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reading

Cynthia Dwork, Ravi Kumar, Moni Naor,  D. Sivakumar: 
Rank aggregation methods for the web. 
WWW 2001

(optional) 
Nir Ailon, Moses Charikar, Alantha Newman:
Aggregating inconsistent information: Ranking and clustering.
JACM 55(5), 2008

http://research.compaq.com/SRC/people/Cynthia_Dwork
http://www.wisdom.weizmann.ac.il/~naor
http://www.informatik.uni-trier.de/~ley/pers/hd/c/Charikar:Moses.html
http://www.informatik.uni-trier.de/%7Eley/pers/hd/n/Newman:Alantha.html
http://www.informatik.uni-trier.de/%7Eley/db/journals/jacm/jacm55.html#AilonCN08
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rank aggregation and voting
how can multiple agents aggregate their preferences and make 
a consensus decision?

example : three friends want to go to the cinema

Luca :

Stefano :

Aris :

which movie should they choose?
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what are good properties for a 
voting system?

question considered by marquis de 
Condorcet (1743-1794)

French philosopher, mathematician and 
political scientist

proposed a criterion that voting systems 
should satisfy

known as the Condorcet criterion
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what are good properties for a 
voting system

the Condorcet criterion

if item i defeats every other item in a pairwise majority 
vote, then i should be ranked first

extended Condorcet criterion

if all items in a set X defeat in pairwise comparisons all 
items in the set Y then the items in X should be ranked 
above those in Y

not all voting systems satisfy the Condorcet criterion!



Data mining — Rank aggregation — Sapienza — fall 2016

the Borda count voting system

proposed by Jean-Charles de Borda 
(1733-1799)

French mathematician, physicist, political 
scientist, and sailor

very popular and widely-used system
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in each preference list, assign to item i number of points equal 
to the number of item it defeats 

first position gets n-1 points, second n-2, ..., last 0 points 

the total weight of i is the number of points it accumulates 
from all preference lists

order items in decreasing weight

Borda count satisfies a number of desirable properties, 
but not the Condorcet criterion

the Borda count voting system
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more recent attempts to design 
axiomatic voting systems

objective : 

construct a voting system that satisfies a 
set of natural axioms

Kenneth Arrow, PhD thesis, 1963

Nobel prize in economics, 1972, for 
general economics equilibrium theory 
and welfare theory
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Arrow’s axioms

non-dictatorship : the preferences of an individual should not
become the group ranking without considering the
preferences of others

unanimity (or Pareto optimality) : if every individual prefers one
choice to another, then the group ranking should do the same

freedom from irrelevant alternatives : if a choice is removed,
then the others' order should not change
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impossibility of voting

Arrow’s theorem : 

it is impossible to construct a voting 
system that satisfies the previous set of
three axioms
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impossibility of voting 
Arrow’s axioms

freedom from irrelevant alternatives : if a choice is removed, 
then the others' order should not change

heavily disputed axiom

Borda count violates this axiom
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still..

despite theoretical impossibility, the problem appears in
practice and needs to be addressed

selecting representatives in elections

meta-search engines
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meta-search engines

aggregate rankings from different search engines

obtain better results than any individual one

robust to spam
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the rank-aggregation problem

input

n items (movies, candidates, urls)

k preference lists (orderings) on the items

goal

find a single preference list that respects / agrees as much
as possible with the input preference lists
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Kemeny optimal aggregation

John Kemeny (1926-1992)

Hungarian-American mathematician and 
computer scientist

provided a specific formulation of the 
rank-aggregation problem

(also invented BASIC)
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Kemeny optimal aggregation

input

n items (movies, candidates, urls)

k preference lists (orderings) on the items

goal

find a single preference list that minimizes the total
number of out-of-order pairs
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Luca :

Stefano :

Aris :

Kemeny optimal aggregation  

aggregation :
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preference lists

set of items U

assume n items

a preference list is a bijection (1-to-1 function) from U to 
{1,...,n}

for a preference list σ and item i in U denote by σ(i) the rank 
(order) of i in σ
preference lists can be:

full, partial, top-d
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distances between  
preference lists 

consider preference lists σ and τ over the same set of items U 

how similar are σ and τ?

