
Introduction to Recommender Systems

Fabio Petroni

About me

Fabio Petroni

Sapienza University of Rome, Italy
Current position:

PhD Student in Engineering in Computer Science
Research Interests:

data mining, machine learning, big data
petroni@dis.uniroma1.it

I slides available at
http://www.fabiopetroni.com/teaching

2 of 65

petroni@dis.uniroma1.it
http://www.fabiopetroni.com/teaching

Materials

I
Xavier Amatriain Lecture at Machine Learning Summer

School 2014, Carnegie Mellon University
B

https://youtu.be/bLhq63ygoU8

B
https://youtu.be/mRToFXlNBpQ

I
Recommender Systems course by Rahul Sami at Michigan’s
Open University
B

http://open.umich.edu/education/si/si583/winter2009

I
Data Mining and Matrices Course by Rainer Gemulla at
University of Mannheim
B

http://dws.informatik.uni-mannheim.de/en/teaching/courses-

for-master-candidates/ie-673-data-mining-and-matrices/

3 of 65

Age of discovery

Xavier Amatriain – July 2014 – Recommender Systems

The Age of Search has come to an end

• ... long live the Age of Recommendation!
• Chris Anderson in “The Long Tail”

• “We are leaving the age of information and entering the age
of recommendation”

• CNN Money, “The race to create a 'smart' Google”:
• “The Web, they say, is leaving the era of search and

entering one of discovery. What's the difference? Search is
what you do when you're looking for something. Discovery
is when something wonderful that you didn't know existed,
or didn't know how to ask for, finds you.”

4 of 65

Web Personalization & Recommender Systems

I Most of todays internet businesses deeply root their success
in the ability to provide users with strongly personalized
experiences.

I Recommender Systems are a particular type of personalized
Web-based applications that provide to users personalized
recommendations about content they may be interested in.

5 of 65

Example 1

6 of 65

Example 2

Example: Amazon
Recommendations

http://www.amazon.com/

7 of 65

Example 3

8 of 65

The tyranny of choice

Xavier Amatriain – July 2014 – Recommender Systems

Information overload

“People read around 10 MB worth of material a day, hear 400 MB a
day, and see 1 MB of information every second” - The Economist, November 2006

In 2015, consumption will raise to 74 GB a day - UCSD Study 2014

9 of 65

Xavier Amatriain – July 2014 – Recommender Systems

The value of recommendations
• Netflix: 2/3 of the movies watched are

recommended

• Google News: recommendations generate
38% more clickthrough

• Amazon: 35% sales from recommendations

• Choicestream: 28% of the people would buy
more music if they found what they liked.

u

10 of 65

Recommendation process

users

items

feedback

11 of 65

Input

Sources of information

• Explicit ratings on a numeric/ 5-star/3-star etc. scale

• Explicit binary ratings (thumbs up/thumbs down)

• Implicit information, e.g.,
– who bookmarked/linked to the item?

– how many times was it viewed?

– how many units were sold?

– how long did users read the page?

• Item descriptions/features

• User profiles/preferences

12 of 65

Methods of a aggregating inputs

I
Content-based filtering

B
recommendations based on item descriptions/features, and

profile or past behavior of the “target” user only.

I
Collaborative filtering

B
look at the ratings of like-minded users to provide

recommendations, with the idea that users who have expressed

similar interests in the past will share common interests in the

future.

13 of 65

Collaborative Filtering

I Collaborative Filtering (CF) represents today’s a widely
adopted strategy to build recommendation engines.

I CF analyzes the known preferences of a group of users to
make predictions of the unknown preferences for other users.

14 of 65

Collaborative filtering

I problem
B

set of users

B
set of items (movies, books, songs, ...)

B
feedback

I explicit (ratings, ...)
I implicit (purchase, click-through, ...)

I predict the preference of each user for each item
B

assumption: similar feedback $ similar taste

I example (explicit feedback):

Avatar The Matrix Up
Marco 4 2
Luca 3 2
Anna 5 3

15 of 65

Collaborative filtering

I problem
B

set of users

B
set of items (movies, books, songs, ...)

B
feedback

I explicit (ratings, ...)
I implicit (purchase, click-through, ...)

I predict the preference of each user for each item
B

assumption: similar feedback $ similar taste

I example (explicit feedback):

Avatar The Matrix Up
Marco ? 4 2
Luca 3 2 ?

