics

5

Università La Sapienza – 18 October 2016

From paper titles 2011-2013

6

Università La Sapienza – 18 October 2016

• Highly-motivated group of (mostly 😃) young
researchers

• Papers accepted at all the main top conferences on
Web IR & DM

• Attractive to HQ students, former PhDs now at
Twitter , Facebook , Yahoo! and Tiscali

• Good portfolio of EC projects, good international and
national connections with academia and industry

Our Strengths

7

Università La Sapienza – 18 October 2016

Products / Achievements

8

Learning(to(Rank(for(Tiscali(istella,(feature(
tuning,(near4duplicate(detec7on,(massive(
Hadoop(MapReduce(computa7ons(
(

Learning(to(Rank(Metadata(Records(for(
Europeana,(En7ty(sugges7on(

Framework(for(implemen7ng(and(evalua7ng(
en7ty(linking(algorithms.(

Fast(and(Scalable(Learning(to(Rank(with(
QuickRank(QuickRank)

Budgeted(Sightseeing(Tours(Planning(exloi7ng(
Social(Media(

Re
se
ar
ch
(P
ro
to
ty
pe
s((

(
(

((P
ro
du

c0
on

(S
ys
te
m
s(

http://dexter.isti.cnr.it

http://quickrank.isti.cnr.it

http://tripbuilder.isti.cnr.it

http://dexter.isti.cnr.it
http://dexter.isti.cnr.it
http://tripbuilder.isti.cnr.it

Università La Sapienza – 18 October 2016

Collaboration with istella

9

Università La Sapienza – 18 October 2016

• Information Retrieval (IR) is finding material (usually
documents) of an unstructured nature (usually text) that
satisfies an information need from within large collections
(usually stored on computers).

• These days we frequently think first of Web Search, but there
are many other cases:

• E-mail search
• Searching your laptop
• Corporate knowledge bases
• Legal information retrieval
• Patent Retrieval
• Medical Retrieval

Information Retrieval

10

Università La Sapienza – 18 October 2016

• Collection: A set of textual documents

• Goal: Retrieve documents with
information that is relevant to the user’s
information need and helps the user
complete a task

Basic Assumptions

11

Università La Sapienza – 18 October 2016

Classical IR Model

12

Search
Engine

User
Task

Information
Need

Query

Collection

ResultsResultsResultsResults
Query

Refinement

Get ride of mice in a
politically correct way

Info about removing
mice without killing them

how trap mice alive

Università La Sapienza – 18 October 2016

• Which plays of Shakespeare contain the words
Brutus AND Caesar but NOT Calpurnia?

• One could grep all of Shakespeare’s plays for Brutus
and Caesar, then strip out lines containing Calpurnia?

• Why is that not the answer?
• Slow (for large corpora)
• NOT Calpurnia is non-trivial
• Other operations (e.g., find the word Romans near

countrymen) not feasible
• Ranked retrieval (only best documents to return)

Search in 1620

13

Università La Sapienza – 18 October 2016

Term-Document Incidence Matrix

14

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Brutus AND Caesar BUT NOT Calpurnia 1 if play contains word
0 otherwise

Università La Sapienza – 18 October 2016

Incidence Vectors

15

• So we have a 0/1 vector for each term.
• To answer query: take the vectors for

Brutus, Caesar and Calpurnia
(complemented) and perform bitwise AND.
110100 AND
110111 AND
101111 =
100100

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Università La Sapienza – 18 October 2016

• Consider N = 1 million documents, each with about
1000 words.

• Average 6 bytes/word including spaces/punctuation
• 6GB of data in the documents.
• Say there are M = 500K distinct terms among these.
• 500K x 1M matrix has 0.5T 0’s and 1’s.
• But it has no more than one 1G 1’s.
• Matrix is extremely sparse.
• What’s a better representation?

Bigger Collections

16

Università La Sapienza – 18 October 2016

• Consider N = 1 million documents, each with about
1000 words.

• Average 6 bytes/word including spaces/punctuation
• 6GB of data in the documents.
• Say there are M = 500K distinct terms among these.
• 500K x 1M matrix has 0.5T 0’s and 1’s.
• But it has no more than one 1G 1’s.
• Matrix is extremely sparse.
• What’s a better representation?

We only record the 1’s positions.

Bigger Collections

16

Università La Sapienza – 18 October 2016

• For each term t, we must store a list of all
documents that contain t.

• Identify each doc by a docid, a document serial
number.

• Can we used fixed-size arrays for this?
• We need variable-size posting lists.

Inverted Index

17

Brutus&

Calpurnia&

Caesar& 1 2 4 5 6 16 57 132

1 2 4 11 31 45 173

2 31

174

54 101

Università La Sapienza – 18 October 2016

• For each term t, we must store a list of all
documents that contain t.

• Identify each doc by a docid, a document serial
number.

• Can we used fixed-size arrays for this?
• We need variable-size posting lists.

Inverted Index

17

Brutus&

Calpurnia&

Caesar& 1 2 4 5 6 16 57 132

1 2 4 11 31 45 173

2 31

174

54 101

Dictionary
Vocabulary

Lexicon

Posting List

Posting

Università La Sapienza – 18 October 2016

• The Boolean retrieval model is being able to ask a
query that is a Boolean expression:
• Boolean queries are queries using AND, OR and

NOT to join query terms
• Views each document as a set of words
• Is precise: document matches condition or not.

• Perhaps the simplest model to build an IR system on
• Primary commercial retrieval tool for 3 decades.
• Many search systems you still use are boolean:

• Email, library catalog, Mac OS X Spotlight

Boolean queries: exact match

18

Università La Sapienza – 18 October 2016

• Ranking is (one of) the most important challenges
in Web Search

• We define Ranking as the problem of sorting a set
of documents according to their relevance to the
user query.

Ranked Retrieval

19

Università La Sapienza – 18 October 2016

Precision and Recall

20

documents relevant of number Total
retrieved documents relevant of Number

 recall =

retrieved documents of number Total
retrieved documents relevant of Number

 precision=

Relevant
documents

Retrieved
documents

Entire document
collection

retrieved &
relevant

not retrieved but
relevant�

retrieved &
irrelevant�

Not retrieved &
irrelevant�

retrieved not retrieved

re
le

va
nt

irr

el
ev

an
t

Università La Sapienza – 18 October 2016

• Rather than evaluating the full list of documents, look
only at the top k:

P@k
R@k

• There are more advanced measures:
MAP@k
Mean Average Precision
NDCG@k
Normalized Discounted Cumulative Gain

Precision and Recall

21

Università La Sapienza – 18 October 2016

• BM25 is a probabilistic model: using term
independence assumption to approximate the document
probability of being relevant

• IDFt=log(N/nt) is the inverse document frequency
• N is the number of docs in the collection
• nt is the number of docs containing t

• Frequent terms are not very specific, and their
contribution is reduced

BM25

22

BM25(d, q) =
X

t

IDFt ⌧(Ft)

Università La Sapienza – 18 October 2016

• ft,d is the frequency of term t in document d
• ld is the length of document d

• longer documents are less important
• L is the average document length in the collection
• b determines the importance of ld
• 𝜏() is a smoothing function, modelling non-linearity of terms

contribution

BM25

23

BM25(d, q) =
X

t

IDFt ⌧(Ft)

Ft =
ft,d

1� b+ b · ld/L
⌧(Ft) =

Ft

k + Ft

Università La Sapienza – 18 October 2016

Query Processing Breakdown

!Pre-process the query (e.g., tokenisation, stemming)

!Lookup the statistics for each term in the lexicon

!Process the postings for each query term, computing

scores for documents to identify the final retrieved set

!Output the retrieved set with metadata (e.g., URLs)

Università La Sapienza – 18 October 2016

Query Processing Breakdown

!Pre-process the query (e.g., tokenisation, stemming)

!Lookup the statistics for each term in the lexicon

!Process the postings for each query term, computing

scores for documents to identify the final retrieved set

!Output the retrieved set with metadata (e.g., URLs)

Università La Sapienza – 18 October 2016

Document-at-a-Time (DAAT)

Università La Sapienza – 18 October 2016

Dynamic Pruning

•What takes time?

