Course : Data mining Lecture : Mining data streams

Aristides Gionis Department of Computer Science Aalto University

visiting in Sapienza University of Rome fall 2016

reading assignment

- LRU book: chapter 4
- optional reading
- paper by Alon, Matias, and Szegedy
 [Alon et al., 1999]
- paper by Charikar, Chen, and Farach-Colton [Charikar et al., 2002]
- paper by Cormode and Muthukrishnan [Cormode and Muthukrishnan, 2005]

data streams

- a data stream is a massive sequence of data
- too large to store (on disk, memory, cache, etc.)
- examples:
 - social media (e.g., twitter feed, foursquare checkins)
 - sensor networks (weather, radars, cameras, etc.)
 - network traffic (trajectories, source/destination pairs)
 - satellite data feed
- how to deal with such data?
- what are the issues?

issues when working with data streams

• space

- data size is very large
- often not possible to store the whole dataset
- inspect each data item, make some computations, do not store it, and never get to inspect it again
- sometimes data is stored, but making one single pass takes a lot of time, especially when the data is stored on disk
- can afford a small number of passes over the data

• time

- data "flies by" at a high speed
- computation time per data item needs to be small

data streams

- data items can be of complex types
 - documents (tweets, news articles)
 - images
 - geo-located time-series
 - ...
- to study basic algorithmic ideas we abstract away application-specific details
- consider the data stream as a sequence of numbers

data-stream model

data-stream model

• stream: *m* elements from universe of size *n*, e.g.,

 $\langle x_1, x_2, \ldots, x_m \rangle = 6, 1, 7, 4, 9, 1, 5, 1, 5, \ldots$

- goal: compute a function over the elements of the stream, e.g., median, number of distinct elements, quantiles, ...
- constraints:
 - limited working memory, sublinear in n and m e.g., \$\mathcal{O}(\log n + \log m)\$,
 - 2 access data sequentially
 - 3 limited number of passes, in some cases only one
 - 4 process each element quickly, e.g., $\mathcal{O}(1)$, $\mathcal{O}(\log n)$, etc.

warm up: computing some simple functions

- assume that a number can be stored in $\mathcal{O}(\log n)$ space
- max, min can be computed with $\mathcal{O}(\log n)$ space
- sum, mean (average) need $O(\log n + \log m)$ space

$$\mu_X = \mathbb{E}[X] = \mathbb{E}[x_1, \dots, x_m] = \frac{1}{m} \sum_{i=1}^m x_i$$

• what about variance?

$$\mathbb{V}ar[X] = \mathbb{V}ar[x_1, \dots, x_m] = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right]$$
$$= \frac{1}{m}\sum_{i=1}^m (x_i - \mu_X)^2$$

• two passes? one pass?

how to tackle massive data streams?

- a general and powerful technique: sampling
- idea:
 - 1 keep a random sample of the data stream
 - 2 perform the computation on the sample
 - extrapolate
- example: compute the median of a data stream (how to extrapolate in this case?)
- but ... how to keep a random sample of a data stream?

reservoir sampling

- problem: take a uniform sample *s* from a stream of unknown length
- algorithm:
 - initially $s \leftarrow x_1$
 - on seeing the *t*-th element, $s \leftarrow x_t$ with probability 1/t
- analysis:
 - what is the probability that $s = x_i$ at some time $t \ge i$?

$$\Pr[s = x_i] = \frac{1}{i} \cdot \left(1 - \frac{1}{i+1}\right) \cdot \ldots \cdot \left(1 - \frac{1}{t-1}\right) \cdot \left(1 - \frac{1}{t}\right)$$
$$= \frac{1}{i} \cdot \frac{i}{i+1} \cdot \ldots \cdot \frac{t-2}{t-1} \cdot \frac{t-1}{t} = \frac{1}{t}$$

- how much space? $\mathcal{O}(\log n)$
- to get k samples we need $\mathcal{O}(k \log n)$ bits

infinite data-stream model

infinite data-stream model

- does sliding-window model makes computation easier or harder?
- how to compute sum?
- how to keep a random sample?
- all computations can be done with $\mathcal{O}(w)$ space
- can we do better?

