214

Decision Trees

Assuming each internal node has two children,! it is not hard to show that this
is a prefix-free encoding of the tree, and that the description length of a tree with »
nodes is (n + 1)log, (d + 3).

By Theorem 7.7 we have that with probability of at least 1 —§ over a sample of
size m, for every n and every decision tree & € H with n nodes it holds that

, 1)log, (d +3; 2/8
Lp(h) < Ls(h) + \/(”“) O”—(dzm L OB (18.1)

This bound performs a tradeoff: on the one hand, we expect larger, more complex
decision trees to have a smaller training risk, Ls(h), but the respective value of n
will be larger. On the other hand, smaller decision trees will have a smaller value of
n, but Ls(kh) might be larger. Our hope (or prior knowledge) is that we can find a
decision tree with both low empirical risk, Lg(k), and a number of nodes n not too
high. Our bound indicates that such a tree will have low true risk, Lp(h).

. DECISION TREE ALGORITHMS

The bound on Lp(h) given in Equation (18.1) suggests a learning rule for deci-
sion trees — search for a tree that minimizes the right-hand side of Equation (18.1).
Unfortunately, it turns out that solving this problem is computationally hard.? Con-
sequently, practical decision tree learning algorithms are based on heuristics such
as a greedy approach, where the tree is constructed gradually, and locally optimal
decisions are made at the construction of each node. Such algorithms cannot guar-
antee to return the globally optimal decision tree but tend to work reasonably well
in practice.

A general framework for growing a decision tree is as follows. We start with a
tree with a single leaf (the root) and assign this leaf a label according to a majority
vote among all labels over the training set. We now perform a series of iterations.
On each iteration, we examine the effect of splitting a single leaf. We define some
“oain” measure that quantifies the improvement due to this split. Then, among all
possible splits, we either choose the one that maximizes the gain and perform it, or
choose not to split the leaf at all.

In the following we provide a possible implementation. It is based on a popu-
lar decision tree algorithm known as “ID3” (short for “Iterative Dichotomizer 3”).
We describe the algorithm for the case of binary features, namely, A" = {0, 1}, and
therefore all splitting rules are of the form 1j,,—; for some feature i € [d]. We discuss
the case of real valued features in Section 18.2.3.

The algorithm works by recursive calls, with the initial call being ID3(S, [d]), and
returns a decision tree. In the pseudocode that follows, we use a call to a procedure
Gain(S, i), which reccives a training set S and an index i and evaluates the gain of a
split of the tree according to the ith feature. We describe several gain measures in
Section 18.2.1.

| We may assume this without loss of generality, because if a decision node has only one child, we can
replace the node by its child without affecting the predictions of the decision tree.
2 More precisely, if NP#P then no algorithm can solve Equation (18.1) in time polynomial in n, d, and m.

show that thig
f a tree with 5

er a sample of
that

(18.1)

nore complex
ve value of p
aller value of
we can find a
des n not tog

).

ule for deci-
lation (18.1),
‘hard.? Con-
uristics such
ally optimal
cannot guar-
sonably well

start with a
O a majority
f iterations.
define some
, among all
rform it, or

on a popu-
omizer 37).
{0,1)¢, and
We discuss

S,[d]), and
procedure
le gain of a
leasures in

child, we can

01, d, and m.

18.2 Decision Tree Algorithms

ID3(S, A)

INPUT: training set S, feature subset A C [d]
if all examples in § are labeled by 1, return a leaf 1
if all examples in S are labeled by 0, return a leaf 0
if A=, return a leaf whose value = majority of labels in S
else :
Let j = argmax; _, Gain(S,)
if all examples in S have the same label
Return a leaf whose value = majority of labels in §
else
Let T; be the tree returned by ID3({(x, y) € S : xj=1}1L A\ (/D).
Let T; be the tree returned by ID3({(x, y) € S : x;=0}LAN\{D.
Return the tree:

Implementations of the Gain Measure

Different algorithms use different implementations of Gain(S,i). Here we present
three. We use the notation Ps [F] to denote the probability that an event holds with
respect to the uniform distribution over §.

Train Error: The simplest definition of gain is the decrease in training error,
Formally, let C(a) = min{a,1 — a}. Note that the training error before splitting on

feature i is C(Ps[y = 1]), since we took a majority vote among labels. Similarly, the
error alter splitting on feature i is

Plxi = 1] C(Bly = 1lx; = 11)+P[x; = 0]C(P[y = 1}x; = 0]).

Therefore, we can define Gain to be the difference between the two. namely,

Gain(S,i):= C{’li\?[,\' =1])

(b =110CR 1y =11 = 1) + 21 =0lC(@ly = 11y =01

S S
Information Gain: Another popular gain measure that is used in the ID3 and
C4.5 algorithms of Quinlan (1993) is the information gain. The information gain

is the difference between the entropy of the label before and after the split, and

is achieved by replacing the function C in the previous expression by the entropy
function,

C(a) = —alog(a)— (1 —a)log(1 —a).

