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reading assignment

• LRU book: chapter 4

• optional reading

– paper by Alon, Matias, and Szegedy

[Alon et al., 1999]

– paper by Charikar, Chen, and Farach-Colton

[Charikar et al., 2002]

– paper by Cormode and Muthukrishnan

[Cormode and Muthukrishnan, 2005]
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data streams

• a data stream is a massive sequence of data

• too large to store (on disk, memory, cache, etc.)

• examples:

• social media (e.g., twitter feed, foursquare checkins)

• sensor networks (weather, radars, cameras, etc.)

• network traffic (trajectories, source/destination pairs)

• satellite data feed

• how to deal with such data?

• what are the issues?
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issues when working with data streams

• space

• data size is very large

• often not possible to store the whole dataset

• inspect each data item, make some computations,
do not store it, and never get to inspect it again

• sometimes data is stored, but making one single pass
takes a lot of time, especially when the data is stored
on disk

• can afford a small number of passes over the data

• time

• data “flies by” at a high speed

• computation time per data item needs to be small
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data streams

• data items can be of complex types

• documents (tweets, news articles)

• images

• geo-located time-series

• . . .

• to study basic algorithmic ideas we abstract away

application-specific details

• consider the data stream as a sequence of numbers
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data-stream model

 … 23 5 7 12 9 2 34 89 47 8 11 29 63 42 3 15 19 21 5 41 22…

time

algorithm

input

memory
output 

(any time)

31
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data-stream model

• stream: m elements from universe of size n, e.g.,

〈x1, x2, . . . , xm〉 = 6, 1, 7, 4, 9, 1, 5, 1, 5, . . .

• goal: compute a function over the elements of the stream,
e.g., median, number of distinct elements, quantiles, . . .

• constraints:

1 limited working memory, sublinear in n and m
e.g., O(log n + logm),

2 access data sequentially

3 limited number of passes, in some cases only one

4 process each element quickly, e.g., O(1), O(log n), etc.
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warm up: computing some simple functions
• assume that a number can be stored in O(log n) space

• max, min can be computed with O(log n) space

• sum, mean (average) need O(log n + logm) space

µX = E [X ] = E [x1, . . . , xm] =
1

m

m∑
i=1

xi

• what about variance?

Var [X ] = Var [x1, . . . , xm] = E
[
(X − E [X ])2

]
=

1

m

m∑
i=1

(xi − µX )2

• two passes? one pass?
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how to tackle massive data streams?

• a general and powerful technique: sampling

• idea:

1 keep a random sample of the data stream

2 perform the computation on the sample

3 extrapolate

• example: compute the median of a data stream

(how to extrapolate in this case?)

• but . . . how to keep a random sample of a data stream?
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reservoir sampling
• problem: take a uniform sample s from a stream of

unknown length

• algorithm:
• initially s ← x1
• on seeing the t-th element, s ← xt with probability 1/t

• analysis:
• what is the probability that s = xi at some time t ≥ i?

Pr[s = xi ] =
1

i
·
(

1− 1

i + 1

)
· . . . ·

(
1− 1

t − 1

)
·
(

1− 1

t

)
=

1

i
· i

i + 1
· . . . · t − 2

t − 1
· t − 1

t
=

1

t

• how much space? O(log n)

• to get k samples we need O(k log n) bits
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infinite data-stream model
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infinite data-stream model
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sliding-window data-stream model

 … 23 5 7 12 9 2 34 89 47 8 11 29 63 42 3 15 19 21 5 41 22…

time

output 
(any time)

algorithmmemory 29

input
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sliding-window data-stream model

 … 23 5 7 12 9 2 34 89 47 8 11 29 63 42 3 15 19 21 5 41 22…

time

output 
(any time)

algorithmmemory 25

input
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sliding-window data-stream model

 … 23 5 7 12 9 2 34 89 47 8 11 29 63 42 3 15 19 21 5 41 22…

time

output 
(any time)

algorithmmemory 32

input
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sliding-window data-stream model

• does sliding-window model makes computation

easier or harder?

• how to compute sum?

• how to keep a random sample?