- Number of query terms

‣Longer queries have more terms with posting lists to process

- Length of posting lists

‣More postings takes longer times

•Aim: avoid (unnecessary) scoring of posting

26

Università La Sapienza – 18 October 2016

Safeness

•Safe pruning: the output ordering of the strategy is

identical to the output ordering of the full processing

•Safe up to rank K: the first K documents are identical to

the first K documents of the full processing

•Approximate: no guarantees on final ordering of

document w.r.t. full processing

27

Università La Sapienza – 18 October 2016

Safeness

•Safe pruning: the output ordering of the strategy is

identical to the output ordering of the full processing

•Safe up to rank K: the first K documents are identical to

the first K documents of the full processing

•Approximate: no guarantees on final ordering of

document w.r.t. full processing

27

Università La Sapienza – 18 October 2016

DAAT Pruning
• MaxScore (Turtle & Flood, IPM 31(6), 1995)

- Early termination: does not compute scores for documents that won’t be retrieved

- By comparing upper bounds with threshold

- Suitable for TAAT as well

• WAND (Broder et al., CIKM 2003)
- Approximate evaluation: does not consider documents with approximate scores (sum of

upper bounds) lower than threshold

- Exploit skipping

• BlockMaxWAND (Ding & Suel, SIGIR 2011)
- Two levels: initially on blocks (128 postings), then on postings

- Approximate evaluation: does not consider documents with approximate scores (sum of

upper bounds) lower than threshold

- Exploit skipping

• All three use docids sorted posting lists

28

Università La Sapienza – 18 October 2016

Some (Unpublished) Results (50 M docs)

29

Ranking
Algorithm

Num Terms
1 2 3 4 5 6 7

Ranked And 43.59 38.08 32.68 25.23 29.26 17.57 15.78
Ranked Or 43.05 261.59 536.06 807.05 1,107.93 1,402.26 1,756.52
MaxScore 45.01 48.21 51.06 57.28 75.66 95.06 117.61
Wand 62.62 44.98 48.24 55.27 69.39 98.47 120.70
BlockMaxWand 0.71 13.11 40.69 64.62 99.95 149.94 192.65

Average Response Times (msec)

Ranking
Algorithm

Num Terms

1 2 3 4 5 6 7

Ranked And 265.25 182.84 136.33 101.75 94.99 66.70 61.26

Ranked Or 260.74 838.04 1,296.98 1,759.49 2,209.58 2,663.02 3,130.37

MaxScore 245.03 189.39 174.92 175.44 215.57 253.29 313.25

Wand 387.55 210.37 184.10 182.05 210.05 289.27 337.07

BlockMaxWand 1.64 43.05 140.12 201.39 280.05 394.48 500.16

95% Response Time (msec)

Università La Sapienza – 18 October 2016

Web Search Engine

30

Crawling

Document
Collection

Indexer

Document
Collection

Metadata
Processor

Feature
Processor

Text Processor

Core
Inverted

Index

Vertical
IndexVertical

IndexVertical
IndexVertical

IndexVertical
Index

Document
Feature

Repository

Query

Training
Data

Cache
Cache

Manager

Learning to Rank
Technique

Learned
Ranking
Function

Spell Corrector

Text Processor

Query Processing

Query Enricher

Query Expander

Query Optimizer

Snippet
Server

Feature Lookup
and Calculation

Query
Log

Text
Processor

User
Interface

Learning to Rank is not classification

Black Boxquery,
document

relevant
or  

not relevant

Learning to Rank is:

Black Box
query,  

d1, d2, d3, …
ranked list  

d17, d13, d666, …

The goal is to learn the ranking, not the label !

Learning to Rank is:

Black Box
query,  

d1, d2, d3, …
ranked list  

d17, d13, d666, …

Machine Learning
(a.k.a. Black Magic)

The goal is to learn the ranking, not the label !

Learning to Rank is:

Black Box
query,  

d1, d2, d3, …
ranked list  

d17, d13, d666, …

Machine Learning
(a.k.a. Black Magic)

large training set of queries and ideal document ranking 
qa, d1, d2, d3, d5, d8, d13, d21, … 
 qb, d99, d98, d97, d96, d95, d94, …

The goal is to learn the ranking, not the label !

Normalized Discounted Cumulative Gain  
NDCG@K

• Consider only the top-K ranked documents,  
and sum up (cumulate) their contribution

• The contribution (gain) of a result depends on its
relevance label

• Contribution is diminished (discounted) if the result is in
the “bottom” positions

• Normalize between 0 and 1

• reli is the relevance label of the i-th result (e.g., 1..5)
• IDCG@k is the score of the ideal ranking

Learning to Rank Approaches
• Pointwise

• Each query-document pair is associated with a score
• The objective is to predict such score

• Can be considered a regression problem
• Does not consider the position of a document into the result list

• Pairwise
• We are given pairwise preferences, d1 is better than d2 for query

q
• The objective is to predict a score that preserves such preferences

• Can be considered a classification problem
• It partially considers the position of a document into the result

list
• Listwise

• We are given the ideal ranking of results for each query
• NB: It might not be trivial to produce such training set

• Objective maximize the quality of the resulting ranked list
• We need some improved approach…

Decision Tree
• Tree-like structure similar to a flow chart.
• Every internal node denotes a test over an attribute/feature

• Outgoing edges correspond to the test possible outcomes
• Every leaf node is associated to a class label (if it is a

classification task) or class distribution or predicted value (if
it is a regression task)

• It is used to label a new data instance on the basis of its
attributes

• Runs tests on the data instance attributes and traverses the
tree according to the tests results
• Starting form the root, the data instances follows a path to a leaf
• The label associated to the leaf is the prediction of the decision

tree.

(Basic) Boosted Decision Trees

(Basic) Boosted Decision Trees
• We want to learn a predictor incrementally:

• Input: a learning sample { (xi,yi): i = 1, …, N }

(Basic) Boosted Decision Trees
• We want to learn a predictor incrementally:

• Input: a learning sample { (xi,yi): i = 1, …, N }
• Initialize

• Baseline tree predicts the average label value
ŷ0(x) = 1/N ∑i yi
ri = yi, i = 1, …, N

(Basic) Boosted Decision Trees
• We want to learn a predictor incrementally:

• Input: a learning sample { (xi,yi): i = 1, …, N }
• Initialize

• Baseline tree predicts the average label value
ŷ0(x) = 1/N ∑i yi
ri = yi, i = 1, …, N

• For t = 1 to M:
• Regression tree predicts the residual error
• For i = 1 to N, compute the residuals

ri ← ri-1 - ŷt-1(xi)
• Build a regression tree from the learning sample { (xi,yi): i = 1, …, N }
• The prediction of the new regression tree is denoted with ŷt

(Basic) Boosted Decision Trees
• We want to learn a predictor incrementally:

• Input: a learning sample { (xi,yi): i = 1, …, N }

• Return the model ŷ(x)= ŷ0(x) + ŷ1(x) + … + ŷM(x)

• Initialize
• Baseline tree predicts the average label value

ŷ0(x) = 1/N ∑i yi
ri = yi, i = 1, …, N

• For t = 1 to M:
• Regression tree predicts the residual error
• For i = 1 to N, compute the residuals

ri ← ri-1 - ŷt-1(xi)
• Build a regression tree from the learning sample { (xi,yi): i = 1, …, N }
• The prediction of the new regression tree is denoted with ŷt