Decision Trees

Gini Index: Yet another definition of a gain, which is used by the CART
algorithm of Breiman. Friedman, Olshen, and Stone (1984), is the Gini index,

C(a) =2a(1 —a).

Both the information gain and the Gini index are smooth and concave upper bounds
of the train error. These properties can be advantageous in some situations (see,
for example, Kearns & Mansour (1996)).

-8.2.2 Pruning

The ID3 algorithm described previously still suffers from a big problem: The
returned tree will usually be very large. Such trees may have low empirical risk,
but their true risk will tend to be high - both according to our theoretical analysis,
and in practice. One solution is to limit the number of iterations of ID3, leading
to a tree with a bounded number of nodes. Another common solution is to prune
the tree after it is built, hoping to reduce it to a much smaller tree, but still with a
similar empirical error, T heoretically, according to the bound in Equation (18.1), if
we can make n much smaller without increasing Lg(h) by much, we are likely to get
a decision tree with a smaller true risk.

Usually, the pruning is performed by a bottom-up walk on the tree. Each node
might be replaced with one of ifs subtrees or with a leaf, based on some bound or
estimate of Lp(h) (for example, the bound in Equation (18.1)). A pseudocode of a
common template is given in the following,

Generic Tree Pruning Procedure

input:
function f(7,m) (bound/estimate for the generalization error
of a decision tree T, based on a sample of size m),
tree 7.
foreach node j in a boltom-up walk on T (from leaves to root):
find 7" which minimizes S(T',m), where T' is any of the following:
the current tree after replacing node j with a leaf 1.
the current tree after replacing node j with a leaf (),
the current tree after replacing node j with its left subtree.
the current tree after replacing node j with its right subtree.
the current tree.
let T:=171",

Threshold-Based Splitting Rules for Real-Valued Features

In the previous section we have described an algorithm for growing a decision tree
assuming that the features are binary and the splitting rules are of the form Ly, =1;-
We now extend this result to the case of real-valued features and threshold-based
splitting rules, namely, ljx;<g). Such splitting rules yield decision stumps, and we
have studied them in Chapter 10.

by the CART
7ini index,

e upper bounds
situations (see,

problem: The
empirical rigk,
ctical analysis,
[ID3, leading
on 1s to prune
ut still with g
ttion (18.1), if
e likely to get

€. Each node
me bound or
udocode of a

:
wing:

Ires

cision (ree
rm Ty, _qj.
hold-based
s, and we

18.4 Summary

The basic idea is to reduce the problem to the case of binary features as follows.
Let X1,..., X, be the instances of the training set. For each real-valued feature i,
sort the instances so that x;; < ... < Xp.i- Define a set of thresholds G0,is s Ot i
such that 6, ; € (*j.i»xj+1.:) (where we use the convention Xp,; = —00 and X1 ; =
o). Finally, for each i and j we define the binary feature]1[_“91.‘,_]. Once we have
constructed these binary features, we can run the ID3 procedure described in the
previous section. It is easy to verify that for any decision tree with threshold-based
splitting rules over the original real-valued features there exists a decision tree over
the constructed binary features with the same training error and the same number
of nodes.

If the original number of real-valued features is ¢ and the number of examples
is m, then the number of constructed binary features becomes dm. Calculating the
Gain of each feature might therefore take O(dm?) operations, However, using a
more clever implementation, the runtime can be reduced to O(dmlog(m)). The

idea is similar to the implementation of ERM for decision stumps as described in
Section 10.1.1.

' RANDOM FORESTS

As mentioned before, the class of decision trees of arbitrary size has infinite VC
dimension. We therefore restricted the size of the decision tree. Another way to
reduce the danger of overfitting is by constructing an ensemble of trees. In par-
ticular, in the following we describe the method of random forests, introduced by
Breiman (2001).

A random forest is a classifier consisting of a collection of decision trees, where
each tree is constructed by applying an algorithm A on the training set S and an
additional random vector, @, where 6 is sampled i.i.d. from some distribution. The
prediction of the random forest is obtained by a majority vote over the predictions
of the individual trees.

To specify a particular random forest, we need to define the algorithm A and
the distribution over 6. There are many ways (o do this and here we describe one
particular option. We generate 6 as follows. First, we take a random subsample
from § with replacements: namely, we sample a new training set S’ of size m’ using
the uniform distribution over §. Second, we construct a sequence I, I, ..., where
cach 7, is a subset of [d] of size k, which is generated by sampling uniformly at
random elements from [d]. All these random variables form the vector @. Then,
the algorithm A grows a decision tree (e.g., using the ID3 algorithm) based on the
sample §', where at each splitting stage of the algorithm, the algorithm is restricted
to choosing a feature that maximizes Gain from the set I;. Intuitively, if & is small,
this restriction may prevent overfitling.

SUMMARY

Decision trees are very intuitive predictors. Typically, if a human programmer
creates a predictor it will look like a decision tree. We have shown that the VC
dimension of decision trees with k leaves is & and proposed the MDL paradigm for

