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algorithmic tools



efficiency considerations

• data in the web and social-media are typically of extremely
large scale (easily reach to billions)

• how to compute simple graph statistics?

• even quadratic algorithms are not feasible in practice
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hashing and sketching

• probabilistic / approximate methods

• sketching : create sketches that summarize the data and
allow to estimate simple statistics with small space

• hashing : hash objects in such a way that similar objects
have larger probability of mapped to the same value than
non-similar objects
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estimator theorem

• consider a set of items U
• a fraction ρ of them have a specific property
• estimate ρ by sampling

• how many samples N are needed?

N ≥ 4
ε2ρ

log
2
δ
.

for an ε-approximation with probability at least 1− δ
• notice: it does not depend on |U| (!)
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homework

use the Chernoff bound to derive the estimator theorem
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applications of the algorithmic tools to real scenarios



clustering coefficient and triangles



clustering coefficient

C =
3× number of triangles in the network
number of connected triples of vertices

• how to compute it?
• how to compute the number of triangles in a graph?
• assume that the graph is very large, stored in disk

[Buriol et al., 2006]
• count triangles when graph is seen as a data stream
• two models:

– edges are stored in any order
– edges in order : all edges incident to one vertex are
– stored sequentially
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counting triangles

• brute-force algorithm is checking every triple of vertices
• obtain an approximation by sampling triples
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sampling algorithm for counting triangles

• how many samples are required?

• let T be the set of all triples and
Ti the set of triples that have i edges, i = 0,1,2,3

• by the estimator theorem, to get an ε-approximation,
with probability 1− δ, the number of samples should be

N ≥ O(
|T |
|T3|

1
ε2

log
1
δ
)

• but |T | can be very large compared to |T3|
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counting triangles

• incidence model : all edges incident to each vertex appear
in order in the stream

• sample connected triples
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sampling algorithm for counting triangles

• incidence model
• consider sample space S = {b-a-c | (a,b), (a, c) ∈ E}
• |S| =

∑
i di(di − 1)/2

1: sample X ⊆ S (paths b-a-c)
2: estimate fraction of X for which edge (b, c) is present
3: scale by |S|

• gives (ε, δ) approximation
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counting triangles — incidence stream model

SAMPLETRIANGLE [Buriol et al., 2006]
1st pass

count the number of paths of length 2 in the stream
2nd pass

uniformly choose one path (a,b, c)
3rd pass

if ((b, c) ∈ E) β = 1 else β = 0
return β

we have E[β] = 3|T3|
|T2|+3|T3| , with |T2|+ 3|T3| =

∑
u

du(du−1)
2 , so

|T3| = E[β]
∑

u

du(du − 1)
6

and space needed is O((1 + |T2|
|T3|)

1
ε2

log 1
δ )
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properties of the sampling space

it should be possible to

• estimate the size of the sampling space

• sample an element uniformly at random
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homework

1 compute triangles in 3 passes when edges
appear in arbitrary order

2 compute triangles in 1 pass when edges
appear in arbitrary order

3 compute triangles in 1 pass in the incidence model
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counting graph minors



counting other minors

• count all minors in a very large graphs
– connected subgraphs
– size 3 and 4
– directed or undirected graphs

• why?
• modeling networks, “signature” structures

e.g., copying model
• anomaly detection, e.g., spam link farms

[Alon, 2007, Bordino et al., 2008]
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counting minors in large graphs

• characterize a graph by the distribution of its minors

all undirected minors of size 4

all directed minors of size 3
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sampling algorithm for counting triangles

• incidence model
• consider sample space S = {b-a-c | (a,b), (a, c) ∈ E}
• |S| =

∑
i di(di − 1)/2

1: sample X ⊆ S (paths b-a-c)
2: estimate fraction of X for which edge (b, c) is present
3: scale by |S|

• gives (ε, δ) approximation
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adapting the algorithm

sampling spaces:

