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introduction to graphs and networks



graphs: a simple model

• entities — set of vertices

• pairwise relations among entities
— set of edges

• can add directions, weights,. . .

• used to model many real-world datasets
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analysis of graph datasets in the past

• graphs datasets have been studied in the past

e.g., networks of highways, social networks

• usually these datasets were small

• visual inspection can reveal useful information
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analysis of graph datasets now

• more and larger networks are collected

• networks of thousands, millions, or billions of nodes

• impossible to visualize

Data mining — Introduction to graph mining 5



the internet map
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types of networks

• social networks

• knowledge and information networks

• technology networks

• biological networks
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social networks

• links denote a social interaction

• networks of acquaintances

• collaboration networks

• actor networks
• co-authorship networks
• director networks

• phone-call networks

• e-mail networks

• IM networks

• sexual networks
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knowledge and information networks

• nodes store information
links associate information

• citation network
(directed acyclic)

• the web (directed)

• peer-to-peer networks

• word networks

• networks of trust

• software graphs

• bluetooth networks

• home page/blog networks
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technological networks
• networks built for distribution of a commodity

• the internet, power grids, telephone networks,
airline networks, transportation networks
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biological networks

• biological systems represented as networks
• protein-protein interaction networks
• gene regulation networks
• gene co-expression networks
• metabolic pathways
• the food web
• neural networks
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photo-sharing site
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what is the underlying graph?

• nodes: photos, tags, users, groups, albums, sets,
collections, geo, query, . . .

• edges: upload, belong, tag, create, join, contact, friend,
family, comment, fave, search, click, . . .

• tons of interesting graphs to work with
• tag graph: based on photos
• tag graph: based on users
• user graph: based on favorites
• user graph: based on groups

• which graph to pick? — depends on the application
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network science

• the world is full with networks

• what do we do with them?

• understand their topology and measure their properties

• study their evolution and dynamics

• create realistic models

• create algorithms to make sense of network data
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properties of real-world networks

diverse collections of graphs arising from different phenomena

— are there typical patterns ? yes !

• static networks
• heavy tails
• clustering coefficients
• communities
• small diameters

• time-evolving networks
• densification
• shrinking diameters
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heavy tails
What do the proteins in our bodies, the Internet, a cool
collection of atoms and sexual networks have in
common? One man thinks he has the answer and it is
going to transform the way we view the world.

Scientist 2002

Albert-László Barabási
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degree distribution

• Ck = number of vertices with degree k

• problem : find the probability distribution that fits best
the observed data
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power-law degree distribution

• Ck = number of vertices with degree k , then

Ck = c k−γ

with γ > 1, or
ln Ck = ln c − γ ln k

• plotting ln Ck versus ln k gives a straight line with slope −γ

• heavy-tail distribution : there is a non-negligible fraction of
nodes that has very high degree (hubs)

• scale free : average is not informative

Data mining — Introduction to graph mining 19



power-law degree distribution

power-laws in a wide variety of networks [Newman, 2003]
sheer contrast with Erdős-Rényi random graphs
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power-law degree distribution

do the degrees follow a power-law distribution?
three problems with the initial studies

• graphs generated with traceroute sampling, which
produces power-law distributions, even for regular graphs
[Lakhina et al., 2003].

• methodological flaws in determining the exponent
see [Clauset et al., 2009] for a proper methodology

• other distributions could potentially fit the data better but
were not considered, e.g., lognormal.

disclaimer: we will be referring to these distributions as
heavy-tailed, avoiding a specific characterization
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power-law degree distribution

all networks above have the same degree sequence but
structurally are very different [Li et al., 2005]
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maximum degree

• for random graphs, the maximum degree is highly
concentrated around the average degree z

• for power-law graphs

dmax ≈ n1/(α−1)

• hand-waving argument: solve n Pr[X ≥ d ] = Θ(1)

Data mining — Introduction to graph mining 23



heavy tails, eigenvalues

• log-log plot of eigenvalues of the Internet graph
in decreasing order

• again a power law emerges [Faloutsos et al., 1999]
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heavy tails, triangles

• triangle distribution in flickr

• figure shows the count of nodes with k -triangles vs. k
in log-log scale

• again, heavy tails emerge [Tsourakakis, 2008]
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clustering coefficients

• a proposed measure to capture local clustering is
graph transitivity

T (G) =
3× number of triangles in the network
number of connected triples of vertices

• captures “transitivity of clustering”

• if u is connected to v and
v is connected to w , it is also likely that
u is connected to w
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community structure

loose definition of community: a set of vertices densely
connected to each other and sparsely connected to the rest
of the graph

artificial communities:
http://projects.skewed.de/graph-tool/
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community structure

[Leskovec et al., 2009]

• study community structure in an extensive collection
of real-world networks

• introduce the network community profile (NCP) plot

• characterizes the best possible community
over a range of scales
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community structure

dolphins network and its NCP [Leskovec et al., 2009]
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community structure
• do large real networks have such nice structure ? NO !

