
Course : Data mining
Topic : Locality-sensitive hashing (LSH)

Aristides Gionis
Aalto University

Department of Computer Science

visiting in Sapienza University of Rome
fall 2016

Data mining — Similarity search — Sapienza — fall 2016

reading assignment

LRU book : chapter 3

Leskovec, Rajaraman, and Ullman

Mining of massive datasets

Cambridge University Press and online

http://www.mmds.org/

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

recall : finding similar objects

informal definition

two problems

1. similarity search problem
given a set X of objects (off-line)
given a query object q (query time)
find the object in X that is most similar to q

2. all-pairs similarity problem
given a set X of objects (off-line)
find all pairs of objects in X that are similar

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

recall : warm up

let’s focus on problem 1

how to solve a problem for 1-d points?

example:
given X = { 5, 9, 1, 11, 14, 3, 21, 7, 2, 17, 26 }
given q=6, what is the nearest point of q in X?

answer: sorting and binary search!

123 5 7 9 11 14 17 21 26

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

warm up 2

consider a dataset of objects X (offline)

given a query object q (query time)

is q contained in X ?

answer : hashing !

running time ? constant !

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

warm up 2

how we simplified the problem?

looking for exact match

searching for similar objects does not work

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

searching by hashing

123 5 7 9 11 14 17 21 26

1 2
3

5 7

9

1114 17
21

26

17

does 17 exist? yes

6

does 6 exist? nowhat is the nearest neighbor of 6?

18

does 18 exist? no

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

recall : desirable properties of
hash functions

perfect hash functions

universal hash functions

provide 1-to-1 mapping of objects to bucket ids

any two distinct objects are mapped to different buckets

family of hash functions

for any two distinct objects probability of collision is 1/n

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

searching by hashing

should be able to locate similar objects

locality-sensitive hashing
collision probability for similar objects is high enough
collision probability of dissimilar objects is low

randomized data structure
guarantees (running time and quality) hold in expectation
(with high probability)
recall: Monte Carlo / Las Vegas randomized algorithms

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

locality-sensitive hashing

focus on the problem of approximate nearest neighbor

given a set X of objects (off-line)

given accuracy parameter e (off-line)

given a query object q (query time)

find an object z in X, such that

 for all x in Xd(q, z)  (1 + e)d(q, x)

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

locality-sensitive hashing

somewhat easier problem to solve: approximate near neighbor

given a set X of objects (off-line)

given accuracy parameter e and distance R (off-line)

given a query object q (query time)

if there is object y in X s.t.

then return object z in X s.t.

if there is no object y in X s.t.

then return no

d(q, y)  R

d(q, z)  (1 + e)R

d(q, z) � (1 + e)R

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

approximate near neighbor

q
y

z

R

(1+e)R

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

approximate near neighbor

q R

(1+e)R

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

approximate near(est) neighbor

approximate nearest neighbor can be reduced to approximate
near neighbor

how?

let d and D the smallest and largest distances
build approximate near neighbor structures for

 R = d, (1+e)d, (1+e)2d, ..., D

how many?

how to use ?

O(log1+e(D/d))

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

to think about..

for query point q

search all approximate near neighbor structures with

 R = d, (1+e)d, (1+e)2d, ..., D

return a point found in the non-empty ball with the smallest radius

answer is an approximate nearest neighbor for q

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

locality-sensitive hashing
for approximate near neighbor

focus on vectors in {0,1}d

binary vectors of d dimension

distances measured with Hamming distance

definitions for Hamming similarity

dH(x, y) =
dX

i=1

|xi � yi|

sH(x, y) = 1� dH(x, y)

d

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

locality-sensitive hashing
for approximate near neighbor

a family F of hash functions is called (s, c⋅s, p1, p2)-sensitive
if for any two objects x and y

if sH(x,y) ≥ s, then Pr[h(x)=h(y)] ≥ p1

if sH(x,y) ≤ c⋅s, then Pr[h(x)=h(y)] ≤ p2

probability over selecting h from F

c<1, and p1>p2

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

locality-sensitive hashing
for approximate near neighbor

vectors in {0,1}d, Hamming similarity sH(x,y)

consider the hash function family:

sample the i-th bit of a vector

probability of collision

Pr[h(x)=h(y)] = sH(x,y)

(s, c⋅s, p1, p2) = (s, c⋅s, s, c⋅s)-sensitive

c<1 and p1>p2, as required

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

locality-sensitive hashing
for approximate near neighbor

obtained (s, c⋅s, p1, p2) = (s, c⋅s, s, c⋅s)-sensitive function

gap between p1 and p2 too small

amplify the gap:

stack together many hash functions
probability of collision for similar objects decreases
probability of collision for dissimilar objects decreases more

repeat many times
probability of collision for similar objects increases

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

locality-sensitive hashing

0 000000 01 1 1 1 1 1 1 1

111 00 010 10 11 01 0

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

probability of collision

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

similarity

c
o
l
l
i
s
i
o
n

p
r
o
b
a
b
i
l
i
t
y

k=1, m=1
k=10, m=10

Pr[h(x) = h(y)] = 1� (1� s

k)m

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

applicable to both
similarity-search problems

1. similarity search problem
hash all objects of X (off-line)
hash the query object q (query time)
filter out spurious collisions (query time)