- maintain a uniform sample from the last w items
- reservoir sampling does not work in this model
- algorithm:
 - **1** for each x_i we pick a random value $v_i \in (0, 1)$
 - **2** for window $\langle x_{j-w+1}, \ldots, x_j \rangle$ return x_i with smallest v_i
 - to do this, maintain set of all elements in sliding window whose v value is minimal among all subsequent values

... 23 5 7 12 9 2 34 89 47 8 11 29 63... .64 .12 .31 .84 .27 .56 .91

... 23 5 7 12 9 2 34 89 47 8 11 29 63... .64 .12 .31 .84 .27 .56 .91 .42 .73

... 23 5 7 12 9 2 34 89 47 8 11 29 63... .64 .12 .31 .84 .27 .56 .91 .42 .73 .20

... 23 5 7 12 9 2 34 89 47 8 11 29 63... .64 .12 .31 .84 .27 .56 .91 .42 .73 .20

- correctness 1: in any given window each item has equal chance to be selected as a random sample
- correctness 2: each removed minimal element has a smaller element that comes after
- space efficiency: how many minimal elements do we expect at any given point?
- $O(\log w)$
- so, expected space requirement is $\mathcal{O}(\log w \log n)$
- time efficiency: maintaining list of minimal elements requires O(log w) time

mining data streams

- what are real-world applications?
- imagine monitoring a social feed stream
- a stream of hashtags in twitter
- what are interesting questions to ask?
- do data stream considerations (space/time) really matter?

how to tackle massive data streams?

- a general and powerful technique: sketching
- general idea:
- apply a linear projection that takes high-dimensional data to a smaller dimensional space
- post-process lower dimensional image to estimate the quantities of interest

computing statistics on data streams

- $X = (x_1, x_2, \dots, x_m)$ a sequence of elements
- each x_i is a member of the set $N = \{1, \ldots, n\}$
- $m_i = |\{j : x_j = i\}|$ the number of occurrences of i
- define the *k*-th frequency moment

$$F_k = \sum_{i=1}^n m_i^k$$

- *F*₀ is the number of distinct elements
- *F*₁ is the length of the sequence
- *F*₂ is the second moment: index of homogeneity, size of self-join, and other applications
- F^*_{∞} frequency of most frequent element

computing statistics on data streams

- how much space I need to compute the frequency moments in a straighforward manner?
- how to compute the frequency moments using less than O(n log m) space?
- problem studied by Alon, Matias, Szegedy [Alon et al., 1999]
- sketching: create a sketch that takes much less space and gives an estimation of F_k

estimating the number of distinct values (F_0)

[Flajolet and Martin, 1985]

- consider a bit vector of length $O(\log n)$
- initialize all bits to 0
- upon seen x_i, set:
 - the 1-st bit with probability 1/2
 - the 2-nd bit with probability 1/4
 - . . .
 - the *i*-th bit with probability $1/2^i$
- important: bits are set deterministically for each x_i
- let R be the index of the largest bit set
- return $Y = 2^R$

estimating the number of distinct values (F_0)

[Flajolet and Martin, 1985] intuition:

- the *i*-th bit is set with probability $1/2^i$
- e.g., after seeing roughly 32 distinct elements, we expect to get the 5-th bit set
- if the bit vector is 00000011111 the estimate is 32

estimating number of distinct values (F_0)

Theorem. For every c > 2, the algorithm computes a number Y using $O(\log n)$ memory bits, such that the probability that the ratio between Y and F_0 is not between 1/c and c is at most 2/c.

estimating F_2

- $X = (x_1, x_2, \dots, x_m)$ a sequence of elements
- each x_i is a member of the set $N = \{1, \ldots, n\}$
- $m_i = |\{j : x_j = i\}|$ the number of occurrences of i
- $F_k = \sum_{i=1}^n m_i^k$
- algorithm:
- hash each $i \in \{1, \ldots, n\}$ to a random $\epsilon_i \in \{-1, +1\}$
- maintain sketch Z = ∑_i ε_im_i just need space O(log n + log m)
- take $X = Z^2$
- return the average Y of k such estimates X_1, \ldots, X_k

•
$$Y = \frac{1}{k} \sum_{j=1}^{k} X_j$$
 where $k = \frac{16}{\lambda^2}$

expectation of the estimate is correct

$$\mathbb{E}[X] = \mathbb{E}[Z^2]$$

$$= \mathbb{E}\left[\left(\sum_{i=1}^n \epsilon_i m_i\right)^2\right]$$

$$= \sum_{i=1}^n m_i^2 \mathbb{E}\left[\epsilon_i^2\right] + 2\sum_{i < j} m_i m_j \mathbb{E}\left[\epsilon_i\right] \mathbb{E}\left[\epsilon_j\right]$$

$$= \sum_{i=1}^n m_i^2 = F_2$$

accuracy of the estimate

easy to show

$$\mathbb{E}\left[X^2\right] = \sum_{i=1}^n m_i^4 + 6\sum_{i < j} m_i^2 m_j^2$$

which gives

$$\mathbb{V}ar[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = 4\sum_{i < j} m_i^2 m_j^2 \le 2F_2^2$$

and by Chebyshev's inequality

$$\Pr[|Y - F_2| \ge \lambda F_2] \le \frac{\mathbb{V}ar[Y]}{\lambda^2 F_2^2} = \frac{\mathbb{V}ar[X]/k}{\lambda^2 F_2^2} \le \frac{2F_2^2/k}{\lambda^2 F_2^2} = \frac{2}{k\lambda^2} = \frac{1}{8}$$