Anna 5 ? 3

15 of 65

Collaborative filtering taxonomy

 SVD PMFuser based PLS(A/I)

memory
based

collaborative
filtering

item based

model
based

probabilistic
methods

neighborhood
models

dimensionality
reduction

matrix
completion

latent
Dirichlet
allocation

other machine
learning
methods

Bayesian
networks

Markov
decision
processes

neural
networks

I
Memory-based use the ratings to compute similarities
between users or items (the “memory" of the system) that are
successively exploited to produce recommendations.

I
Model-based use the ratings to estimate or learn a model
and then apply this model to make rating predictions.

16 of 65

Memory based

neighborhood models

17 of 65

Xavier Amatriain – July 2014 – Recommender Systems

The CF Ingredients

● List of m Users and a list of n Items
● Each user has a list of items with associated opinion

○ Explicit opinion - a rating score
○ Sometime the rating is implicitly – purchase records

or listen to tracks
● Active user for whom the CF prediction task is

performed
● Metric for measuring similarity between users
● Method for selecting a subset of neighbors
● Method for predicting a rating for items not currently

rated by the active user.

18 of 65

Xavier Amatriain – July 2014 – Recommender Systems

Collaborative Filtering

The basic steps:

1. Identify set of ratings for the target/active user
2. Identify set of users most similar to the target/active user

according to a similarity function (neighborhood
formation)

3. Identify the products these similar users liked
4. Generate a prediction - rating that would be given by the

target user to the product - for each one of these products
5. Based on this predicted rating recommend a set of top N

products

19 of 65

Xavier Amatriain – July 2014 – Recommender Systems

User-based Collaborative Filtering

20 of 65

Xavier Amatriain – July 2014 – Recommender Systems

User-User Collaborative
Filtering

Target User

Weighted
Sum

21 of 65

Xavier Amatriain – July 2014 – Recommender Systems

UB Collaborative Filtering
● A collection of user ui, i=1, …n and a collection

of products pj, j=1, …, m
● An n × m matrix of ratings vij , with vij = ? if user

i did not rate product j
● Prediction for user i and product j is computed

as

• Similarity can be computed by Pearson correlation

or

or

22 of 65

23 of 65

24 of 65

25 of 65

26 of 65

27 of 65

Xavier Amatriain – July 2014 – Recommender Systems

Item-based Collaborative Filtering

28 of 65

Xavier Amatriain – July 2014 – Recommender Systems

Item-Item Collaborative
Filtering

29 of 65

Xavier Amatriain – July 2014 – Recommender Systems

Item Based CF Algorithm
● Look into the items the target user has rated
● Compute how similar they are to the target item

○ Similarity only using past ratings from other
users!

● Select k most similar items.
● Compute Prediction by taking weighted average

on the target user’s ratings on the most similar
items.

30 of 65

Xavier Amatriain – July 2014 – Recommender Systems

Item Similarity Computation

● Similarity between items i & j computed by finding
users who have rated them and then applying a
similarity function to their ratings.

● Cosine-based Similarity – items are vectors in the m
dimensional user space (difference in rating scale
between users is not taken into account).

31 of 65

Xavier Amatriain – July 2014 – Recommender Systems

Prediction Computation

● Generating the prediction – look into the target
users ratings and use techniques to obtain
predictions.

● Weighted Sum – how the active user rates the
similar items.

32 of 65

Xavier Amatriain – July 2014 – Recommender Systems

Item-based CF Example

33 of 65

Xavier Amatriain – July 2014 – Recommender Systems

Item-based CF Example

34 of 65

Xavier Amatriain – July 2014 – Recommender Systems

Item-based CF Example

35 of 65

Xavier Amatriain – July 2014 – Recommender Systems

Item-based CF Example

36 of 65

Xavier Amatriain – July 2014 – Recommender Systems

Item-based CF Example

37 of 65

Xavier Amatriain – July 2014 – Recommender Systems

Item-based CF Example

38 of 65

Xavier Amatriain – July 2014 – Recommender Systems

Performance Implications
● Bottleneck - Similarity computation.
● Time complexity, highly time consuming with

millions of users and items in the database.
○ Isolate the neighborhood generation and

predication steps.
○ “off-line component” / “model” – similarity

computation, done earlier & stored in memory.
○ “on-line component” – prediction generation

process.