• all computations can be done with O(w) space

• can we do better?
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priority sampling for sliding window

• maintain a uniform sample from the last w items

• reservoir sampling does not work in this model

• algorithm:

1 for each xi we pick a random value vi ∈ (0, 1)

2 for window 〈xj−w+1, . . . , xj〉 return xi with smallest vi

• to do this, maintain set of all elements in sliding window
whose v value is minimal among all subsequent values
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priority sampling for sliding window

 … 23    5    7    12    9    2    34    89    47    8    11    29    63 …

.64  .12  .31  .84 .27 .56  .91 
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priority sampling for sliding window

 … 23    5    7    12    9    2    34    89    47    8    11    29    63 …
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priority sampling for sliding window

 … 23    5    7    12    9    2    34    89    47    8    11    29    63 …

.64  .12  .31  .84 .27 .56  .91 
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priority sampling for sliding window

 … 23    5    7    12    9    2    34    89    47    8    11    29    63 …

.64  .12  .31  .84 .27 .56  .91   .42 
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priority sampling for sliding window

 … 23    5    7    12    9    2    34    89    47    8    11    29    63 …

.64  .12  .31  .84 .27 .56  .91   .42 
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priority sampling for sliding window

 … 23    5    7    12    9    2    34    89    47    8    11    29    63 …

.64  .12  .31  .84 .27 .56  .91   .42   .73
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priority sampling for sliding window

 … 23    5    7    12    9    2    34    89    47    8    11    29    63 …

.64  .12  .31  .84 .27 .56  .91   .42   .73
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priority sampling for sliding window

 … 23    5    7    12    9    2    34    89    47    8    11    29    63 …

.64  .12  .31  .84 .27 .56  .91   .42   .73  .20
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priority sampling for sliding window

 … 23    5    7    12    9    2    34    89    47    8    11    29    63 …

.64  .12  .31  .84 .27 .56  .91   .42   .73  .20
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priority sampling for sliding window

 … 23    5    7    12    9    2    34    89    47    8    11    29    63 …

.64  .12  .31  .84 .27 .56  .91   .42   .73  .20
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priority sampling for sliding window

• correctness 1: in any given window each item has

equal chance to be selected as a random sample

• correctness 2: each removed minimal element has

a smaller element that comes after

• space efficiency: how many minimal elements

do we expect at any given point?

• O(logw)

• so, expected space requirement is O(logw log n)

• time efficiency: maintaining list of minimal elements

requires O(logw) time
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mining data streams

• what are real-world applications?

• imagine monitoring a social feed stream

– a stream of hashtags in twitter

– what are interesting questions to ask?

– do data stream considerations (space/time) really matter?
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how to tackle massive data streams?

• a general and powerful technique: sketching

• general idea:

• apply a linear projection that takes high-dimensional data

to a smaller dimensional space

• post-process lower dimensional image to estimate

the quantities of interest
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computing statistics on data streams

• X = (x1, x2, . . . , xm) a sequence of elements

• each xi is a member of the set N = {1, . . . , n}
• mi = |{j : xj = i}| the number of occurrences of i

• define the k-th frequency moment

Fk =
n∑

i=1

mk
i

• F0 is the number of distinct elements

• F1 is the length of the sequence

• F2 is the second moment: index of homogeneity,

size of self-join, and other applications

• F ∗∞ frequency of most frequent element
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computing statistics on data streams

• how much space I need to compute the frequency

moments in a straighforward manner?

• how to compute the frequency moments using less

than O(n logm) space?

• problem studied by Alon, Matias, Szegedy
[Alon et al., 1999]

• sketching: create a sketch that takes much less space

and gives an estimation of Fk
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estimating the number of distinct values (F0)

[Flajolet and Martin, 1985]

• consider a bit vector of length O(log n)

• initialize all bits to 0

• upon seen xi , set:

• the 1-st bit with probability 1/2

• the 2-nd bit with probability 1/4

• . . .