• 3-node directed

• 4-node undirected

are the sampling space properties satisfied?
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datasets

graph class type # instances
synthetic un/directed 39
wikipedia un/directed 7
webgraphs un/directed 5
cellular directed 43
citation directed 3
food webs directed 6
word adjacency directed 4
author collaboration undirected 5
autonomous systems undirected 12
protein interaction undirected 3
US road undirected 12
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clustering of undirected graphs

assigned to 0 1 2 3 4 5 6
AS graph 12 0 0 0 0 0 0
collaboration 0 0 3 2 0 0 0
protein 1 0 0 1 0 0 1
road-graph 0 12 0 0 0 0 0
wikipedia 0 0 0 0 2 5 0
synthetic 11 0 0 0 0 0 28
webgraph 2 0 0 1 0 0 0
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clustering of directed graphs

feature class accuracy compared
to ground truth

standard topological properties (81) 0.74%
minors of size 3 0.78%
minors of size 4 0.84%
minors of size 3 and 4 0.91%
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graph distance distributions



small-world phenomena

small worlds : graphs with short paths

• Stanley Milgram (1933-1984)
“The man who shocked the world”

• obedience to authority (1963)
• small-world experiment (1967)
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Milgram’s experiment

• 300 people (starting population) are asked to dispatch a
parcel to a single individual (target)

• the target was a Boston stockbroker

• the starting population is selected as follows:
• 100 were random Boston inhabitants (group A)
• 100 were random Nebraska strockbrokers (group B)
• 100 were random Nebraska inhabitants (group C)
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Milgram’s experiment

• rules of the game :
• parcels could be directly sent only to someone the sender

knows personally
• 453 intermediaries happened to be involved in the

experiments (besides the starting population and the
target)
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Milgram’s experiment

questions Milgram wanted to answer:

1. how many parcels will reach the target?
.

2. what is the distribution of the number of hops required to
reach the target?
.

3. is this distribution different for the three starting
subpopulations?
.
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Milgram’s experiment

answers to the questions

1. how many parcels will reach the target?
29%

2. what is the distribution of the number of hops required to
reach the target?
average was 5.2

3. is this distribution different for the three starting
subpopulations?
YES: average for groups A/B/C was 4.6/5.4/5.7
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chain lengths
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measuring what?

but what did Milgram’s experiment reveal, after all?

1. the the world is small

2. that people are able to exploit this smallness
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graph distance distribution

• obtain information about a large graph, i.e., social network

• macroscopic level

• distance distribution

• mean distance
• median distance
• diameter
• effective diameter
• ...
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graph distance distribution

• given a graph, d(x , y) is the length of the shortest path
from x to y , defined as∞ if one cannot go from x to y

• for undirected graphs, d(x , y) = d(y , x)

• for every t , count the number of pairs (x , y) such
that d(x , y) = t

• the fraction of pairs at distance t is a distribution
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exact computation

how can one compute the distance distribution?

• weighted graphs: Dijkstra (single-source: O(m log n)),

• Floyd-Warshall (all-pairs: O(n3))

• in the unweighted case:

• a single BFS solves the single-source version of the
problem: O(m)

• if we repeat it from every source: O(nm)
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sampling pairs

• sample at random pairs of nodes (x , y)

• compute d(x , y) with a BFS from x

• (possibly: reject the pair if d(x , y) is infinite)
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sampling pairs

• for every t , the fraction of sampled pairs that were found at
distance t are an estimator of the value of the probability
mass function

• takes a BFS for every pair — O(m)

Data mining — Computing basic graph statistics 37



sampling sources

• sample at random a source t

• compute a full BFS from t
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sampling sources

• it is an unbiased estimator only for undirected and
connected graphs

• uses anyway BFS...

• ...not cache friendly

• ... not compression friendly

Data mining — Computing basic graph statistics 39



idea : diffusion

[Palmer et al., 2002]

• let Bt(x) be the ball of radius t around x
(the set of nodes at distance ≤ t from x)

• clearly B0(x) = {x}

• moreover Bt+1(x) =
⋃

(x ,y) Bt(y)
⋃
{x}

• so computing Bt+1 from Bt just takes a single (sequential)
scan of the graph
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easy but costly

• every set requires O(n) bits, hence O(n2) bits overall

• easy but costly

• too many!

• what about using approximated sets?