39 of 65

Xavier Amatriain – July 2014 – Recommender Systems

Challenges Of User-based CF
Algorithms

● Sparsity – evaluation of large item sets, users purchases
are under 1%.

● Difficult to make predictions based on nearest neighbor
algorithms =>Accuracy of recommendation may be poor.

● Scalability - Nearest neighbor require computation that
grows with both the number of users and the number of
items.

● Poor relationship among like minded but sparse-rating
users.

● Solution : usage of latent models to capture similarity
between users & items in a reduced dimensional space.

40 of 65

Model based

dimensionality reduction

41 of 65

Xavier Amatriain – July 2014 – Recommender Systems

What we were interested in:
■ High quality recommendations

Proxy question:
■ Accuracy in predicted rating
■ Improve by 10% = $1million!

42 of 65

43 of 65

Xavier Amatriain – July 2014 – Recommender Systems

SVD/MF

 X[n x m] = U[n x r] S [r x r] (V[m x r])T

● X: m x n matrix (e.g., m users, n videos)
● U: m x r matrix (m users, r factors)
● S: r x r diagonal matrix (strength of each ‘factor’) (r: rank of the

matrix)
● V: r x n matrix (n videos, r factor)

44 of 65

Recap: Singular Value Decomposition

• SVD is useful in data analysis
� Noise removal, visualization, dimensionality reduction, . . .

• Provides a mean to understand the hidden structure in the data

We may think of Ak and its factor matrices as a low-rank model
of the data:

• Used to capture the important aspects of the data
(cf. principal components)

• Ignores the rest

• Truncated SVD is best low-rank factorization of the data in
terms of Frobenius norm

• Truncated SVD Ak = Uk�kV T
k of A thus satisfies

�A � Ak�F = min
rank(B)=k

�A � B�F

2 / 4545 of 65

SVD problems

I complete input matrix: all entries available and considered

I large portion of missing values

I heuristics to pre-fill missing values

B
item’s average rating

B
missing values as zeros

46 of 65

Matrix completion

I
Matrix completion techniques avoid the necessity of
pre-filling missing entries by reasoning only on the observed
ratings.

I They can be seen as an estimate or an approximation of the
SVD, computed using application specific optimization
criteria.

I Such solutions are currently considered as the best
single-model approach to collaborative filtering, as
demonstrated, for instance, by the Netflix prize.

47 of 65

Matrix completion for collaborative filtering

I the completion is driven by a factorization

R P Q

I associate a latent factor vector with each user and each item

I missing entries are estimated through the dot product

rij ⇡ piqj

48 of 65

Latent factor models (Koren et al., 2009)

49 of 65

Latent factor models

� Discover latent factors (r = 1)

Avatar The Matrix Up

(2.24) (1.92) (1.18)

Anni

?

4 2

(1.98) (4.4) (3.8) (2.3)

Bob 3 2

?
(1.21) (2.7) (2.3) (1.4)

Charlie 5

?

3

(2.30) (5.2) (4.4) (2.7)

� Minimum loss
� Bias

, regularization, time, . . .

6 / 4250 of 65

Latent factor models

� Discover latent factors (r = 1)

Avatar The Matrix Up
(2.24) (1.92) (1.18)

Anni

?

4 2
(1.98)

(4.4) (3.8) (2.3)

Bob 3 2

?

(1.21)

(2.7) (2.3) (1.4)

Charlie 5

?

3
(2.30)

(5.2) (4.4) (2.7)

� Minimum loss
� Bias

, regularization, time, . . .

6 / 4251 of 65

Latent factor models

� Discover latent factors (r = 1)
Avatar The Matrix Up
(2.24) (1.92) (1.18)

Anni

?

4 2
(1.98)

(4.4)

(3.8) (2.3)

Bob 3 2

?

(1.21) (2.7) (2.3)

(1.4)

Charlie 5

?

3
(2.30) (5.2)

(4.4)

(2.7)

� Minimum loss

min
Q,P

�

(i ,j)��

(vij � [QTP]ij)
2

� Bias

, regularization, time, . . .

6 / 4252 of 65

Latent factor models

� Discover latent factors (r = 1)
Avatar The Matrix Up
(2.24) (1.92) (1.18)

Anni ? 4 2
(1.98) (4.4) (3.8) (2.3)

Bob 3 2 ?
(1.21) (2.7) (2.3) (1.4)

Charlie 5 ? 3
(2.30) (5.2) (4.4) (2.7)

� Minimum loss

min
Q,P

�

(i ,j)��

(vij � [QTP]ij)
2

� Bias

, regularization, time, . . .