• the i-th bit with probability 1/2i

• important: bits are set deterministically for each xi

• let R be the index of the largest bit set

• return Y = 2R
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estimating the number of distinct values (F0)

[Flajolet and Martin, 1985]

intuition:

• the i -th bit is set with probability 1/2i

• e.g., after seeing roughly 32 distinct elements,

we expect to get the 5-th bit set

• if the bit vector is 00000011111 the estimate is 32
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estimating number of distinct values (F0)

Theorem. For every c > 2, the algorithm computes a

number Y using O(log n) memory bits, such that the

probability that the ratio between Y and F0 is not between

1/c and c is at most 2/c .
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estimating F2

• X = (x1, x2, . . . , xm) a sequence of elements

• each xi is a member of the set N = {1, . . . , n}
• mi = |{j : xj = i}| the number of occurrences of i

• Fk =
∑n

i=1 m
k
i

• algorithm:

• hash each i ∈ {1, . . . , n} to a random εi ∈ {−1,+1}
• maintain sketch Z =

∑
i εimi

just need space O(log n + logm)

• take X = Z 2

• return the average Y of k such estimates X1, . . . ,Xk

• Y = 1
k

∑k
j=1 Xj where k = 16

λ2
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expectation of the estimate is correct

E [X ] = E
[
Z 2
]

= E

( n∑
i=1

εimi

)2


=
n∑

i=1

m2
i E
[
ε2i
]

+ 2
∑
i<j

mimjE [εi ]E [εj ]

=
n∑

i=1

m2
i = F2
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accuracy of the estimate

easy to show

E
[
X 2
]

=
n∑

i=1

m4
i + 6

∑
i<j

m2
i m

2
j

which gives

Var [X ] = E
[
X 2
]
− E [X ]2 = 4

∑
i<j

m2
i m

2
j ≤ 2F 2

2

and by Chebyshev’s inequality

Pr[|Y−F2| ≥ λF2] ≤ Var [Y ]

λ2F 2
2

=
Var [X ] /k

λ2F 2
2

≤ 2F 2
2 /k

λ2F 2
2

=
2

kλ2
=

1

8
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finding frequent items in a data stream

• optional reading :

paper by Charikar, Chen, and Farach-Colton

[Charikar et al., 2002]
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finding frequent items in a data stream

• consider again a data stream

• X = (x1, x2, . . . , xm) a data stream

• each xi is a member of the set N = {1, . . . , n}
• mi = |{j : xj = i}| the number of occurrences of i

• fi = mi/m the frequency of item i

• problem : estimate most frequent items in data stream
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finding frequent items in a data stream

• problem formalization

• rename items {o1, . . . , on} so that m1 ≥ . . . ≥ mn

• given k < n want to return top-k items o1, . . . , ok
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finding frequent items in a data stream

• problem formalization — first attempt

• problem FindCandidateTop(X , k , `)

– given stream X and integers k and `

– return list of ` items, so that top most frequent k items

of X occur in the list

• should return all most frequent items
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finding frequent items in a data stream

• FindCandidateTop(X , k , `) can be too hard to solve

• consider the case mk = m`+1 + 1

– i.e., number of occurences of k-th frequent item

exceeds only by 1 the number of occurences of

the (` + 1)-th frequent item

• almost impossible to find a list that contains the k most

frequent items
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finding frequent items in a data stream

• problem formalization — second attempt

• problem FindApproxTop(X , k , ε)

– given stream X , integer k , and real ε < 1

– return list of k items, so that for each item i in the list

it is mi ≥ (1− ε)mk

• no guarantee to return all most frequent items,

but if return an item it should be frequent enough
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finding frequent items in a data stream

• problem : FindCandidateTop(X , k , `)

• algorithm : Sampling

• modification of reservoir sampling

– keep a list of sampled items, plus a counter for each item

– if an item is sampled again, increment its counter
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analysis of Sampling algorithm

• let x the number of items need to keep in the sample

• probability to be included in the sample is x/m

• want to ensure that ok appears in the sample

• need to set x/m at least O((logm)/mk)

• so x should be at least O((logm)/fk)

• so we have solution for

FindCandidateTop(X , k ,O((logm)/fk))

• limitation : it requires knowing m and fk
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finding frequent items in a data stream

• problem : FindApproxTop(X , k , ε)

• algorithm : CountSketch

– based on sketching techniques

• intuition

– use a hash function s and a counter c

– function s hashes objects to {−1,+1}

– for each item oi seen in the stream, set c ← c + s[oi ]

– then E [c · s[oi ]] = mi (prove it!)