• optional reading :

paper by Charikar, Chen, and Farach-Colton [Charikar et al., 2002]

- consider again a data stream
- $X = (x_1, x_2, \dots, x_m)$ a data stream
- each x_i is a member of the set $N = \{1, \ldots, n\}$
- $m_i = |\{j : x_j = i\}|$ the number of occurrences of i
- $f_i = m_i/m$ the frequency of item *i*

• problem : estimate most frequent items in data stream

- problem formalization
- rename items $\{o_1, \ldots, o_n\}$ so that $m_1 \ge \ldots \ge m_n$
- given k < n want to return top-k items o_1, \ldots, o_k

- problem formalization first attempt
- problem FINDCANDIDATETOP(X, k, ℓ)
- given stream X and integers k and ℓ
- return list of ℓ items, so that top most frequent k items of X occur in the list
- should return all most frequent items

- FINDCANDIDATETOP (X, k, ℓ) can be too hard to solve
- consider the case $m_k = m_{\ell+1} + 1$
- i.e., number of occurences of k-th frequent item exceeds only by 1 the number of occurences of the $(\ell + 1)$ -th frequent item
- almost impossible to find a list that contains the *k* most frequent items

- problem formalization second attempt
- problem FINDAPPROXTOP(X, k, ϵ)
- given stream X, integer k, and real $\epsilon < 1$
- return list of k items, so that for each item i in the list it is $m_i \ge (1 \epsilon)m_k$
- no guarantee to return all most frequent items, but if return an item it should be frequent enough

- problem : FINDCANDIDATETOP (X, k, ℓ)
- algorithm : **SAMPLING**
- modification of reservoir sampling
- keep a list of sampled items, plus a counter for each item
- if an item is sampled again, increment its counter

analysis of **SAMPLING** algorithm

- let x the number of items need to keep in the sample
- probability to be included in the sample is x/m
- want to ensure that o_k appears in the sample
- need to set x/m at least $\mathcal{O}((\log m)/m_k)$
- so x should be at least $O((\log m)/f_k)$
- so we have solution for FINDCANDIDATETOP(X, k, O((log m)/f_k))
- limitation : it requires knowing m and f_k

- problem : FINDAPPROXTOP(X, k, ϵ)
- algorithm : COUNTSKETCH
- based on sketching techniques
- intuition
- use a hash function s and a counter c
- function s hashes objects to $\{-1,+1\}$
- for each item o_i seen in the stream, set $c \leftarrow c + s[o_i]$
- then $\mathbb{E}[c \cdot s[o_i]] = m_i$ (prove it!)
- so, estimate m_i by $c \cdot s[o_i]$

the **COUNTSKETCH** algorithm

- problem with using one hash function and one counter
- very high variance
- remedy 1

use t hash functions s_1, \ldots, s_t and t counters c_1, \ldots, c_t

- for each item o_i seen in the stream, set $c_j \leftarrow c_j + s_j[o_i]$, for all $j = 1, \ldots, t$
- to estimate m_i take median of $\{c_1 \cdot s_1[o_i], \dots, c_t \cdot s_t[o_i]\}$ (as before $\mathbb{E}[c_j \cdot s_j[o_i]] = m_i$ for all $j = 1, \dots, t$)

the **COUNTSKETCH** algorithm

- problem with previous idea
- high-frequency items (e.g., o₁) may spoil estimates of lower-frequency items (e.g., o_k)
- remedy 2
- do not update all counters with all items
- replace each counter with a hash table of b counters
- items update different subsets of counters, one per hash table
- each item gets enough high-confidence estimates (those avoiding collisions with high-frequency elements)

the **COUNTSKETCH** algorithm

- use parameters t and b
- let h_1, \ldots, h_t be hash functions from items to $1, \ldots, b$
- let s_1, \ldots, s_t be hash functions from items to $\{-1, +1\}$
- consider $t \times b$ table of counters
- for each item o_i seen in the stream,
 set h_j[o_i] ← h_j[o_i] + s_j[o_i], for all j = 1,..., t
- to estimate m_i take median of {h₁[o_i] · s₁[o_i], ..., h_t[o_i] · s_t[o_i]}