2. all-pairs similarity problem
hash all objects of X
check all pairs that collide and filter out spurious ones
(off-line)

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

preprocessing
input: set of vectors X

for i=1...m times
for each x in X

form xi by sampling k random bits of x
store x in bucket given by f(xi)

locality-sensitive hashing for binary vectors
similarity search

query
input: query vector q

Z = ∅

for i=1...m times
form qi by sampling k random bits of q
Zi = { points found in the bucket f(qi) }
Z = Z ∪ Zi

output all z in Z such that sH(q,z) ≥ s

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

all-pairs similarity search
input: set of vectors X

P = ∅

for i=1...m times
for each x in X

form xi by sampling k random bits of x
store x in bucket given by f(xi)

Pi = { pairs of points colliding in a bucket }
P = P ∪ Pi

output all pairs p=(x,y) in P such that sH(x,y) ≥ s

locality-sensitive hashing for binary vectors
all-pairs similarity search

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

real-valued vectors

similarity search for vectors in Rd

quantize : assume vectors in [1...M]d

idea 1: represent each coordinate in binary

sampling a bit does not work

think of 0011111111 and 0100000000

idea 2 : represent each coordinate in unary !

too large space requirements?

but do not have to actually store the vectors in unary

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

generalization of the idea

what might work and what not?

sampling a random bit is specific to binary vectors
and Hamming distance / similarity

amplifying the probability gap is a general idea

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

generalization of the idea

consider object space X and a similarity function s

assume that we are able to design a family of hash functions
such that

Pr[h(x)=h(y)] = s(x,y), for all x and y in X

we can then amplify the probability gap by stacking k functions
 and repeating m times

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

probability of collision

Pr[h(x) = h(y)] = 1� (1� s

k)m

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

similarity

c
o
l
l
i
s
i
o
n

p
r
o
b
a
b
i
l
i
t
y

k=1, m=1
k=10, m=10

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

preprocessing
input: set of vectors X

for i=1...m times
for each x in X

stack k hash functions and form
xi = h1(x)...hk(x)
store x in bucket given by f(xi)

locality-sensitive hashing — generalization
similarity search

query
input: query vector q

Z = ∅

for i=1...m times
stack k hash functions and form qi = h1(q)...hk(q)
Zi = { points found in the bucket f(qi) }
Z = Z ∪ Zi

output all z in Z such that sH(q,z) ≥ s

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

core of the problem

for object space X and a similarity function s

find family of hash functions such that :

Pr[h(x)=h(y)] = s(x,y), for all x and y in X

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

what about the Jaccard coefficient?

set similarity

in Venn diagram:

J(x, y) =
|x \ y|
|x [y|

x

y

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

objective

consider ground set U

want to find hash-function family F such that

each set x ⊆ U maps to h(x)

and Pr[h(x)=h(y)] = J(x,y),

for all x and y in X

h(x) is also known as sketch

J(x, y) =
|x \ y|
|x [y|

x

y

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

assume that the elements of U are randomly ordered

for each set look which element comes first in the ordering

x

y1

2
3

4
5

6

7

8

911
12

1314
10

the more similar two sets, the more likely that the same
element comes first in both

LSH for Jaccard coefficient

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

consider ground set U of m elements

consider random permutation r : U → [1...m]

for any set x = { x1,...,xk } ⊆ U define

h(x) = mini { r(xi) }

(the minimum element in the permutation)

LSH for Jaccard coefficient

then, as desired

Pr[h(x)=h(y)] = J(x,y), for all x and y in X

prove it !

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

scheme known as min-wise independent permutations

extremely elegant but impractical

LSH for Jaccard coefficient

why ?

keeping permutations requires a lot of space

in practice small-degree polynomial hash functions can be used

leads to approximately min-wise independent permutations

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

finding	similar	documents

problem : given a collection of documents, find pairs of
documents that have a lot of common text

applications
identify mirror sites or web pages
plagiarism
similar news articles

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

finding	similar	documents

problem easy when want to find exact copies

how to find near-duplicates?

represent documents as sets

bag of word representation

It was a bright
cold day in
April it

was

a

bright

cold

day

in

April

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

shingling

It was a bright cold day in April
document

It was a bright
 was a bright cold
 a bright cold day
 bright cold day in
 cold day in April

shingles

It was a bright

 was a bright cold

 a bright cold day

 bright cold day in

 cold day in April bag of
shingles

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

finding	similar	documents:	
key	steps

shingling: convert documents (news articles, emails, etc) to sets

optimal shingle length?

LSH: convert large sets to small sketches, while preserving
similarity

compare the signatures instead of the actual documents

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

locality-sensi7ve	hashing	for	
other	data	types?

angle between two vectors?

(related to cosine similarity)

Data mining — Locality-sensitive hashing — Sapienza — fall 2016

other	applica7ons

image recognition, face recognition, matching fingerprints, etc.