(Basic) Boosted Decision Trees
• We want to learn a predictor incrementally:

• Input: a learning sample { (xi,yi): i = 1, …, N }

• Return the model ŷ(x)= ŷ0(x) + ŷ1(x) + … + ŷM(x)

• Initialize
• Baseline tree predicts the average label value

ŷ0(x) = 1/N ∑i yi
ri = yi, i = 1, …, N

• For t = 1 to M:
• Regression tree predicts the residual error
• For i = 1 to N, compute the residuals

ri ← ri-1 - ŷt-1(xi)
• Build a regression tree from the learning sample { (xi,yi): i = 1, …, N }
• The prediction of the new regression tree is denoted with ŷt

• Function fm should be easy to be learnt:
• Decision stump: trees with one node and two leaves

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

Trees

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4Trees

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

docs = >100K

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

trees = 1K–20K
docs = >100K

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

trees = 1K–20K
docs = >100K

features = 100–1000

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

Struct+

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

Struct+

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

Struct+

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

Struct+

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

Struct+

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

Struct+

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

Struct+

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

Struct+

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

2.0

Struct+

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

2.0

Exit leaf

Struct+

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

2.0

Need to store the structure
of the tree

Exit leaf

Struct+

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

2.0

Need to store the structure
of the tree

High branch misprediction
rate

Exit leaf

Struct+

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

2.0

Need to store the structure
of the tree

High branch misprediction
rate

Low cache hit ratio
Exit leaf

Struct+

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

If-then-else

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

If-then-else

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

If-then-else

if (x[4] <= 50.1) {
// recurses on the left subtree
…

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

If-then-else

if (x[4] <= 50.1) {
// recurses on the left subtree
…

} else {
// recurses on the right subtree

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

If-then-else

if (x[4] <= 50.1) {
// recurses on the left subtree
…

} else {
// recurses on the right subtree
if(x[3] <= -3.0)

result = 0.4;
else

result = -1.4;
}

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

If-then-else

if (x[4] <= 50.1) {
// recurses on the left subtree
…

} else {
// recurses on the right subtree
if(x[3] <= -3.0)

result = 0.4;
else

result = -1.4;
}

Need to store the structure
of the tree

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

If-then-else

if (x[4] <= 50.1) {
// recurses on the left subtree
…

} else {
// recurses on the right subtree
if(x[3] <= -3.0)

result = 0.4;
else

result = -1.4;
}

Need to store the structure
of the tree

High branch misprediction
rate

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

If-then-else

if (x[4] <= 50.1) {
// recurses on the left subtree
…

} else {
// recurses on the right subtree
if(x[3] <= -3.0)

result = 0.4;
else

result = -1.4;
}

Need to store the structure
of the tree

High branch misprediction
rate

Low cache hit ratio

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

Vpred

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

Vpred

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

double depth4(float* x, Node* nodes) {
int nodeId = 0;
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
return scores[nodeId];
}

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

Vpred
16

 d
oc

s # trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

double depth4(float* x, Node* nodes) {
int nodeId = 0;
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
return scores[nodeId];
}

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

?

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

?

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

?

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1
Result

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1
Result

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1
Result
1 1 1 1 1 1 0 0

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1
Result
1 1 1 1 1 1 0 0

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1
Result
1 1 1 1 1 1 0 00 0 0 1 1 1 0 0

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1
Result
1 1 1 1 1 1 0 00 0 0 1 1 1 0 0

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1
Result
1 1 1 1 1 1 0 00 0 0 1 1 1 0 00 0 0 1 0 0 0 0

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1
Result
1 1 1 1 1 1 0 00 0 0 1 1 1 0 00 0 0 1 0 0 0 0

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1
Result
1 1 1 1 1 1 0 00 0 0 1 1 1 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1
Result
1 1 1 1 1 1 0 00 0 0 1 1 1 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 1 1 1 1

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1
Result
1 1 1 1 1 1 0 00 0 0 1 1 1 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1
Result
1 1 1 1 1 1 0 00 0 0 1 1 1 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 0 1 1 1 10 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1
Result
1 1 1 1 1 1 0 00 0 0 1 1 1 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 0 1 1 1 10 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1
Result
1 1 1 1 1 1 0 00 0 0 1 1 1 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 0 1 1 1 10 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1
AND

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1
Result
1 1 1 1 1 1 0 00 0 0 1 1 1 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 0 1 1 1 10 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1
AND

1 1 1 1 1 1 0 1
AND

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1
Result
1 1 1 1 1 1 0 00 0 0 1 1 1 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 0 1 1 1 10 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1
AND

1 1 1 1 1 1 0 1
AND

=
0 0 0 1 1 1 0 1

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1
Result
1 1 1 1 1 1 0 00 0 0 1 1 1 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 0 1 1 1 10 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1
AND

1 1 1 1 1 1 0 1
AND

=
0 0 0 1 1 1 0 1

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1
Result
1 1 1 1 1 1 0 00 0 0 1 1 1 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 0 1 1 1 10 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1
AND

1 1 1 1 1 1 0 1
AND

=
0 0 0 1 1 1 0 1

Insensitive on the nodes’
processing order!

trees = 1K–20K
docs = >100K

features = 100–1000
leaves = 4–64

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1
-3.0:F3

-1.0:F3

3.0:F8

0.1:F6

Trees

0.2:F2

An alternative traversing algorithm

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1
Result
1 1 1 1 1 1 0 00 0 0 1 1 1 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 0 1 1 1 10 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1
AND

1 1 1 1 1 1 0 1
AND

=
0 0 0 1 1 1 0 1

Insensitive on the nodes’
processing order!

Interleaved execution of several tree traversals
f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

Interleaved execution of several tree traversals
f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

Interleaved execution of several tree traversals
f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

Interleaved execution of several tree traversals
f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

Interleaved execution of several tree traversals
f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

Interleaved execution of several tree traversals
f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

Interleaved execution of several tree traversals
f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

Interleaved execution of several tree traversals
f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

Interleaved execution of several tree traversals
f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

Interleaved execution of several tree traversals
f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

Interleaved execution of several tree traversals
f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

Interleaved execution of several tree traversals
f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

Interleaved execution of several tree traversals
f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

Low branch misprediction
rate

Interleaved execution of several tree traversals
f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Documents
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

Low branch misprediction
rate

High cache hit ratio

Results

trees = 1K-5K-10K-20K
docs = X

features = 136
leaves = 8-16-32-64

MSN-1

trees = 1K-5K-10K-20K
docs = Y

features = 700
leaves = 8-16-32-64

Y!S1

λ-MART for performing the training phase optimizing NDCG@10

Table 2: Per-document scoring time in µs of QS, VPred, If-Then-Else and Struct+ on MSN-1 and Y!S1
datasets. Gain factors are reported in parentheses.

