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algorithmic tools



efficiency considerations

e data in the web and social-media are typically of extremely
large scale (easily reach to billions)

e how to compute simple graph statistics?

e even quadratic algorithms are not feasible in practice
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hashing and sketching

e probabilistic / approximate methods

e sketching : create sketches that summarize the data and
allow to estimate simple statistics with small space

e hashing : hash objects in such a way that similar objects
have larger probability of mapped to the same value than
non-similar objects
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estimator theorem

e consider a set of items U
e afraction p of them have a specific property
estimate p by sampling

how many samples N are needed?

4 2
N > ——log —.
~ p 95

for an e-approximation with probability at least 1 — ¢
notice: it does not depend on |U| (!)
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use the Chernoff bound to derive the estimator theorem
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applications of the algorithmic tools to real scenarios



clustering coefficient and triangles



clustering coefficient

3 x number of triangles in the network
~ number of connected triples of vertices

e how to compute it?
e how to compute the number of triangles in a graph?
e assume that the graph is very large, stored in disk

[Buriol et al., 2006]
e count triangles when graph is seen as a data stream
e two models:
— edges are stored in any order
— edges in order : all edges incident to one vertex are
stored sequentially
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counting triangles

¢ brute-force algorithm is checking every triple of vertices
e obtain an approximation by sampling triples
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sampling algorithm for counting triangles

how many samples are required?

let T be the set of all triples and
T; the set of triples that have / edges, i = 0,1,2,3

by the estimator theorem, to get an e-approximation,
with probability 1 — ¢, the number of samples should be
1711 g ]

N > O(|T3|:2|Ogg)

but | T| can be very large compared to | 75|
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counting triangles

e incidence model : all edges incident to each vertex appear
in order in the stream

e sample connected triples
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sampling algorithm for counting triangles

e incidence model
 consider sample space S = {b-a-c | (a.b).(a.c) € E}
o [S] =2 di(d—1)/2

1: sample X C S (paths b-a-c)
2: estimate fraction of X for which edge (b, ¢) is present
3: scale by |S|

e gives (e, 0) approximation
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counting triangles — incidence stream model

SAMPLETRIANGLE [Buriol et al., 2006]
1st pass
count the number of paths of length 2 in the stream
2nd pass
uniformly choose one path (a, b, ¢)
3rd pass
if(b,c)e E)yp=1else =0
return 5
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counting triangles — incidence stream model

SAMPLETRIANGLE [Buriol et al., 2006]
1st pass
count the number of paths of length 2 in the stream
2nd pass
uniformly choose one path (a, b, ¢)
3rd pass
if(b,c)e E)yp=1else =0
return 5

we have E[5] = %, with [To| +3|T5| = 3, du(d2r1), S0

7ol =Bl Y 2%

and space needed is O((1 + 7)1 log 1)

[Ta]
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properties of the sampling space

it should be possible to
o estimate the size of the sampling space

e sample an element uniformly at random
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@ compute triangles in 3 passes when edges
appear in arbitrary order

® compute triangles in 1 pass when edges
appear in arbitrary order

® compute triangles in 1 pass in the incidence model
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counting graph minors



counting other minors

e count all minors in a very large graphs
— connected subgraphs
— size3and 4
— directed or undirected graphs

e why?

e modeling networks, “signature” structures
e.g., copying model

e anomaly detection, e.g., spam link farms
[Alon, 2007, Bordino et al., 2008]
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counting minors in large graphs

e characterize a graph by the distribution of its minors

NITTIN

all undirected minors of size 4

ANV AN AV A
ANV AV AV

all directed minors of size 3
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sampling algorithm for counting triangles

e incidence model
 consider sample space S = {b-a-c | (a.b).(a.c) € E}
o [S] =2 di(d—1)/2

1: sample X C S (paths b-a-c)
2: estimate fraction of X for which edge (b, ¢) is present
3: scale by |S|

e gives (e, 0) approximation
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adapting the algorithm

sampling spaces:

e 3-node directed

e 4-node undirected
*——e R
I [ ] *——e

are the sampling space properties satisfied?