• we need probabilistic counters, with just two primitives:
add and size

• very small!
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estimating the number of distinct values (F0)

• [Flajolet and Martin, 1985]
• consider a bit vector of length O(log n)
• upon seen xi , set:

• the 1st bit with probability 1/2
• the 2nd bit with probability 1/4
• . . .
• the i-th bit with probability 1/2i

• important: bits are set deterministically for each xi

• let R be the index of the largest bit set
• return Y = 2R
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ANF

• probabilistic counter for approximating the number of
distinct values [Flajolet and Martin, 1985]

• ANF algorithm [Palmer et al., 2002]
uses the original probabilist counters

• HyperANF algorithm [Boldi et al., 2011]
uses HyperLogLog counters [Flajolet et al., 2007]
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HyperANF

• HyperLogLog counter [Flajolet et al., 2007]

• with 40 bits you can count up to 4 billion with a standard
deviation of 6%

• remember: one set per node
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implementation tricks

[Boldi et al., 2011]

• use broad-word programming to compute union efficiently

• systolic computation for on-demand updates of counters

• exploit micro-parallelization of multicore architectures
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performance

• HADI, a Hadoop-conscious implementation of ANF
[Kang et al., 2011]

• takes 30 minutes on a 200K-node graph
(on one of the 50 world largest supercomputers)

• HyperANF does the same in 2.25min on a workstation
(20 min on a laptop).
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experiments on facebook

[Backstrom et al., 2011]

considered only active users

• it : only italian users

• se : only swedish users

• it + se : only italian and swedish users

• us : only US users

• the whole facebook (750m nodes)

based on users current geo-IP location
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distance distribution (it)
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distance distribution (se)
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distance distribution (fb)
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average distance

2008 2012
it 6.58 3.90
se 4.33 3.89
it+se 4.90 4.16
us 4.74 4.32
fb 5.28 4.74

fb 2012 : 92% pairs are reachable!
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effective diameter

2008 2012
it 9.0 5.2
se 5.9 5.3
it+se 6.8 5.8
us 6.5 5.8
fb 7.0 6.2

Data mining — Computing basic graph statistics 52



actual diameter

2008 2012
it > 29 = 25
se > 16 = 25
it+se > 21 = 27
us > 17 = 30
fb > 17 > 58
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breaking the news
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indexing distances in large graphs



shortest-path distances in large graphs

• input: consider a graph G = (V ,E)

• and nodes s and t in V

• goal: compute the shortest-path distance d(s, t)
from s to t

• do it very fast
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well-studied problem

different strategies
• lazy

• compute shortest path at query time
• Dijkstra, BFS

• no precomputation
• BFS takes O(m)

• too expensive for large graphs

• eager
• precompute all-pairs shortest paths
• Floyd-Warshall, matrix multiplication
• O(n3) precomputation, O(n2) storage
• too large to store
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applications of shortest-path queries
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searching in graphs — I. context-sensitive search
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searching in graphs — I. context-sensitive search

"chilly peppers"
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searching in graphs — I. context-sensitive search

"chilly peppers"

mexican
cuisine

RHCP
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searching in graphs — I. context-sensitive search

"chilly peppers"

mexican
cuisine

RHCP

food
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searching in graphs — I. context-sensitive search

"chilly peppers"

mexican
cuisine

RHCP

music
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searching in graphs — I. context-sensitive search

• customize search results to the user’s current page or
recent history of pages have visited

• increasing relevance of answers
• disambiguation
• suggesting links to wikipedia editors

Data mining — Computing basic graph statistics 64



searching in graphs — II. social search
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searching in graphs — II. social search
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searching in graphs — II. social search
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searching in graphs — II. social search

• consider more information than just contacts
• preferences
• geographical information
• comments
• favorites
• tags
• etc.
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machine-learning approach

• learn a ranking function that combines a large number
of features
content-based features:

• TF/IDF, BM25, etc., as in traditional IR and web search
• content similarity between the querying node and a target

node
link-based features:

• PageRank
• shortest-path distance from the querying node to a target

node
• spectral distance from the querying node to a target node
• graph-based similarity measures
• context-specific PageRank
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well-studied problem

different strategies
• lazy

• compute shortest path at query time
• Dijkstra, BFS

• no precomputation
• BFS takes O(m)

• too expensive for large graphs

• eager
• precompute all-pairs shortest paths
• Floyd-Warshall, matrix multiplication
• O(n3) precomputation, O(n2) storage
• too large to store
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anything in between?