Method ⇤

Number of trees/dataset

1, 000 5, 000 10, 000 20, 000

MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1

QS

8

2.2 (–) 4.3 (–) 10.5 (–) 14.3 (–) 20.0 (–) 25.4 (–) 40.5 (–) 48.1 (–)

VPred 7.9 (3.6x) 8.5 (2.0x) 40.2 (3.8x) 41.6 (2.9x) 80.5 (4.0x) 82.7 (3.3) 161.4 (4.0x) 164.8 (3.4x)

If-Then-Else 8.2 (3.7x) 10.3 (2.4x) 81.0 (7.7x) 85.8 (6.0x) 185.1 (9.3x) 185.8 (7.3x) 709.0 (17.5x) 772.2 (16.0x)

Struct+ 21.2 (9.6x) 23.1 (5.4x) 107.7 (10.3x) 112.6 (7.9x) 373.7 (18.7x) 390.8 (15.4x) 1150.4 (28.4x) 1141.6 (23.7x)

QS

16

2.9 (–) 6.1 (–) 16.2 (–) 22.2 (–) 32.4 (–) 41.2 (–) 67.8 (–) 81.0 (–)

VPred 16.0 (5.5x) 16.5 (2.7x) 82.4 (5.0x) 82.8 (3.7x) 165.5 (5.1x) 165.2 (4.0x) 336.4 (4.9x) 336.1 (4.1x)

If-Then-Else 18.0 (6.2x) 21.8 (3.6x) 126.9 (7.8x) 130.0 (5.8x) 617.8 (19.0x) 406.6 (9.9x) 1767.3 (26.0x) 1711.4 (21.1x)

Struct+ 42.6 (14.7x) 41.0 (6.7x) 424.3 (26.2x) 403.9 (18.2x) 1218.6 (37.6x) 1191.3 (28.9x) 2590.8 (38.2x) 2621.2 (32.4x)

QS

32

5.2 (–) 9.7 (–) 27.1 (–) 34.3 (–) 59.6 (–) 70.3 (–) 155.8 (–) 160.1 (–)

VPred 31.9 (6.1x) 31.6 (3.2x) 165.2 (6.0x) 162.2 (4.7x) 343.4 (5.7x) 336.6 (4.8x) 711.9 (4.5x) 694.8 (4.3x)

If-Then-Else 34.5 (6.6x) 36.2 (3.7x) 300.9 (11.1x) 277.7 (8.0x) 1396.8 (23.4x) 1389.8 (19.8x) 3179.4 (20.4x) 3105.2 (19.4x)

Struct+ 69.1 (13.3x) 67.4 (6.9x) 928.6 (34.2x) 834.6 (24.3x) 1806.7 (30.3x) 1774.3 (25.2x) 4610.8 (29.6x) 4332.3 (27.0x)

QS

64

9.5 (–) 15.1 (–) 56.3 (–) 66.9 (–) 157.5 (–) 159.4 (–) 425.1 (–) 343.7 (–)

VPred 62.2 (6.5x) 57.6 (3.8x) 355.2 (6.3x) 334.9 (5.0x) 734.4 (4.7x) 706.8 (4.4x) 1309.7 (3.0x) 1420.7 (4.1x)

If-Then-Else 55.9 (5.9x) 55.1 (3.6x) 933.1 (16.6x) 935.3 (14.0x) 2496.5 (15.9x) 2428.6 (15.2x) 4662.0 (11.0x) 4809.6 (14.0x)

Struct+ 109.8 (11.6x) 116.8 (7.7x) 1661.7 (29.5x) 1554.6 (23.2x) 3040.7 (19.3x) 2937.3 (18.4x) 5437.0 (12.8x) 5456.4 (15.9x)

same trivially holds for Struct+. This means that the in-
terleaved traversal strategy ofQS needs to process less nodes
than in a traditional root-to-leaf visit. This mostly explains
the results achieved by QS.

As far as number of branches is concerned, we note that,
not surprisingly, QS and VPred are much more e�cient
than If-Then-Else and Struct+ with this respect. QS

has a larger total number of branches than VPred, which
uses scoring functions that are branch-free. However, those
branches are highly predictable, so that the mis-prediction
rate is very low, thus, confirming our claims in Section 3.

Observing again the timings in Table 2 we notice that, by
fixing the number of leaves, we have a super-linear growth
of QS’s timings when increasing the number of trees. For
example, since on MSN-1 with ⇤ = 64 and 1, 000 trees QS

scores a document in 9.5 µs, one would expect to score a
document 20 times slower, i.e., 190 µs, when the ensemble
size increases to 20, 000 trees. However, the reported timing
of QS in this setting is 425.1 µs, i.e., roughly 44 times slower
than with 1000 trees. This e↵ect is observable only when the
number of leaves ⇤ = {32, 64} and the number of trees is
larger than 5, 000. Table 3 relates this super-linear growth
to the numbers of L3 cache misses.

Considering the sizes of the arrays as reported in Table
1 in Section 3, we can estimate the minimum number of
trees that let the size of the QS’s data structure to exceed
the cache capacity, and, thus, the algorithm starts to have
more cache misses. This number is estimated in 6, 000 trees
when the number of leaves is 64. Thus, we expect that
the number of L3 cache miss starts increasing around this
number of trees. Possibly, this number is slightly larger,
because portions of the data structure may be infrequently
accessed at scoring time, due the the small fraction of false
nodes and associated bitvectors accessed by QS.

These considerations are further confirmed by Figure 4,
which shows the average per-tree per-document scoring time
(µs) and percentage of cache misses QS when scoring the
MSN-1 and the Y!S1 with ⇤ = 64 by varying the number of
trees. First, there exists a strong correlation between QS’s
timings and its number of L3 cache misses. Second, the

number of L3 cache misses starts increasing when dealing
with 9, 000 trees on MSN and 8, 000 trees on Y!S1.

BWQS: a block-wise variant of QS
The previous experiments suggest that improving the cache
e�ciency of QS may result in significant benefits. As in
Tang et al. [12], we can split the tree ensemble in disjoint
blocks of size ⌧ that are processed separately in order to let
the corresponding data structures fit into the faster levels of
the memory hierarchy. This way, we are essentially scoring
each document over each tree blocks that partition the origi-
nal ensemble, thus inheriting the e�ciency of QS on smaller
ensembles. Indeed, the size of the arrays required to score
the documents over a block of trees depends now on ⌧ in-
stead of |T | (see Table 1 in Section 3). We have, however,
to keep an array that stores the partial scoring computed so
far for each document.
The temporal locality of this approach can be improved by

allowing the algorithm to score blocks of documents together
over the same block of trees before moving to the next block
of documents. To allow the algorithm to score a block of �
documents in a single run we have to replicate in � copies the
array v. Obviously, this increases the space occupancy and
may result in a worse use of the cache. Therefore, we need
to find the best balance between the number of documents �
and the number of trees ⌧ to process in the body of a nested
loop that first runs over the blocks of trees (outer loop) and
then over the blocks of documents to score (inner loop).
This algorithm is called BlockWise-QS (BWQS) and its

e�ciency is discussed in the remaining part of this section.
Table 4 reports average per-document scoring time in µs

of algorithms QS, VPred, and BWQS. The experiments
were conducted on both the MSN-1 and Y!S1 datasets by
varying ⇤ and by fixing the number of trees to 20, 000. It
is worth noting that our QS algorithm can be thought as a
limit case of BWQS, where the blocks are trivially composed
of 1 document and the whole ensemble of trees. VPred

instead vectorizes the process and scores 16 documents at
the time over the entire ensemble. With BWQS the sizes of
document and tree blocks can be instead flexibly optimized
according to the cache parameters. Table 4 reports the best

Per-document scoring time in microsecs

Table 2: Per-document scoring time in µs of QS, VPred, If-Then-Else and Struct+ on MSN-1 and Y!S1
datasets. Gain factors are reported in parentheses.