Data mining — Computing basic graph statistics

21



datasets

graph class type # instances
synthetic un/directed 39
wikipedia un/directed 7
webgraphs un/directed 5
cellular directed 43
citation directed 3
food webs directed 6
word adjacency directed 4
author collaboration  undirected 5
autonomous systems undirected 12
protein interaction undirected 3
US road undirected 12
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clustering of undirected graphs

assignedto 0 1 2 3 4 5 6
AS graph 12 0 0 0 0 0 O
collaboraton 0 0 3 2 0 0 O
protein i 0 01 0 0 1
road-graph 0O 12 0 0 0 0 O
wikipedia 0O 0 0 0 2 5 0
synthetic 110 0 0 0 0 2
webgraph 2 0 01 0 00O
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clustering of directed graphs

feature class accuracy compared
to ground truth
standard topological properties (81) 0.74%
minors of size 3 0.78%
minors of size 4 0.84%
minors of size 3 and 4 0.91%
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graph distance distributions



small-world phenomena

small worlds : graphs with short paths

o Stanley Milgram (1933-1984)
“The man who shocked the world”

e obedience to authority (1963)
e small-world experiment (1967)
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Milgram’s experiment

e 300 people (starting population) are asked to dispaich a
parcel to a single individual (target)

¢ the target was a Boston stockbroker

¢ the starting population is selected as follows:

e 100 were random Boston inhabitants (group A)
¢ 100 were random Nebraska strockbrokers (group B)
¢ 100 were random Nebraska inhabitants (group C)
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Milgram’s experiment

e rules of the game :
e parcels could be directly sent only to someone the sender
knows personally

e 453 intermediaries happened to be involved in the
experiments (besides the starting population and the
target)
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Milgram’s experiment

questions Milgram wanted to answer:

1. how many parcels will reach the target?

2. what is the distribution of the number of hops required to
reach the target?

3. is this distribution different for the three starting
subpopulations?
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Milgram’s experiment

answers to the questions

1. how many parcels will reach the target?
29%

2. what is the distribution of the number of hops required to
reach the target?
average was 5.2

3. is this distribution different for the three starting
subpopulations?
YES: average for groups A/B/C was 4.6/5.4/5.7
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chain lengths
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FIGURE 1
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measuring what?

but what did Milgram’s experiment reveal, after all?

1. the the world is small

2. that people are able to exploit this smallness

Data mining — Computing basic graph statistics

32



graph distance distribution

e obtain information about a large graph, i.e., social network

e macroscopic level
¢ distance distribution

mean distance
median distance
diameter
effective diameter

Data mining — Computing basic graph statistics

33



graph distance distribution

given a graph, d(x, y) is the length of the shortest path
from x to y, defined as ~ if one cannot go from x to y

for undirected graphs, d(x, y) = d(y. x)

for every t, count the number of pairs (x. y) such
that d(x,y) =t

the fraction of pairs at distance t is a distribution
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exact computation

how can one compute the distance distribution?

e weighted graphs: Dijkstra (single-source: O(mlog n)),
o Floyd-Warshall (all-pairs: O(n%))
e in the unweighted case:

¢ asingle BFS solves the single-source version of the
problem: O(m)

o if we repeat it from every source: O(nm)
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sampling pairs

e sample at random pairs of nodes (x, y)
e compute d(x, y) with a BFS from x
e (possibly: reject the pair if d(x, y) is infinite)
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sampling pairs

o for every t, the fraction of sampled pairs that were found at
distance t are an estimator of the value of the probability
mass function

o takes a BFS for every pair — O(m)
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sampling sources

e sample at random a source

e compute a full BFS from ¢
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sampling sources

e itis an unbiased estimator only for undirected and
connected graphs

e uses anyway BFS...

e ...not cache friendly

e ... not compression friendly
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idea : diffusion

[Palmer et al., 2002]

e let B;(x) be the ball of radius t around x
(the set of nodes at distance < f from x)

e clearly By(x) = {x}

e moreover By 1(x) = [, ) Bi(y) U{x}

e so computing B;. 1 from B; just takes a single (sequential)
scan of the graph
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easy but costly

« every set requires O(n) bits, hence O(n?) bits overall
e easy but costly

e too many!

e what about using approximated sets?

e we need probabilistic counters, with just two primitives:
add and size

e very small!
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estimating the number of distinct values (F)