NCP of a DBLP graph (source [Leskovec et al., 2009])
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community structure

important findings of [Leskovec et al., 2009]

1. up to certain size k (∼ 100 vertices) there are good cuts

– as the size increases so does the quality of the community

2. at the size k we observe the best possible community

– such communities are typically connected to the remainder
with a single edge

3. above the size k the community quality decreases

– this is because they blend in and gradually disappear
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small-world phenomena
small worlds : graphs with short paths

• Stanley Milgram (1933-1984)
“The man who shocked the world”

• obedience to authority (1963)

• small-World experiment (1967)

— we live in a small-world

for criticism on the small-world experiment, see
“Could It Be a Big World After All? What the Milgram
Papers in the Yale Archives Reveal About the Original
Small World Study” by Judith Kleinfeld
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small-world experiments

• letters were handed out to people in Nebraska to be sent
to a target in Boston

• people were instructed to pass on the letters to someone
they knew on first-name basis

• the letters that reached the destination (64 / 296) followed
paths of length around 6

• Six degrees of separation : (play of John Guare)

also :
— the Kevin Bacon game
— the Erdős number
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small diameter
proposed measures

• diameter : largest shortest-path over all pairs

• effective diameter : upper bound of the shortest path of
90% of the pairs of vertices

• average shortest path : average of the shortest paths over
all pairs of vertices

• characteristic path length : median of the shortest paths
over all pairs of vertices

• hop-plots : plot of |Nh(u)|, the number of neighbors of u at
distance at most h, as a function of h
[Faloutsos et al., 1999].
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time-evolving networks

J. Leskovec J. Kleinberg C. Faloutsos
[Leskovec et al., 2005]

• densification power law:

|Et | ∝ |Vt |α 1 ≤ α ≤ 2

• shrinking diameters: diameter is shrinking over time.
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Erdős-Rényi graphs



random graphs

• a random graph is a set of graphs together with a
probability distribution on that set

• example
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3

Probability 1
3

Probability 1
3

a random graph on {1,2,3} with 2 edges with the
uniform distribution
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random graphs

• Erdős-Rényi (or Gilbert-Erdős-Rényi) random graph model

Paul Erdős Alfréd Rényi
1913 – 1996 1921 – 1970
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random graphs

• the G(n,p) model:

• n : the number of vertices

• 0 ≤ p ≤ 1 : probability

• for each pair (u, v), independently generate the edge (u, v)
with probability p

• G(n,p) a family of graphs, in which a graph with m edges
appears with probability pm(1− p)(n

2)−m

• the G(n,m) model: related, but not identical
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properties of random graphs

• a property P holds almost surely/with high probability
(whp→ 1− o(1)) if

lim
n→∞

Pr[G has P] = 1

• which properties hold as p increases?

• threshold phenomena : many properties appear suddenly

• there exist a probability pc such that

for p < pc the property does not hold a.s.

for p > pc the property holds a.s.
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the giant component

• let z = np be the average degree

• if z < 1 the largest component has size O(log n) a.s.

• if z > 1 the largest component has size Θ(n) a.s.;
the second largest component has size O(log n) a.s.

• if z = ω(log n) the graph is connected a.s.
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phase transition

• if z = 1 there is a phase transition

• the largest component has size O(n2/3)

• the sizes of the components follow a power-law
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degree distribution

• degree distribution : binomial

Ck =

(
n − 1

k

)
pk (1− p)n−1−k

• the limit distribution of the normalized binomial distribution
Bin(n,p) is the normal distribution provided that
np(1− p)→ +∞ as n→ +∞

• if p = λ
n the limit distribution of Bin(n,p) is the

Poisson distribution
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random graphs and real datasets

• a beautiful and elegant theory studied exhaustively

• have been used as idealized generative models

• unfortunately, they don’t always capture reality. . .
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models

• growth with preferential attachment

• structure + randomness→ small-world networks

• forest-fire model
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preferential attachment

R. Albert L. Barabási B. Bollobás O. Riordan

growth model:
• at time n, vertex n is added to the graph
• one edge is attached to the new vertex
• the other vertex is selected at random with probability

proportional to its degree

• obtain a sequence of graphs {G(n)
1 }

• power law distribution arises!
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small-world models

Duncan Watts Steven Strogatz

construct a network with
• small diameter
• positive density of triangles
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small-world models

rewiring probability, p

even for a small value of p, L(G(p)) drops to O(log n),
which C(G(p)) ≈ 3

4
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small-world models
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average distance clustering coefficient

Watts-Strogatz graph on 4 000 vertices, starting from a
10-regular graph

• intuition: if you add a little bit of randomness to a structured
graph, you get the small world effect

• related work: see [Bollobás and Chung, 1988]
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small-world models

Watts-Strogatz on 1 000 vertices with rewiring
probability p = 0.05
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navigation in a small world

Jon Kleinberg

how to find short paths using only local information?
• we will use a simple directed model [Kleinberg, 2000]
• a local algorithm

• can remember the source, the destination and its current
location

• can query the graph to find the long-distance edge at the
current location

Data mining — Introduction to graph mining 52



navigation in a small world
d(u, v): shortest path distance using only original grid edges
directed graph model, parameter r :

• each vertex is connected to its four adjacent vertices

• for each vertex v we add an extra link (v ,u) where u is
chosen with probability proportional to d(v ,u)−r

notice: compared to the Watts-Strogatz model the long range
edges are added in a biased way

(source [Kleinberg, 2000])
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navigation in a small world
• r = 0: random edges, independent of distance
• as r increases the length of the long distance edges

decreases in expectation

results

1. r < 2: the end points of the long distance edges tend to be
uniformly distributed over the vertices of the grid

– is unlikely on a short path to encounter a long distance
edge whose end point is close to the destination

– no local algorithm can find them
2. r = 2: there are short paths
– a short path can be found be the simple algorithm that

always selects the edge that takes closest to the
destination

2. r > 2: there are no short paths, with high probability
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forest-fire model

J. Leskovec J. Kleinberg C. Faloutsos

[Leskovec et al., 2007] propose the forest fire model that is able
to re-produce at a qualitative scale most of the established
properties of real-world networks

Data mining — Introduction to graph mining 55



forest-fire model

the forest-fire model is able to explain

• heavy tailed in-degrees and out-degrees

• densification power law

• shrinking diameter

• ...

• deep cuts at small size scales and the absence of deep
cuts at large size scales
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