Method ⇤

Number of trees/dataset

1, 000 5, 000 10, 000 20, 000

MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1

QS

8

2.2 (–) 4.3 (–) 10.5 (–) 14.3 (–) 20.0 (–) 25.4 (–) 40.5 (–) 48.1 (–)

VPred 7.9 (3.6x) 8.5 (2.0x) 40.2 (3.8x) 41.6 (2.9x) 80.5 (4.0x) 82.7 (3.3) 161.4 (4.0x) 164.8 (3.4x)

If-Then-Else 8.2 (3.7x) 10.3 (2.4x) 81.0 (7.7x) 85.8 (6.0x) 185.1 (9.3x) 185.8 (7.3x) 709.0 (17.5x) 772.2 (16.0x)

Struct+ 21.2 (9.6x) 23.1 (5.4x) 107.7 (10.3x) 112.6 (7.9x) 373.7 (18.7x) 390.8 (15.4x) 1150.4 (28.4x) 1141.6 (23.7x)

QS

16

2.9 (–) 6.1 (–) 16.2 (–) 22.2 (–) 32.4 (–) 41.2 (–) 67.8 (–) 81.0 (–)

VPred 16.0 (5.5x) 16.5 (2.7x) 82.4 (5.0x) 82.8 (3.7x) 165.5 (5.1x) 165.2 (4.0x) 336.4 (4.9x) 336.1 (4.1x)

If-Then-Else 18.0 (6.2x) 21.8 (3.6x) 126.9 (7.8x) 130.0 (5.8x) 617.8 (19.0x) 406.6 (9.9x) 1767.3 (26.0x) 1711.4 (21.1x)

Struct+ 42.6 (14.7x) 41.0 (6.7x) 424.3 (26.2x) 403.9 (18.2x) 1218.6 (37.6x) 1191.3 (28.9x) 2590.8 (38.2x) 2621.2 (32.4x)

QS

32

5.2 (–) 9.7 (–) 27.1 (–) 34.3 (–) 59.6 (–) 70.3 (–) 155.8 (–) 160.1 (–)

VPred 31.9 (6.1x) 31.6 (3.2x) 165.2 (6.0x) 162.2 (4.7x) 343.4 (5.7x) 336.6 (4.8x) 711.9 (4.5x) 694.8 (4.3x)

If-Then-Else 34.5 (6.6x) 36.2 (3.7x) 300.9 (11.1x) 277.7 (8.0x) 1396.8 (23.4x) 1389.8 (19.8x) 3179.4 (20.4x) 3105.2 (19.4x)

Struct+ 69.1 (13.3x) 67.4 (6.9x) 928.6 (34.2x) 834.6 (24.3x) 1806.7 (30.3x) 1774.3 (25.2x) 4610.8 (29.6x) 4332.3 (27.0x)

QS

64

9.5 (–) 15.1 (–) 56.3 (–) 66.9 (–) 157.5 (–) 159.4 (–) 425.1 (–) 343.7 (–)

VPred 62.2 (6.5x) 57.6 (3.8x) 355.2 (6.3x) 334.9 (5.0x) 734.4 (4.7x) 706.8 (4.4x) 1309.7 (3.0x) 1420.7 (4.1x)

If-Then-Else 55.9 (5.9x) 55.1 (3.6x) 933.1 (16.6x) 935.3 (14.0x) 2496.5 (15.9x) 2428.6 (15.2x) 4662.0 (11.0x) 4809.6 (14.0x)

Struct+ 109.8 (11.6x) 116.8 (7.7x) 1661.7 (29.5x) 1554.6 (23.2x) 3040.7 (19.3x) 2937.3 (18.4x) 5437.0 (12.8x) 5456.4 (15.9x)

same trivially holds for Struct+. This means that the in-
terleaved traversal strategy ofQS needs to process less nodes
than in a traditional root-to-leaf visit. This mostly explains
the results achieved by QS.

As far as number of branches is concerned, we note that,
not surprisingly, QS and VPred are much more e�cient
than If-Then-Else and Struct+ with this respect. QS

has a larger total number of branches than VPred, which
uses scoring functions that are branch-free. However, those
branches are highly predictable, so that the mis-prediction
rate is very low, thus, confirming our claims in Section 3.

Observing again the timings in Table 2 we notice that, by
fixing the number of leaves, we have a super-linear growth
of QS’s timings when increasing the number of trees. For
example, since on MSN-1 with ⇤ = 64 and 1, 000 trees QS

scores a document in 9.5 µs, one would expect to score a
document 20 times slower, i.e., 190 µs, when the ensemble
size increases to 20, 000 trees. However, the reported timing
of QS in this setting is 425.1 µs, i.e., roughly 44 times slower
than with 1000 trees. This e↵ect is observable only when the
number of leaves ⇤ = {32, 64} and the number of trees is
larger than 5, 000. Table 3 relates this super-linear growth
to the numbers of L3 cache misses.

Considering the sizes of the arrays as reported in Table
1 in Section 3, we can estimate the minimum number of
trees that let the size of the QS’s data structure to exceed
the cache capacity, and, thus, the algorithm starts to have
more cache misses. This number is estimated in 6, 000 trees
when the number of leaves is 64. Thus, we expect that
the number of L3 cache miss starts increasing around this
number of trees. Possibly, this number is slightly larger,
because portions of the data structure may be infrequently
accessed at scoring time, due the the small fraction of false
nodes and associated bitvectors accessed by QS.

These considerations are further confirmed by Figure 4,
which shows the average per-tree per-document scoring time
(µs) and percentage of cache misses QS when scoring the
MSN-1 and the Y!S1 with ⇤ = 64 by varying the number of
trees. First, there exists a strong correlation between QS’s
timings and its number of L3 cache misses. Second, the

number of L3 cache misses starts increasing when dealing
with 9, 000 trees on MSN and 8, 000 trees on Y!S1.

BWQS: a block-wise variant of QS
The previous experiments suggest that improving the cache
e�ciency of QS may result in significant benefits. As in
Tang et al. [12], we can split the tree ensemble in disjoint
blocks of size ⌧ that are processed separately in order to let
the corresponding data structures fit into the faster levels of
the memory hierarchy. This way, we are essentially scoring
each document over each tree blocks that partition the origi-
nal ensemble, thus inheriting the e�ciency of QS on smaller
ensembles. Indeed, the size of the arrays required to score
the documents over a block of trees depends now on ⌧ in-
stead of |T | (see Table 1 in Section 3). We have, however,
to keep an array that stores the partial scoring computed so
far for each document.
The temporal locality of this approach can be improved by

allowing the algorithm to score blocks of documents together
over the same block of trees before moving to the next block
of documents. To allow the algorithm to score a block of �
documents in a single run we have to replicate in � copies the
array v. Obviously, this increases the space occupancy and
may result in a worse use of the cache. Therefore, we need
to find the best balance between the number of documents �
and the number of trees ⌧ to process in the body of a nested
loop that first runs over the blocks of trees (outer loop) and
then over the blocks of documents to score (inner loop).
This algorithm is called BlockWise-QS (BWQS) and its

e�ciency is discussed in the remaining part of this section.
Table 4 reports average per-document scoring time in µs

of algorithms QS, VPred, and BWQS. The experiments
were conducted on both the MSN-1 and Y!S1 datasets by
varying ⇤ and by fixing the number of trees to 20, 000. It
is worth noting that our QS algorithm can be thought as a
limit case of BWQS, where the blocks are trivially composed
of 1 document and the whole ensemble of trees. VPred

instead vectorizes the process and scores 16 documents at
the time over the entire ensemble. With BWQS the sizes of
document and tree blocks can be instead flexibly optimized
according to the cache parameters. Table 4 reports the best

Per-document scoring time in microsecs

Table 2: Per-document scoring time in µs of QS, VPred, If-Then-Else and Struct+ on MSN-1 and Y!S1
datasets. Gain factors are reported in parentheses.