[Flajolet and Martin, 1985]
consider a bit vector of length O(log n)

upon seen x;, set:

the 1st bit with probability 1/2
the 2nd bit with probability 1/4

« the i-th bit with probability 1/2'

important: bits are set deterministically for each x;
let R be the index of the largest bit set

return Y = 27
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ANF

e probabilistic counter for approximating the number of
distinct values [Flajolet and Martin, 1985]

e ANF algorithm [Palmer et al., 2002]
uses the original probabilist counters

e HyperANF algorithm [Boldi et al., 2011]
uses HyperLoglLog counters [Flajolet et al., 2007]
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HyperANF

e HyperLogLog counter [Flajolet et al., 2007]

e with 40 bits you can count up to 4 billion with a standard
deviation of 6%

e remember: one set per node

Data mining — Computing basic graph statistics

44



implementation tricks

[Boldi et al., 2011]

e use broad-word programming to compute union efficiently
e systolic computation for on-demand updates of counters

¢ exploit micro-parallelization of multicore architectures
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performance

e HADI, a Hadoop-conscious implementation of ANF
[Kang et al., 2011]

o takes 30 minutes on a 200K-node graph
(on one of the 50 world largest supercomputers)

e HyperANF does the same in 2.25min on a workstation
(20 min on a laptop).
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experiments on facebook

[Backstrom et al., 2011]

considered only active users

it : only italian users

se : only swedish users

it + se : only italian and swedish users

us : only US users

the whole facebook (750m nodes)

based on users current geo-IP location
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distance distribution (it)
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distance distribution (se)
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distance distribution (fb)
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average distance

2008 2012
it 6.58 3.90
se 433 3.89
it+se 490 4.16
us 474 4.32
fb 528 4.74

fb 2012 : 92% pairs are reachable!
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effective diameter

2008 2012
it 9.0 5.2
se 5.9 5.3
it+se 6.8 5.8
us 6.5 5.8
fb 7.0 6.2
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actual diameter

2008 2012
it >29 =25
se >16 =25
it+se >21 =27
us >17 =30
fb >17 > 58
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indexing distances in large graphs



shortest-path distances in large graphs

input: consider a graph G = (V. E)

and nodes sand tin V

goal: compute the shortest-path distance d(s, t)
fromsto ¢

do it very fast
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well-studied problem

different strategies
e lazy
e compute shortest path at query time
Dijkstra, BFS
no precomputation
BFS takes O(m)
too expensive for large graphs

e eager
e precompute all-pairs shortest paths
o Floyd-Warshall, matrix multiplication
e O(n®) precomputation, O(n?) storage
e too large to store
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applications of shortest-path queries
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searching in graphs — |. context-sensitive search
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searching in graphs — |. context-sensitive search
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searching in graphs — |. context-sensitive search
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searching in graphs — |. context-sensitive search
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searching in graphs — |. context-sensitive search
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searching in graphs — |. context-sensitive search

customize search results to the user’s current page or
recent history of pages have visited

increasing relevance of answers
disambiguation
suggesting links to wikipedia editors
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searching in graphs — Il. social search
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searching in graphs — Il. social search
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searching in graphs — Il. social search
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searching in graphs — Il. social search

» consider more information than just contacts
o preferences
e geographical information
e comments
o favorites
o tags
e etc.
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machine-learning approach

e learn a ranking function that combines a large number
of features
content-based features:
e TF/IDF, BM25, etc., as in traditional IR and web search
e content similarity between the querying node and a target
node
link-based features:
e PageRank
e shortest-path distance from the querying node to a target
node
o spectral distance from the querying node to a target node
e graph-based similarity measures
o context-specific PageRank
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well-studied problem

different strategies
e lazy
e compute shortest path at query time
Dijkstra, BFS
no precomputation
BFS takes O(m)
too expensive for large graphs

e eager
e precompute all-pairs shortest paths
o Floyd-Warshall, matrix multiplication
e O(n®) precomputation, O(n?) storage
e too large to store
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anything in between?

e is there a smooth tradeoff between

(O(1), O(m)) and (O(n?), O(1))
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distance oracles

[Thorup and Zwick, 2005]

e givenagraph G = (V,E)
an («a, §)-approximate distance oracle
is a data structure S that

for a query pair of nodes (u, v), S returns ds(u, v) s.t.