6 / 4253 of 65

Latent factor models

� Discover latent factors (r = 1)
Avatar The Matrix Up
(2.24) (1.92) (1.18)

Anni ? 4 2
(1.98) (4.4) (3.8) (2.3)

Bob 3 2 ?
(1.21) (2.7) (2.3) (1.4)

Charlie 5 ? 3
(2.30) (5.2) (4.4) (2.7)

� Minimum loss

min
Q,P,u,m

�

(i ,j)��

(vij � µ � ui � mj � [QTP]ij)
2

� Bias

, regularization, time, . . .

6 / 4254 of 65

Latent factor models

� Discover latent factors (r = 1)
Avatar The Matrix Up
(2.24) (1.92) (1.18)

Anni ? 4 2
(1.98) (4.4) (3.8) (2.3)

Bob 3 2 ?
(1.21) (2.7) (2.3) (1.4)

Charlie 5 ? 3
(2.30) (5.2) (4.4) (2.7)

� Minimum loss

min
Q,P,u,m

�

(i ,j)��

(vij � µ � ui � mj � [QTP]ij)
2

+ � (�Q� + �P� + �u� + �m�)

� Bias, regularization

, time, . . .

6 / 4255 of 65

Latent factor models

� Discover latent factors (r = 1)
Avatar The Matrix Up
(2.24) (1.92) (1.18)

Anni ? 4 2
(1.98) (4.4) (3.8) (2.3)

Bob 3 2 ?
(1.21) (2.7) (2.3) (1.4)

Charlie 5 ? 3
(2.30) (5.2) (4.4) (2.7)

� Minimum loss

min
Q,P,u,m

�

(i ,j ,t)��t

(vij � µ � ui (t) � mj(t) � [QT (t)P]ij)
2

+ � (�Q(t)� + �P� + �u(t)� + �m(t)�)

� Bias, regularization, time, . . .
6 / 4256 of 65

Example: Netflix prize data

Root mean square error of predictions
COVER FE ATURE

COMPUTER 48

M atrix factoriza-
tion techniques
have become a
dominant meth-
odology within

collaborative filtering recom-
menders. Experience with
datasets such as the Netflix Prize
data has shown that they deliver
accuracy superior to classical
nearest-neighbor techniques. At
the same time, they offer a com-
pact memory-efficient model
that systems can learn relatively
easily. What makes these tech-
niques even more convenient is
that models can integrate natu-
rally many crucial aspects of the
data, such as multiple forms of
feedback, temporal dynamics,
and confidence levels.

References
 1. D. Goldberg et al., “Using Col-
 laborative Filtering to Weave
 an Information Tapestry,”
 Comm. ACM, vol. 35, 1992, pp.
 61-70.

 2. B.M. Sarwar et al., “Application of Dimensionality Reduc-
tion in Recommender System—A Case Study,” Proc. KDD
Workshop on Web Mining for e-Commerce: Challenges and
Opportunities (WebKDD), ACM Press, 2000.

 3. S. Funk, “Netflix Update: Try This at Home,” Dec. 2006;
http://sifter.org/~simon/journal/20061211.html.

 4. Y. Koren, “Factorization Meets the Neighborhood: A Mul-
tifaceted Collaborative Filtering Model,” Proc. 14th ACM
SIGKDD Int’l Conf. Knowledge Discovery and Data Mining,
ACM Press, 2008, pp. 426-434.

 5. A. Paterek, “Improving Regularized Singular Value De-
composition for Collaborative Filtering,” Proc. KDD Cup
and Workshop, ACM Press, 2007, pp. 39-42.

 6. G. Takács et al., “Major Components of the Gravity Recom-
mendation System,” SIGKDD Explorations, vol. 9, 2007, pp.
80-84.

 7. R. Salakhutdinov and A. Mnih, “Probabilistic Matrix Fac-
torization,” Proc. Advances in Neural Information Processing
Systems 20 (NIPS 07), ACM Press, 2008, pp. 1257-1264.

 8. R. Bell and Y. Koren, “Scalable Collaborative Filtering with
Jointly Derived Neighborhood Interpolation Weights,” Proc.
IEEE Int’l Conf. Data Mining (ICDM 07), IEEE CS Press, 2007,
pp. 43-52.