– so, estimate mi by c · s[oi ]
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the CountSketch algorithm

• problem with using one hash function and one counter

– very high variance

• remedy 1

use t hash functions s1, . . . , st and t counters c1, . . . , ct

– for each item oi seen in the stream,

set cj ← cj + sj [oi ], for all j = 1, . . . , t

– to estimate mi take median of {c1 · s1[oi ], . . . , ct · st [oi ]}
(as before E [cj · sj [oi ]] = mi for all j = 1, . . . , t)
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the CountSketch algorithm

• problem with previous idea

– high-frequency items (e.g., o1) may spoil estimates of

lower-frequency items (e.g., ok)

• remedy 2

– do not update all counters with all items

– replace each counter with a hash table of b counters

– items update different subsets of counters,

one per hash table

– each item gets enough high-confidence estimates

(those avoiding collisions with high-frequency elements)
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the CountSketch algorithm

• use parameters t and b

• let h1, . . . , ht be hash functions from items to 1, . . . , b

• let s1, . . . , st be hash functions from items to {−1,+1}
• consider t × b table of counters

• for each item oi seen in the stream,

set hj [oi ]← hj [oi ] + sj [oi ], for all j = 1, . . . , t

• to estimate mi take median of

{h1[oi ] · s1[oi ], . . . , ht [oi ] · st [oi ]}
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an improved data stream summary

• the CountMinSketch data stream summary

• optional reading

paper by Cormode and Muthukrishnan

[Cormode and Muthukrishnan, 2005]
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the CountMinSketch data stream summary

• limitations of existing sketches

– model limitations (a sequence of items / numbers)

– space required is O( 1
ε2

)

recall that quarantees are quantified by ε, δ parameters

ε : accuracy

δ : probability of failure

– update time proportional to the whole sketch

– different sketch for each summary

• CountMinSketch addresses all those limitations
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incremental data-stream model

• consider a vector x(t) = {x1(t), . . . , xn(t)}
• number of coordinates n potentially very large

• x(t) the values of vector at time t

• at each time t a vector coordinate is updated

• data stream : updates (it , ct) for t = 1, . . .

• then
xit (t)← xit (t − 1) + ct

and
xj(t)← xj(t − 1), for j 6= it
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incremental data-stream model

• generalization of previous model

previous model was ct = 1

• special cases

– cash register model : ct ≥ 0

– turnstile model : ct can be negative

– non-negative turnstile model : xi(t) ≥ 0

– general turnstile model : xi(t) can be negative
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the CountMinSketch data stream summary

• interesting queries that we would like to handle

– point query Q(i) : approximate xi

– range query Q(`, r) : approximate
∑r

i=` xi

– inner product Q(x, y) : approximate x · y =
∑n

i=1 xi yi

– φ-quantiles

– heavy-hitters : most frequent items

given frequency threshold φ, find items i for which

xi ≥ (φ− ε)||x||1 for some ε < φ
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the CountMinSketch data structure

• similar to CountSketch

• a table of counters C of dimension d × w

• d hash functions h1, .., hd from {1, .., n} to {1, ..,w}
chosen from a pairwise-independent family

C =

 C [1, 1] · · · C [1,w ]
...

. . .
...

C [d , 1] · · · C [d ,w ]


• parameters d and w specify the space requirements

depend on error bounds we want to achieve
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CountMinSketch : update summary

• given (it , ct) update one counter in each row of C ,

in particular

C [j , hj(it)]← C [j , hj(it)] + ct

for all j = 1, . . . , d
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CountMinSketch : point query

• the answer to Q(i) is x̂i = minj C [j , hj(i)]

• theorem : the estimate x̂i satisfies

(i) xi ≤ x̂i

(ii) x̂i ≤ xi + ε||x||1 with prob at least 1− δ
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CountMinSketch

• similar type of estimates for other queries

– range, inner product, etc.

• parameters are set to

d =

⌈
log

1

δ

⌉
and w =

⌈
1

ε

⌉

– improved space ; instead of usual O( 1
ε2

)

– improved update time : access only d counters
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