define a distance function
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Spearman footrule distance

given two lists σ and τ over U, the Spearman footrule distance

is defined as

F(σ,τ) =  ∑i∈U |σ(i) - τ(i)|
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Luca :

Stefano :

Spearman footrule distance 
example

3

1

2

2

F(Luca, Stefano)  =   8
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Kendall-tau distance

given two lists σ and τ over U, the Kendall-tau distance is the

number of pair-wise disagreements

K(σ,τ) =  |{(i,j) such that σ(i)< σ(j) but τ(i)>τ(j)}|
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Kendall-tau distance 
example

K(Luca, Stefano)  =   5

D A

D

D D

D

Luca :

Stefano :
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properties of Spearman footrule 
and Kendall-tau distances

are they metric?

the two distances F and K are related

for any two full preference lists:

K(σ,τ) ≤ F(σ,τ) ≤ 2K(σ,τ) 

definitions for full preference lists

what about partial lists?
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the rank-aggregation problem
input

set U of n items

k preference lists τ1,...,τk 

a distance function D between preference lists

(e.g., F or K)

goal

find preference list τ0 that minimizes total disagreement

D(τ0,τ1...τk) = ∑i=1...k D(τ0,τi)

when D=K, this is Kemeny optimal aggregation
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Luca :

Stefano :

Aris :

1

2

3

4

rank-aggregation with Spearman 
footrule distance

when distance is F the rank aggregation problem can be solved 
in polynomial time

0+3+2=5
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rank-aggregation with  
Kendall-tau distance

when distance is K and k≥4 the rank aggregation problem
is NP-hard!

but optimal preference list with Spearman footrule distance
gives factor 2 approximation 

τF : optimal list according to Spearman footrule

τ0 : optimal list according to Kendall-tau 

K(τF,τ1...τk) ≤ F(τF,τ1...τk) ≤ F(τ0,τ1...τk) ≤ 2K(τ0,τ1...τk) 
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rank-aggregation with  
Kendall-tau distance

any other way to get a factor-2 approximation?

1-median problem in a metric space

algorithm : pick-the-best

try each one of τ1,...,τk as a potential solution and pick 
the best
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algorithm pick-the-best  
is a factor 2 approximation

assume optimal solution τ0

assume algorithm picked τj

assume τx is closest to τ0 among all τ1,...,τk

D(τj,τ1...τk) ≤ D(τx,τ1...τk) 

= ∑i=1...k D(τx,τi)

≤ ∑i=1...k (D(τx,τ0) + D(τ0,τi))

= ∑i=1...k D(τx,τ0) + ∑i=1...k D(τ0,τi)

≤ ∑i=1...k D(τ0,τi)+ ∑i=1...k D(τ0,τi) = 2 D(τ0,τ1...τk)
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yet another algorithm 
KwikSort [Ailon et al]

inspired by QuickSort

view data as a tournament over items in U

tournament: complete directed graph

for each pair i and j in U, 

if the majority of preference lists prefer i over j put a 
directed edge from i to j 
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the KwikSort algorithm

pick a random element i in U

put at the left L all items that point to i

put at the right R all items that i points to

recurse on L and R

KwikSort gives a factor 3 approximation 

but...
...taking the best of pick-the-best and KwikSort gives a 
factor 6/5 approximation!
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Kemeny optimality and 
Condorcet criterion

Kemeny optimal aggregation satisfies the Condorcet criterion

but it is NP-hard to compute

can we have any other aggregation system that satisfies the
Condorcet criterion?
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locally Kemeny optimal 
aggregation

a ranking τ is locally Kemeny optimal if there is no bubble-sort 
swap of two consecutively placed items that produces a 
ranking τ’ such that

K(τ’,τ1...τk) ≤ K(τ,τ1...τk) 

locally Kemeny optimal is not necessarily Kemeny optimal
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locally Kemeny optimal aggregation can be computed in 
polynomial time 

proceed iteratively: in each iteration insert item i in the 
bottom of the list

bubble it up until there is item j such that the majority 
places j over i 

locally Kemeny optimal aggregation satisfies the Condorcet 
and extended Condorcet criterion

can be applied as post-processing to any rank aggregation 
system 

locally Kemeny optimal 
aggregation