Method ⇤

Number of trees/dataset

1, 000 5, 000 10, 000 20, 000

MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1

QS

8

2.2 (–) 4.3 (–) 10.5 (–) 14.3 (–) 20.0 (–) 25.4 (–) 40.5 (–) 48.1 (–)

VPred 7.9 (3.6x) 8.5 (2.0x) 40.2 (3.8x) 41.6 (2.9x) 80.5 (4.0x) 82.7 (3.3) 161.4 (4.0x) 164.8 (3.4x)

If-Then-Else 8.2 (3.7x) 10.3 (2.4x) 81.0 (7.7x) 85.8 (6.0x) 185.1 (9.3x) 185.8 (7.3x) 709.0 (17.5x) 772.2 (16.0x)

Struct+ 21.2 (9.6x) 23.1 (5.4x) 107.7 (10.3x) 112.6 (7.9x) 373.7 (18.7x) 390.8 (15.4x) 1150.4 (28.4x) 1141.6 (23.7x)

QS

16

2.9 (–) 6.1 (–) 16.2 (–) 22.2 (–) 32.4 (–) 41.2 (–) 67.8 (–) 81.0 (–)

VPred 16.0 (5.5x) 16.5 (2.7x) 82.4 (5.0x) 82.8 (3.7x) 165.5 (5.1x) 165.2 (4.0x) 336.4 (4.9x) 336.1 (4.1x)

If-Then-Else 18.0 (6.2x) 21.8 (3.6x) 126.9 (7.8x) 130.0 (5.8x) 617.8 (19.0x) 406.6 (9.9x) 1767.3 (26.0x) 1711.4 (21.1x)

Struct+ 42.6 (14.7x) 41.0 (6.7x) 424.3 (26.2x) 403.9 (18.2x) 1218.6 (37.6x) 1191.3 (28.9x) 2590.8 (38.2x) 2621.2 (32.4x)

QS

32

5.2 (–) 9.7 (–) 27.1 (–) 34.3 (–) 59.6 (–) 70.3 (–) 155.8 (–) 160.1 (–)

VPred 31.9 (6.1x) 31.6 (3.2x) 165.2 (6.0x) 162.2 (4.7x) 343.4 (5.7x) 336.6 (4.8x) 711.9 (4.5x) 694.8 (4.3x)

If-Then-Else 34.5 (6.6x) 36.2 (3.7x) 300.9 (11.1x) 277.7 (8.0x) 1396.8 (23.4x) 1389.8 (19.8x) 3179.4 (20.4x) 3105.2 (19.4x)

Struct+ 69.1 (13.3x) 67.4 (6.9x) 928.6 (34.2x) 834.6 (24.3x) 1806.7 (30.3x) 1774.3 (25.2x) 4610.8 (29.6x) 4332.3 (27.0x)

QS

64

9.5 (–) 15.1 (–) 56.3 (–) 66.9 (–) 157.5 (–) 159.4 (–) 425.1 (–) 343.7 (–)

VPred 62.2 (6.5x) 57.6 (3.8x) 355.2 (6.3x) 334.9 (5.0x) 734.4 (4.7x) 706.8 (4.4x) 1309.7 (3.0x) 1420.7 (4.1x)

If-Then-Else 55.9 (5.9x) 55.1 (3.6x) 933.1 (16.6x) 935.3 (14.0x) 2496.5 (15.9x) 2428.6 (15.2x) 4662.0 (11.0x) 4809.6 (14.0x)

Struct+ 109.8 (11.6x) 116.8 (7.7x) 1661.7 (29.5x) 1554.6 (23.2x) 3040.7 (19.3x) 2937.3 (18.4x) 5437.0 (12.8x) 5456.4 (15.9x)

same trivially holds for Struct+. This means that the in-
terleaved traversal strategy ofQS needs to process less nodes
than in a traditional root-to-leaf visit. This mostly explains
the results achieved by QS.

As far as number of branches is concerned, we note that,
not surprisingly, QS and VPred are much more e�cient
than If-Then-Else and Struct+ with this respect. QS

has a larger total number of branches than VPred, which
uses scoring functions that are branch-free. However, those
branches are highly predictable, so that the mis-prediction
rate is very low, thus, confirming our claims in Section 3.

Observing again the timings in Table 2 we notice that, by
fixing the number of leaves, we have a super-linear growth
of QS’s timings when increasing the number of trees. For
example, since on MSN-1 with ⇤ = 64 and 1, 000 trees QS

scores a document in 9.5 µs, one would expect to score a
document 20 times slower, i.e., 190 µs, when the ensemble
size increases to 20, 000 trees. However, the reported timing
of QS in this setting is 425.1 µs, i.e., roughly 44 times slower
than with 1000 trees. This e↵ect is observable only when the
number of leaves ⇤ = {32, 64} and the number of trees is
larger than 5, 000. Table 3 relates this super-linear growth
to the numbers of L3 cache misses.

Considering the sizes of the arrays as reported in Table
1 in Section 3, we can estimate the minimum number of
trees that let the size of the QS’s data structure to exceed
the cache capacity, and, thus, the algorithm starts to have
more cache misses. This number is estimated in 6, 000 trees
when the number of leaves is 64. Thus, we expect that
the number of L3 cache miss starts increasing around this
number of trees. Possibly, this number is slightly larger,
because portions of the data structure may be infrequently
accessed at scoring time, due the the small fraction of false
nodes and associated bitvectors accessed by QS.

These considerations are further confirmed by Figure 4,
which shows the average per-tree per-document scoring time
(µs) and percentage of cache misses QS when scoring the
MSN-1 and the Y!S1 with ⇤ = 64 by varying the number of
trees. First, there exists a strong correlation between QS’s
timings and its number of L3 cache misses. Second, the

number of L3 cache misses starts increasing when dealing
with 9, 000 trees on MSN and 8, 000 trees on Y!S1.

BWQS: a block-wise variant of QS
The previous experiments suggest that improving the cache
e�ciency of QS may result in significant benefits. As in
Tang et al. [12], we can split the tree ensemble in disjoint
blocks of size ⌧ that are processed separately in order to let
the corresponding data structures fit into the faster levels of
the memory hierarchy. This way, we are essentially scoring
each document over each tree blocks that partition the origi-
nal ensemble, thus inheriting the e�ciency of QS on smaller
ensembles. Indeed, the size of the arrays required to score
the documents over a block of trees depends now on ⌧ in-
stead of |T | (see Table 1 in Section 3). We have, however,
to keep an array that stores the partial scoring computed so
far for each document.
The temporal locality of this approach can be improved by

allowing the algorithm to score blocks of documents together
over the same block of trees before moving to the next block
of documents. To allow the algorithm to score a block of �
documents in a single run we have to replicate in � copies the
array v. Obviously, this increases the space occupancy and
may result in a worse use of the cache. Therefore, we need
to find the best balance between the number of documents �
and the number of trees ⌧ to process in the body of a nested
loop that first runs over the blocks of trees (outer loop) and
then over the blocks of documents to score (inner loop).
This algorithm is called BlockWise-QS (BWQS) and its

e�ciency is discussed in the remaining part of this section.
Table 4 reports average per-document scoring time in µs

of algorithms QS, VPred, and BWQS. The experiments
were conducted on both the MSN-1 and Y!S1 datasets by
varying ⇤ and by fixing the number of trees to 20, 000. It
is worth noting that our QS algorithm can be thought as a
limit case of BWQS, where the blocks are trivially composed
of 1 document and the whole ensemble of trees. VPred

instead vectorizes the process and scores 16 documents at
the time over the entire ensemble. With BWQS the sizes of
document and tree blocks can be instead flexibly optimized
according to the cache parameters. Table 4 reports the best

Per-document scoring time in microsecs

Table 2: Per-document scoring time in µs of QS, VPred, If-Then-Else and Struct+ on MSN-1 and Y!S1
datasets. Gain factors are reported in parentheses.