• is there a smooth tradeoff between

〈O(1),O(m)〉 and 〈O(n2),O(1)〉
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distance oracles

[Thorup and Zwick, 2005]

• given a graph G = (V ,E)

• an (α, β)-approximate distance oracle
is a data structure S that

• for a query pair of nodes (u, v), S returns dS(u, v) s.t.

d(u, v) ≤ dS(u, v) ≤ α d(u, v) + β

• α called stretch or distortion
• consider the preprocessing time, the required space, and

the query time
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distance oracles

[Thorup and Zwick, 2005]

• given k , construct an oracle with
storage O(kn1+1/k ), query time O(k), stretch 2k − 1

• k = 1
⇒ APSP

• k = log n
⇒ storage O(n log n), query time O(log n), stretch O(log n)
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distance oracles — preprocessing

[Das Sarma et al., 2010]

1 r = blog |V |c

2 sample r + 1 sets of sizes 1,2,22,23, . . . ,2r

3 call the sampled sets S0,S1, . . . ,Sr

4 for each node u and each set Si compute (wi , δi),

where δi = d(u,wi) = minv∈Si{d(u, v)}

5 SKETCH[u] = {(w0, δ0), . . . , (wr , δr )}

6 repeat k times
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distance oracles — query processing

[Das Sarma et al., 2010]

given query (u, v)

1 obtain SKETCH[u] and SKETCH[v ]

2 find the set of common nodes w in SKETCH[u] and
SKETCH[v ]

3 for each common node w , compute d(u,w) and d(w , v)

4 return the minimum of d(u,w) + d(w , v),
taken over all common node w ’s

5 if no common w is present, then return∞
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landmark-based approach

• precompute: distance from each node to a fixed landmark l
• then

|d(s, l)− d(t , l)| ≤ d(s, t) ≤ d(s, l) + d(l , t)

• precompute: distances to d landmarks, l1, . . . , ld

max
i
|d(s, li)− d(t , li)| ≤ d(s, t) ≤ min

i
(d(s, li) + d(li , t))

• obtain a range estimate in time O(d) (i.e., constant)
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landmark-based approach

• motivated by indexing general metric spaces

• used for estimating latency in the internet
[Ng and Zhang, 2008]

• typically randomly chosen landmarks
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theoretical results

[Kleinberg et al., 2004]

• random landmarks can provide distance estimates with
distortion (1 + δ) for a fraction of at least (1− ε) of pairs

• number of landmarks required depends on ε, δ, and the
doubling dimension k of the metric space
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approximation guarantee in practice

what does a logarithmic approximation guarantee mean in a
small-world graph?
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the landmark selection problem

how to choose good landmarks in practice?
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good landmarks

if
tl

s then d(s, t)=d(s, l) + d(l , t)

if
t

l
s

then |d(s, l)− d(t , l)|=d(s, t)
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good (upper-bound) landmarks

• a landmark l covers a pair (s, t) if l is on a shortest path
from s to t

• problem definition: find a set L ⊆ V of k landmarks that
cover as many pairs (s, t) ∈ V × V as possible

• NP-hard
• for k = 1: the node with the highest centrality betweenness
• for k > 1: apply a “natural” set-cover approach

(but O(n3))
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landmark selection heuristics

• high-degree nodes
• high-centrality nodes
• “constrained” versions

• once a node is selected none of its neighbors is selected
• “clustered” versions

• cluster the graph and select one landmark per cluster
• select landmarks on the “borders” between clusters
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datasets

# nodes # edges median effective clustering
distance diameter coefficient

flickr 801 K 8 M 5 8 0.11

DBLP 226 K 716 K 9 13 0.47
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flickr-implicit — distance error
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DBLP — precision @ 5
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triangulation task

[Kleinberg et al., 2004]
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comparing with exact algorithm

[Goldberg and Harrelson, 2005]
landmarks (10%) Fl.-E Fl.-I Wiki DBLP Y!IM

Method CENT CENT CENT/P BORD/P BORD/P
Landmarks used 20 100 500 50 50

Nodes visited 1 1 1 1 1
Operations 20 100 500 50 50
CPU ticks 2 10 50 5 5

ALT (exact) Fl.-E Fl.-I Wiki DBLP Y!IM
Method Ikeda Ikeda Ikeda Ikeda Ikeda

Landmarks used 8 4 4 8 4
Nodes visited 7245 10337 19616 2458 2162

Operations 56502 41349 78647 19666 8648
CPU ticks 7062 10519 25868 1536 1856
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