d(u,v) < ds(u,v) < ad(u,v)+ 5

o called stretch or distortion

consider the preprocessing time, the required space, and
the query time
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distance oracles

[Thorup and Zwick, 2005]

e given k, construct an oracle with
storage O(kn'*'/%), query time O(k), stretch 2k — 1

[ ) k:1
= APSP
e k=logn

= storage O(nlog n), query time O(log n), stretch O(log n)
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distance oracles — preprocessing

[Das Sarma et al., 2010]
O r=llog|V|
® sample r + 1 sets of sizes 1,2,2% 23 ... 2’
® call the sampled sets Sy, Sq,...., S,

@ for each node v and each set S; compute (w;, 6;),

where §; = d(u, w;) = min,cg {d(u,v)}
@ SKETCH[u] = {(wp, d0),- -, (W, 0r)}

0 repeat k times
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distance oracles — query processing

[Das Sarma et al., 2010]
given query (u, v)
@ obtain SKETCH[u] and SKETCH|[v|

® find the set of common nodes w in SKETCH|[u] and
SKETCH(V]

® for each common node w, compute d(u, w) and d(w, v)

@ return the minimum of d(u, w) + d(w, v),
taken over all common node w’s

@ if no common w is present, then return oo
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landmark-based approach

precompute: distance from each node to a fixed landmark /
then

d(s, 1) — d(t,1)] < d(s, 1) < d(s, ) + d(I, {)

precompute: distances to d landmarks, /1, ..., Iy

max |d(s, ;) —d(t, )] <d(s,t) < miin(d(s, i)+ d(l;, 1))

obtain a range estimate in time O(d) (i.e., constant)
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landmark-based approach

e motivated by indexing general metric spaces

 used for estimating latency in the internet
[Ng and Zhang, 2008]

e typically randomly chosen landmarks
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theoretical results

[Kleinberg et al., 2004]

e random landmarks can provide distance estimates with
distortion (1 + ¢) for a fraction of at least (1 — ¢) of pairs

e number of landmarks required depends on ¢, J, and the
doubling dimension k of the metric space
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approximation guarantee in practice

what does a logarithmic approximation guarantee mean in a
small-world graph?

Data mining — Computing basic graph statistics

79



the landmark selection problem

how to choose good landmarks in practice?
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good landmarks

1 t
if S./'\/ then d(s. t)=d(s. /) + d(/. 1)

t
i 1f then |d(s, /) — d(t, 1)|—d(s, t)
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good (upper-bound) landmarks

a landmark / covers a pair (s, t) if / is on a shortest path
fromsto ¢

problem definition: find a set L C V of k landmarks that
cover as many pairs (s, t) € V x V as possible

NP-hard
for k = 1: the node with the highest centrality betweenness

o for k > 1: apply a “natural” set-cover approach
(but O(n®))
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landmark selection heuristics

high-degree nodes
high-centrality nodes
“constrained” versions
e once a node is selected none of its neighbors is selected
“clustered” versions

e cluster the graph and select one landmark per cluster
o select landmarks on the “borders” between clusters
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datasets

#nodes #edges median effective clustering
distance diameter coefficient
flickr 801K 8M 5 8 0.11
DBLP 226 K 716 K 9 13 0.47
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flickr-implicit — distance error

Flickr Implicit dataset
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DBLP — precision @ 5

DBLP dataset
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triangulation task

[Kleinberg et al., 2004]

DBLP dataset Y!IM dataset
250 150 T T
I Rand I Rand
[IDegree/P [JDegree/P
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comparing with exact algorithm

[Goldberg and Harrelson, 2005]

landmarks (10%) Fl.-E Fl.-1 Wiki DBLP Y!IM
Method CENT CENT CENT/P BoRD/P BORD/P
Landmarks used 20 100 500 50 50
Nodes visited 1 1 1 1 1
Operations 20 100 500 50 50
CPU ticks 2 10 50 5 5
ALT (exact) Fl.-E Fl.-1 Wiki DBLP YIIM
Method lkeda lkeda Ikeda Ikeda Ikeda
Landmarks used 8 4 4 8 4
Nodes visited 7245 10337 19616 2458 2162
Operations 56502 41349 78647 19666 8648
CPU ticks 7062 10519 25868 1536 1856
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