Method ⇤

Number of trees/dataset

1, 000 5, 000 10, 000 20, 000

MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1

QS

8

2.2 (–) 4.3 (–) 10.5 (–) 14.3 (–) 20.0 (–) 25.4 (–) 40.5 (–) 48.1 (–)

VPred 7.9 (3.6x) 8.5 (2.0x) 40.2 (3.8x) 41.6 (2.9x) 80.5 (4.0x) 82.7 (3.3) 161.4 (4.0x) 164.8 (3.4x)

If-Then-Else 8.2 (3.7x) 10.3 (2.4x) 81.0 (7.7x) 85.8 (6.0x) 185.1 (9.3x) 185.8 (7.3x) 709.0 (17.5x) 772.2 (16.0x)

Struct+ 21.2 (9.6x) 23.1 (5.4x) 107.7 (10.3x) 112.6 (7.9x) 373.7 (18.7x) 390.8 (15.4x) 1150.4 (28.4x) 1141.6 (23.7x)

QS

16

2.9 (–) 6.1 (–) 16.2 (–) 22.2 (–) 32.4 (–) 41.2 (–) 67.8 (–) 81.0 (–)

VPred 16.0 (5.5x) 16.5 (2.7x) 82.4 (5.0x) 82.8 (3.7x) 165.5 (5.1x) 165.2 (4.0x) 336.4 (4.9x) 336.1 (4.1x)

If-Then-Else 18.0 (6.2x) 21.8 (3.6x) 126.9 (7.8x) 130.0 (5.8x) 617.8 (19.0x) 406.6 (9.9x) 1767.3 (26.0x) 1711.4 (21.1x)

Struct+ 42.6 (14.7x) 41.0 (6.7x) 424.3 (26.2x) 403.9 (18.2x) 1218.6 (37.6x) 1191.3 (28.9x) 2590.8 (38.2x) 2621.2 (32.4x)

QS

32

5.2 (–) 9.7 (–) 27.1 (–) 34.3 (–) 59.6 (–) 70.3 (–) 155.8 (–) 160.1 (–)

VPred 31.9 (6.1x) 31.6 (3.2x) 165.2 (6.0x) 162.2 (4.7x) 343.4 (5.7x) 336.6 (4.8x) 711.9 (4.5x) 694.8 (4.3x)

If-Then-Else 34.5 (6.6x) 36.2 (3.7x) 300.9 (11.1x) 277.7 (8.0x) 1396.8 (23.4x) 1389.8 (19.8x) 3179.4 (20.4x) 3105.2 (19.4x)

Struct+ 69.1 (13.3x) 67.4 (6.9x) 928.6 (34.2x) 834.6 (24.3x) 1806.7 (30.3x) 1774.3 (25.2x) 4610.8 (29.6x) 4332.3 (27.0x)

QS

64

9.5 (–) 15.1 (–) 56.3 (–) 66.9 (–) 157.5 (–) 159.4 (–) 425.1 (–) 343.7 (–)

VPred 62.2 (6.5x) 57.6 (3.8x) 355.2 (6.3x) 334.9 (5.0x) 734.4 (4.7x) 706.8 (4.4x) 1309.7 (3.0x) 1420.7 (4.1x)

If-Then-Else 55.9 (5.9x) 55.1 (3.6x) 933.1 (16.6x) 935.3 (14.0x) 2496.5 (15.9x) 2428.6 (15.2x) 4662.0 (11.0x) 4809.6 (14.0x)

Struct+ 109.8 (11.6x) 116.8 (7.7x) 1661.7 (29.5x) 1554.6 (23.2x) 3040.7 (19.3x) 2937.3 (18.4x) 5437.0 (12.8x) 5456.4 (15.9x)

same trivially holds for Struct+. This means that the in-
terleaved traversal strategy ofQS needs to process less nodes
than in a traditional root-to-leaf visit. This mostly explains
the results achieved by QS.

As far as number of branches is concerned, we note that,
not surprisingly, QS and VPred are much more e�cient
than If-Then-Else and Struct+ with this respect. QS

has a larger total number of branches than VPred, which
uses scoring functions that are branch-free. However, those
branches are highly predictable, so that the mis-prediction
rate is very low, thus, confirming our claims in Section 3.

Observing again the timings in Table 2 we notice that, by
fixing the number of leaves, we have a super-linear growth
of QS’s timings when increasing the number of trees. For
example, since on MSN-1 with ⇤ = 64 and 1, 000 trees QS

scores a document in 9.5 µs, one would expect to score a
document 20 times slower, i.e., 190 µs, when the ensemble
size increases to 20, 000 trees. However, the reported timing
of QS in this setting is 425.1 µs, i.e., roughly 44 times slower
than with 1000 trees. This e↵ect is observable only when the
number of leaves ⇤ = {32, 64} and the number of trees is
larger than 5, 000. Table 3 relates this super-linear growth
to the numbers of L3 cache misses.

Considering the sizes of the arrays as reported in Table
1 in Section 3, we can estimate the minimum number of
trees that let the size of the QS’s data structure to exceed
the cache capacity, and, thus, the algorithm starts to have
more cache misses. This number is estimated in 6, 000 trees
when the number of leaves is 64. Thus, we expect that
the number of L3 cache miss starts increasing around this
number of trees. Possibly, this number is slightly larger,
because portions of the data structure may be infrequently
accessed at scoring time, due the the small fraction of false
nodes and associated bitvectors accessed by QS.

These considerations are further confirmed by Figure 4,
which shows the average per-tree per-document scoring time
(µs) and percentage of cache misses QS when scoring the
MSN-1 and the Y!S1 with ⇤ = 64 by varying the number of
trees. First, there exists a strong correlation between QS’s
timings and its number of L3 cache misses. Second, the

number of L3 cache misses starts increasing when dealing
with 9, 000 trees on MSN and 8, 000 trees on Y!S1.

BWQS: a block-wise variant of QS
The previous experiments suggest that improving the cache
e�ciency of QS may result in significant benefits. As in
Tang et al. [12], we can split the tree ensemble in disjoint
blocks of size ⌧ that are processed separately in order to let
the corresponding data structures fit into the faster levels of
the memory hierarchy. This way, we are essentially scoring
each document over each tree blocks that partition the origi-
nal ensemble, thus inheriting the e�ciency of QS on smaller
ensembles. Indeed, the size of the arrays required to score
the documents over a block of trees depends now on ⌧ in-
stead of |T | (see Table 1 in Section 3). We have, however,
to keep an array that stores the partial scoring computed so
far for each document.
The temporal locality of this approach can be improved by

allowing the algorithm to score blocks of documents together
over the same block of trees before moving to the next block
of documents. To allow the algorithm to score a block of �
documents in a single run we have to replicate in � copies the
array v. Obviously, this increases the space occupancy and
may result in a worse use of the cache. Therefore, we need
to find the best balance between the number of documents �
and the number of trees ⌧ to process in the body of a nested
loop that first runs over the blocks of trees (outer loop) and
then over the blocks of documents to score (inner loop).
This algorithm is called BlockWise-QS (BWQS) and its

e�ciency is discussed in the remaining part of this section.
Table 4 reports average per-document scoring time in µs

of algorithms QS, VPred, and BWQS. The experiments
were conducted on both the MSN-1 and Y!S1 datasets by
varying ⇤ and by fixing the number of trees to 20, 000. It
is worth noting that our QS algorithm can be thought as a
limit case of BWQS, where the blocks are trivially composed
of 1 document and the whole ensemble of trees. VPred

instead vectorizes the process and scores 16 documents at
the time over the entire ensemble. With BWQS the sizes of
document and tree blocks can be instead flexibly optimized
according to the cache parameters. Table 4 reports the best

Per-document scoring time in microsecs

Table 2: Per-document scoring time in µs of QS, VPred, If-Then-Else and Struct+ on MSN-1 and Y!S1
datasets. Gain factors are reported in parentheses.