 9. Y. Zhou et al., “Large-Scale Parallel Collaborative Filter-
ing for the Netflix Prize,” Proc. 4th Int’l Conf. Algorithmic
Aspects in Information and Management, LNCS 5034,
Springer, 2008, pp. 337-348.

 10. Y.F. Hu, Y. Koren, and C. Volinsky, “Collaborative Filtering
for Implicit Feedback Datasets,” Proc. IEEE Int’l Conf. Data
Mining (ICDM 08), IEEE CS Press, 2008, pp. 263-272.

the mainstream crowd-pleasers, is The Sound of Music.
And smack in the middle, appealing to all types, is The
Wizard of Oz.

In this plot, some movies neighboring one another typi-
cally would not be put together. For example, Annie Hall
and Citizen Kane are next to each other. Although they
are stylistically very different, they have a lot in common
as highly regarded classic movies by famous directors.
Indeed, the third dimension in the factorization does end
up separating these two.

We tried many different implementations and pa-
rameterizations for factorization. Figure 4 shows how
different models and numbers of parameters affect the
RMSE as well as the performance of the factorization’s
evolving implementations—plain factorization, adding
biases, enhancing user profile with implicit feedback, and
two variants adding temporal components. The accuracy
of each of the factor models improves by increasing the
number of involved parameters, which is equivalent to
increasing the factor model’s dimensionality, denoted by
numbers on the charts.

The more complex factor models, whose descriptions
involve more distinct sets of parameters, are more accu-
rate. In fact, the temporal components are particularly
important to model as there are significant temporal ef-
fects in the data.

40
60

90
128

18050
100 200

50

100
200

100 200 500 50
100 200 500 1,000

1,500

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0.91

10 100 1,000 10,000 100,000
Millions of parameters

RM
SE

Plain
With biases
With implicit feedback
With temporal dynamics (v.1)
With temporal dynamics (v.2)

Figure 4. Matrix factorization models’ accuracy. The plots show the root-mean-square
error of each of four individual factor models (lower is better). Accuracy improves when
the factor model’s dimensionality (denoted by numbers on the charts) increases. In
addition, the more refined factor models, whose descriptions involve more distinct
sets of parameters, are more accurate. For comparison, the Netflix system achieves
RMSE = 0.9514 on the same dataset, while the grand prize’s required accuracy is
RMSE = 0.8563.

17 / 45Koren et al., 2009.
57 of 65

Another matrix

7 / 4258 of 65

Matrix reconstruction (unregularized)

8 / 4259 of 65

Matrix reconstruction (unregularized)

8 / 4260 of 65

Matrix reconstruction (unregularized)

8 / 4261 of 65

Matrix reconstruction (unregularized)

8 / 4262 of 65

Stochastic gradient descent

I parameters ⇥ = {P ,Q}
I find minimum ⇥⇤ of loss

function L

I pick a starting point ⇥0

I iteratively update current
estimations for ⇥

6

7

 0 5 10 15 20 25 30

lo
ss

 (
×
 1

0
7
)

iterations

⇥n+1 ⇥n � ⌘
@L

@⇥
I learning rate ⌘

I an update for each given training point

63 of 65

Stochastic updates

Lij(P ,Q) = (rij � piqj)
2

I SGD to minimize the squared loss iteratively computes:

pi pi � ⌘
@Lij(P ,Q)

@pi
= pi + ⌘("ij · qj)

qj qj � ⌘
@Lij(P ,Q)

@qj
= qj + ⌘("ij · pi)

I where "ij = rij � piqj

64 of 65

Suggested reading

I G. Linden, B. Smith, and J. York. Amazon.com recommendations:
Item-to-item collaborative filtering. Internet Computing, IEEE,
7(1):76–80, 2003.

I Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques

for recommender systems. Computer, 42(8):30–37, 2009.
I X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering

techniques. Advances in Artificial Intelligence, 2009:4, 2009.
I F. Ricci, L. Rokach, and B. Shapira. Introduction to recommender

systems handbook. Springer, 2011.
I M. D. Ekstrand, J. T. Riedl, and J. A. Konstan. Collaborative filtering

recommender systems. Foundations and Trends in Human-Computer
Interaction, 4(2):81–173, 2011.

I J. A. Konstan and J. Riedl. Recommender systems: from algorithms to
user experience. User Modeling and User-Adapted Interaction,
22(1-2):101–123, 2012.

65 of 65

