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reading assignment

• your favorite book on probability, computing, and

randomized algorithms, e.g.,

• Randomized algorithms, Motwani and Raghavan

(chapters 3 and 4)

or

• Probability and computing, Mitzenmacher and Upfal

(chapters 2, 3 and 4)
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events and probability

• consider a random process

(e.g., throw a die, pick a card from a deck)

• each possible outcome is a simple event (or sample point)

• the sample space is the set of all possible simple events.

• an event is a set of simple events

(a subset of the sample space)

• with each simple event E we associate a real number

0 ≤ Pr[E ] ≤ 1

which is the probability of E
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probability spaces and probability functions
• sample space Ω: the set of all possible outcomes of the

random process

• family of sets F representing the allowable events:

each set in F is a subset of the sample space Ω

• a probability function Pr : F → R satisfies the following
conditions

1 for any event E , 0 ≤ Pr[E ] ≤ 1

2 Pr[Ω] = 1

3 for any finite (or countably infinite) sequence of pairwise
mutually disjoint events E1,E2, . . .

Pr

⋃
i≥1

Ei

 =
∑
i≥1

Pr[Ei ]
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the union bound

• for any events E1,E2, . . . ,En

Pr

[
n⋃

i=1

Ei

]
≤

n∑
i=1

Pr[Ei ]
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conditional probability

• the conditional probability that event E occurs given that
event F occurs is

Pr[E | F ] =
Pr[E ∩ F ]

Pr[F ]

• well-defined only if Pr[F ] > 0

• we restrict the sample space to the set F

• thus we are interested in Pr[E ∩ F ] “normalized” by Pr[F ]
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independent events

• two events E and F are independent if and only if

Pr[E ∩ F ] = Pr[E ] Pr[F ]

equivalently if and only if

Pr[E | F ] = Pr[E ]
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conditional probability

Pr[E1 ∩ E2] = Pr[E1] Pr[E2 | E1]

generalization for k events E1,E2, . . . ,Ek

Pr[∩ki=1Ei ] = Pr[E1] Pr[E2 | E1] Pr[E3 | E1∩E2] . . .Pr[Ek | ∩k−1i=1 Ei ]
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birthday paradox

Ei : the i -th person has a different birthday than all

1, . . . , i − 1 persons (consider n-day year)

Pr[∩ki=1Ei ] = Pr[E1] Pr[E2 | E1] . . .Pr[Ek | ∩k−1i=1 Ei ]

≤
k∏

i=1

(
1− i − 1

n

)

≤
k∏

i=1

e−(i−1)/n

= e−k(k−1)2/n

for k equal to about
√

2n + 1 the probability is at most 1/e

as k increases the probability drops rapidly
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random variable

• a random variable X on a sample space Ω is a function

X : Ω→ R

• a discrete random variable takes only a finite

(or countably infinite) number of values
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random variable — example

• from birthday paradox setting:

• Ei : the i -th person has a different birthday than all
1, . . . , i − 1 persons

• define the random variable

Xi =


1 the i -th person has different birthday

than all 1, . . . , i − 1 persons
0 otherwise
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expectation and variance of a random variable

• the expectation of a discrete random variable X ,

denoted by E [X ], is given by

E [X ] =
∑
x

x Pr[X = x ],

where the summation is over all values in the range of X

• variance

Var[X ] = σ2
X = E [(X − E [X ])2] = E [(X − µX )2]
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linearity of expectation

• for any two random variables X and Y

E [X + Y ] = E [X ] + E [Y ]

• for a constant c and a random variable X

E [cX ] = c E [X ]

Data mining — Basic concepts on discrete probability 13



coupon collector’s problem

• n types of coupons

• a collector picks coupons

• in each trial a coupon type is chosen at random

• how many trials are needed, in expectation,

until the collector gets all the coupon types?
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coupon collector’s problem — analysis

• let c1, c2, . . . , cX the sequence of coupons picked

• ci ∈ {1, . . . , n}
• call ci success if a new coupon type is picked

• (c1 and cX are always successes)

• divide the sequence in epochs: the i -th epoch starts after

the i -th success and ends with the (i + 1)-th success

• define the random variable Xi = length of the i -th epoch

• easy to see that

X =
n−1∑
i=0

Xi
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coupon collector’s problem — analysis (cont’d)

probability of success in the i -th epoch

pi =
n − i

n

(Xi geometrically distributed with parameter pi)

E [Xi ] =
1

pi
=

n

n − i

from linearity of expectation

E [X ] = E

[
n−1∑
i=0

Xi

]
=

n−1∑
i=0

E [Xi ] =
n−1∑
i=0

n

n − i
= n

n∑
i=1

1

i
= nHn

where Hn is the harmonic number, asymptotically equal to ln n
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deviations

• inequalities on tail probabilities

• estimate the probability that

a random variable deviates from its expectation
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Markov inequality

• let X a random variable taking non-negative values

• for all t > 0

Pr[X ≥ t] ≤ E [X ]

t

or equivalently

Pr[X ≥ k E [X ]] ≤ 1

k
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Markov inequality — proof

• it is E [f (X )] =
∑

x f (x) Pr[X = x ]

• define f (x) = 1 if x ≥ t and 0 otherwise

• then E [f (X )] = Pr[X ≥ t]

• notice that f (x) ≤ x/t implying that

E [f (X )] ≤ E

[
X

t

]
• putting everything together

Pr[X ≥ t] = E [f (X )] ≤ E

[
X

t

]
=

E [X ]

t
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Chebyshev inequality

• let X a random variable with expectaction µX

and standard deviation σX

• then for all t > 0

Pr[|X − µX | ≥ tσX ] ≤ 1

t2
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Chebyshev inequality — proof

• notice that

Pr[|X − µX | ≥ tσX ] = Pr[(X − µX )2 ≥ t2σ2
X ]

• the random variable Y = (X − µX )2 has expectation σ2
X

• apply the Markov inequality on Y
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Chernoff bounds

• let X1, . . . ,Xn independent Poisson trials

• Pr[Xi = 1] = pi (and Pr[Xi = 0] = 1− pi)

• define X =
∑

i Xi , so µ = E [X ] =
∑

i E [Xi ] =
∑

i pi

• for any δ > 0

Pr[X > (1 + δ)µ] ≤ e−
δ2µ
3

and

Pr[X < (1− δ)µ] ≤ e−
δ2µ
2
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Chernoff bound — proof idea

• consider the random variable etX instead of X

(where t is a parameter to be chosen later)

• apply the Markov inequality on etX and work with E [etX ]

• E [etX ] turns into E [
∏

i e
tXi ], which turns into

∏
i E [etXi ],

due to independence

• calculations, and pick a t that yields the most tight bound

optional homework: study the proof by yourself
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Chernoff bound — example

• n coin flips

• Xi = 1 if i -th coin flip is H and 0 if T

• µ = n/2

• pick δ = 2c
√
n

n

• then e−
δ2µ
2 = e−

4c2·n·n
n2·2·2 = e−c

2
drops very fast with c

• so

Pr[X <
n

2
− c
√
n] = Pr[X < (1− δ)µ] ≤ e−

δ2µ
3 = e−c

2

• and similarly with e−
δ2µ
3 = e−2c

2/3

• so, the probability that the number of H’s falls outside

the range [n
2
− c
√
n, n

2
+ c
√
n] is very small
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