an improved data stream summary

- the **COUNTMINSKETCH** data stream summary
- optional reading paper by Cormode and Muthukrishnan [Cormode and Muthukrishnan, 2005]

the ${\bf COUNTMINSKETCH}$ data stream summary

- limitations of existing sketches
- model limitations (a sequence of items / numbers)
- space required is $\mathcal{O}(\frac{1}{\epsilon^2})$ recall that quarantees are quantified by ϵ , δ parameters
 - ϵ : accuracy
 - δ : probability of failure
- update time proportional to the whole sketch
- different sketch for each summary
- CountMinSketch addresses all those limitations

incremental data-stream model

- consider a vector $\mathbf{x}(t) = \{x_1(t), \dots, x_n(t)\}$
- number of coordinates *n* potentially very large
- $\mathbf{x}(t)$ the values of vector at time t
- at each time t a vector coordinate is updated
- data stream : updates (i_t, c_t) for t = 1, ...
- then

$$\mathsf{x}_{i_t}(t) \leftarrow \mathsf{x}_{i_t}(t-1) + c_t$$

and

$$x_j(t) \leftarrow x_j(t-1), \text{ for } j \neq i_t$$

incremental data-stream model

• generalization of previous model previous model was $c_t = 1$

• special cases

- cash register model : $c_t \ge 0$
- turnstile model : c_t can be negative
 - non-negative turnstile model : $x_i(t) \ge 0$
 - general turnstile model : $x_i(t)$ can be negative

the ${\rm COUNT}MINS{\rm KETCH}$ data stream summary

- interesting queries that we would like to handle
- point query Q(i) : approximate x_i
- range query $\mathcal{Q}(\ell, r)$: approximate $\sum_{i=\ell}^{r} x_i$
- inner product $Q(\mathbf{x}, \mathbf{y})$: approximate $\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i$
- ϕ -quantiles
- heavy-hitters : most frequent items given frequency threshold ϕ , find items *i* for which $x_i \ge (\phi - \epsilon) ||\mathbf{x}||_1$ for some $\epsilon < \phi$

the ${\rm COUNT}MINS{\rm KETCH}$ data structure

- similar to COUNTSKETCH
- a table of counters C of dimension $d \times w$
- d hash functions h₁, ..., h_d from {1, ..., n} to {1, ..., w} chosen from a pairwise-independent family

$$C = \left(egin{array}{cccc} C[1,1] & \cdots & C[1,w] \ dots & \ddots & dots \ C[d,1] & \cdots & C[d,w] \end{array}
ight)$$

 parameters d and w specify the space requirements depend on error bounds we want to achieve

COUNTMINSKETCH: update summary

given (*i_t*, *c_t*) update one counter in each row of *C*,
 in particular

 $C[j,h_j(i_t)] \leftarrow C[j,h_j(i_t)] + c_t$ for all $j=1,\ldots,d$

COUNTMINSKETCH : point query

- the answer to Q(i) is $\hat{x}_i = \min_j C[j, h_j(i)]$
- theorem : the estimate x̂_i satisfies
 (i) x_i ≤ x̂_i
 (ii) x̂_i ≤ x_i + ε||**x**||₁ with prob at least 1 − δ

CountMinSketch

- similar type of estimates for other queries
- range, inner product, etc.
- parameters are set to

$$d = \left\lceil \log \frac{1}{\delta} \right\rceil$$
 and $w = \left\lceil \frac{1}{\epsilon} \right\rceil$

- improved space ; instead of usual $\mathcal{O}(\frac{1}{\epsilon^2})$
- improved update time : access only d counters

references I

- Alon, N., Matias, Y., and Szegedy, M. (1999).
 The space complexity of approximating the frequency moments.
 J. Comput. Syst. Sci., 58(1):137–147.
- Charikar, M., Chen, K., and Farach-Colton, M. (2002).Finding frequent items in data streams.

In International Colloquium on Automata, Languages, and Programming, pages 693–703.

Cormode, G. and Muthukrishnan, S. (2005).

An improved data stream summary: the count-min sketch and its applications.

Journal of Algorithms, 55(1):58–75.

Flajolet, P. and Martin, N. G. (1985).
 Probabilistic counting algorithms for data base applications.
 Journal of Computer and System Sciences, 31(2):182–209.