Method ⇤

Number of trees/dataset

1, 000 5, 000 10, 000 20, 000

MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1

QS

8

2.2 (–) 4.3 (–) 10.5 (–) 14.3 (–) 20.0 (–) 25.4 (–) 40.5 (–) 48.1 (–)

VPred 7.9 (3.6x) 8.5 (2.0x) 40.2 (3.8x) 41.6 (2.9x) 80.5 (4.0x) 82.7 (3.3) 161.4 (4.0x) 164.8 (3.4x)

If-Then-Else 8.2 (3.7x) 10.3 (2.4x) 81.0 (7.7x) 85.8 (6.0x) 185.1 (9.3x) 185.8 (7.3x) 709.0 (17.5x) 772.2 (16.0x)

Struct+ 21.2 (9.6x) 23.1 (5.4x) 107.7 (10.3x) 112.6 (7.9x) 373.7 (18.7x) 390.8 (15.4x) 1150.4 (28.4x) 1141.6 (23.7x)

QS

16

2.9 (–) 6.1 (–) 16.2 (–) 22.2 (–) 32.4 (–) 41.2 (–) 67.8 (–) 81.0 (–)

VPred 16.0 (5.5x) 16.5 (2.7x) 82.4 (5.0x) 82.8 (3.7x) 165.5 (5.1x) 165.2 (4.0x) 336.4 (4.9x) 336.1 (4.1x)

If-Then-Else 18.0 (6.2x) 21.8 (3.6x) 126.9 (7.8x) 130.0 (5.8x) 617.8 (19.0x) 406.6 (9.9x) 1767.3 (26.0x) 1711.4 (21.1x)

Struct+ 42.6 (14.7x) 41.0 (6.7x) 424.3 (26.2x) 403.9 (18.2x) 1218.6 (37.6x) 1191.3 (28.9x) 2590.8 (38.2x) 2621.2 (32.4x)

QS

32

5.2 (–) 9.7 (–) 27.1 (–) 34.3 (–) 59.6 (–) 70.3 (–) 155.8 (–) 160.1 (–)

VPred 31.9 (6.1x) 31.6 (3.2x) 165.2 (6.0x) 162.2 (4.7x) 343.4 (5.7x) 336.6 (4.8x) 711.9 (4.5x) 694.8 (4.3x)

If-Then-Else 34.5 (6.6x) 36.2 (3.7x) 300.9 (11.1x) 277.7 (8.0x) 1396.8 (23.4x) 1389.8 (19.8x) 3179.4 (20.4x) 3105.2 (19.4x)

Struct+ 69.1 (13.3x) 67.4 (6.9x) 928.6 (34.2x) 834.6 (24.3x) 1806.7 (30.3x) 1774.3 (25.2x) 4610.8 (29.6x) 4332.3 (27.0x)

QS

64

9.5 (–) 15.1 (–) 56.3 (–) 66.9 (–) 157.5 (–) 159.4 (–) 425.1 (–) 343.7 (–)

VPred 62.2 (6.5x) 57.6 (3.8x) 355.2 (6.3x) 334.9 (5.0x) 734.4 (4.7x) 706.8 (4.4x) 1309.7 (3.0x) 1420.7 (4.1x)

If-Then-Else 55.9 (5.9x) 55.1 (3.6x) 933.1 (16.6x) 935.3 (14.0x) 2496.5 (15.9x) 2428.6 (15.2x) 4662.0 (11.0x) 4809.6 (14.0x)

Struct+ 109.8 (11.6x) 116.8 (7.7x) 1661.7 (29.5x) 1554.6 (23.2x) 3040.7 (19.3x) 2937.3 (18.4x) 5437.0 (12.8x) 5456.4 (15.9x)

same trivially holds for Struct+. This means that the in-
terleaved traversal strategy ofQS needs to process less nodes
than in a traditional root-to-leaf visit. This mostly explains
the results achieved by QS.

As far as number of branches is concerned, we note that,
not surprisingly, QS and VPred are much more e�cient
than If-Then-Else and Struct+ with this respect. QS

has a larger total number of branches than VPred, which
uses scoring functions that are branch-free. However, those
branches are highly predictable, so that the mis-prediction
rate is very low, thus, confirming our claims in Section 3.

Observing again the timings in Table 2 we notice that, by
fixing the number of leaves, we have a super-linear growth
of QS’s timings when increasing the number of trees. For
example, since on MSN-1 with ⇤ = 64 and 1, 000 trees QS

scores a document in 9.5 µs, one would expect to score a
document 20 times slower, i.e., 190 µs, when the ensemble
size increases to 20, 000 trees. However, the reported timing
of QS in this setting is 425.1 µs, i.e., roughly 44 times slower
than with 1000 trees. This e↵ect is observable only when the
number of leaves ⇤ = {32, 64} and the number of trees is
larger than 5, 000. Table 3 relates this super-linear growth
to the numbers of L3 cache misses.

Considering the sizes of the arrays as reported in Table
1 in Section 3, we can estimate the minimum number of
trees that let the size of the QS’s data structure to exceed
the cache capacity, and, thus, the algorithm starts to have
more cache misses. This number is estimated in 6, 000 trees
when the number of leaves is 64. Thus, we expect that
the number of L3 cache miss starts increasing around this
number of trees. Possibly, this number is slightly larger,
because portions of the data structure may be infrequently
accessed at scoring time, due the the small fraction of false
nodes and associated bitvectors accessed by QS.

These considerations are further confirmed by Figure 4,
which shows the average per-tree per-document scoring time
(µs) and percentage of cache misses QS when scoring the
MSN-1 and the Y!S1 with ⇤ = 64 by varying the number of
trees. First, there exists a strong correlation between QS’s
timings and its number of L3 cache misses. Second, the

number of L3 cache misses starts increasing when dealing
with 9, 000 trees on MSN and 8, 000 trees on Y!S1.

BWQS: a block-wise variant of QS
The previous experiments suggest that improving the cache
e�ciency of QS may result in significant benefits. As in
Tang et al. [12], we can split the tree ensemble in disjoint
blocks of size ⌧ that are processed separately in order to let
the corresponding data structures fit into the faster levels of
the memory hierarchy. This way, we are essentially scoring
each document over each tree blocks that partition the origi-
nal ensemble, thus inheriting the e�ciency of QS on smaller
ensembles. Indeed, the size of the arrays required to score
the documents over a block of trees depends now on ⌧ in-
stead of |T | (see Table 1 in Section 3). We have, however,
to keep an array that stores the partial scoring computed so
far for each document.
The temporal locality of this approach can be improved by

allowing the algorithm to score blocks of documents together
over the same block of trees before moving to the next block
of documents. To allow the algorithm to score a block of �
documents in a single run we have to replicate in � copies the
array v. Obviously, this increases the space occupancy and
may result in a worse use of the cache. Therefore, we need
to find the best balance between the number of documents �
and the number of trees ⌧ to process in the body of a nested
loop that first runs over the blocks of trees (outer loop) and
then over the blocks of documents to score (inner loop).
This algorithm is called BlockWise-QS (BWQS) and its

e�ciency is discussed in the remaining part of this section.
Table 4 reports average per-document scoring time in µs

of algorithms QS, VPred, and BWQS. The experiments
were conducted on both the MSN-1 and Y!S1 datasets by
varying ⇤ and by fixing the number of trees to 20, 000. It
is worth noting that our QS algorithm can be thought as a
limit case of BWQS, where the blocks are trivially composed
of 1 document and the whole ensemble of trees. VPred

instead vectorizes the process and scores 16 documents at
the time over the entire ensemble. With BWQS the sizes of
document and tree blocks can be instead flexibly optimized
according to the cache parameters. Table 4 reports the best

Per-document scoring time in microsecs

Università La Sapienza – 18 October 2016

Questions & Comments

44

