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Materials

I
Xavier Amatriain Lecture at Machine Learning Summer

School 2014, Carnegie Mellon University
B

https://youtu.be/bLhq63ygoU8

B
https://youtu.be/mRToFXlNBpQ

I
Recommender Systems course by Rahul Sami at Michigan’s
Open University
B

http://open.umich.edu/education/si/si583/winter2009

I
Data Mining and Matrices Course by Rainer Gemulla at
University of Mannheim
B

http://dws.informatik.uni-mannheim.de/en/teaching/courses-

for-master-candidates/ie-673-data-mining-and-matrices/
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Age of discovery

Xavier Amatriain – July 2014 – Recommender Systems

The Age of Search has come to an end

• ... long live the Age of Recommendation!
• Chris Anderson in “The Long Tail”

• “We are leaving the age of information and entering the age 
of recommendation”

• CNN Money, “The race to create a 'smart' Google”:
• “The Web, they say, is leaving the era of search and 

entering one of discovery. What's the difference? Search is 
what you do when you're looking for something. Discovery 
is when something wonderful that you didn't know existed, 
or didn't know how to ask for, finds you.” 
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Web Personalization & Recommender Systems

I Most of todays internet businesses deeply root their success
in the ability to provide users with strongly personalized
experiences.

I Recommender Systems are a particular type of personalized
Web-based applications that provide to users personalized
recommendations about content they may be interested in.
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Example 1
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Example 2

Example: Amazon 
Recommendations

http://www.amazon.com/
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Example 3
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The tyranny of choice

Xavier Amatriain – July 2014 – Recommender Systems

Information overload

“People read around 10 MB worth of material a day, hear 400 MB a 
day, and see 1 MB of information every second” - The Economist, November 2006

In 2015, consumption will raise to 74 GB a day - UCSD Study 2014
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Xavier Amatriain – July 2014 – Recommender Systems

The value of recommendations
• Netflix: 2/3 of the movies watched are 

recommended

• Google News: recommendations generate 
38% more clickthrough

• Amazon: 35% sales from recommendations

• Choicestream: 28% of the people would buy 
more music if they found what they liked.

u
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Recommendation process

users

items

feedback
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Input

Sources of information

• Explicit ratings on a numeric/ 5-star/3-star etc. scale

• Explicit binary ratings (thumbs up/thumbs down)

• Implicit information, e.g.,
– who bookmarked/linked to the item?

– how many times was it viewed?

– how many units were sold?

– how long did users read the page?

• Item descriptions/features

• User profiles/preferences

12 of 65



Methods of a aggregating inputs

I
Content-based filtering

B
recommendations based on item descriptions/features, and

profile or past behavior of the “target” user only.

I
Collaborative filtering

B
look at the ratings of like-minded users to provide

recommendations, with the idea that users who have expressed

similar interests in the past will share common interests in the

future.
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Collaborative Filtering

I Collaborative Filtering (CF) represents today’s a widely
adopted strategy to build recommendation engines.

I CF analyzes the known preferences of a group of users to
make predictions of the unknown preferences for other users.
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Collaborative filtering

I problem
B

set of users

B
set of items (movies, books, songs, ...)

B
feedback

I explicit (ratings, ...)
I implicit (purchase, click-through, ...)

I predict the preference of each user for each item
B

assumption: similar feedback $ similar taste

I example (explicit feedback):

Avatar The Matrix Up
Marco 4 2
Luca 3 2
Anna 5 3
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Collaborative filtering

I problem
B

set of users

B
set of items (movies, books, songs, ...)

B
feedback

I explicit (ratings, ...)
I implicit (purchase, click-through, ...)

I predict the preference of each user for each item
B

assumption: similar feedback $ similar taste

I example (explicit feedback):

Avatar The Matrix Up
Marco ? 4 2
Luca 3 2 ?

Anna 5 ? 3
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Collaborative filtering taxonomy

 SVD PMFuser based PLS(A/I)

memory 
based

collaborative 
filtering

item based

model 
based

probabilistic 
methods

neighborhood 
models

dimensionality 
reduction

matrix 
completion

latent 
Dirichlet 
allocation

other machine 
learning 
methods

Bayesian 
networks

Markov 
decision 
processes

neural 
networks

I
Memory-based use the ratings to compute similarities
between users or items (the “memory" of the system) that are
successively exploited to produce recommendations.

I
Model-based use the ratings to estimate or learn a model
and then apply this model to make rating predictions.
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Memory based

neighborhood models
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Xavier Amatriain – July 2014 – Recommender Systems

 

The CF Ingredients

● List of m Users and a list of n Items
● Each user has a list of items with associated opinion 

○ Explicit opinion - a rating score 
○ Sometime the rating is implicitly – purchase records 

or listen to tracks
● Active user for whom the CF prediction task is 

performed
● Metric for measuring similarity between users
● Method for selecting a subset of neighbors 
● Method for predicting a rating for items not currently 

rated by the active user.
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Xavier Amatriain – July 2014 – Recommender Systems

 

Collaborative Filtering

The basic steps:

1. Identify set of ratings for the target/active user
2. Identify set of users most similar to the target/active user 

according to a similarity function (neighborhood 
formation)

3. Identify the products these similar users liked
4. Generate a prediction - rating that would be given by the 

target user to the product - for each one of these products 
5. Based on this predicted rating recommend a set of top N 

products
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Xavier Amatriain – July 2014 – Recommender Systems

User-based Collaborative Filtering
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Xavier Amatriain – July 2014 – Recommender Systems

User-User Collaborative 
Filtering

                                           

                    

Target User

Weighted 
Sum
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UB Collaborative Filtering 
●  A collection of user ui, i=1, …n and a collection 

of products pj, j=1, …, m
●  An n × m matrix of ratings vij , with vij = ? if user 

i did not rate product j
●  Prediction for user i and product j is computed 

as

• Similarity can be computed by Pearson correlation

or

or
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Xavier Amatriain – July 2014 – Recommender Systems

Item-based Collaborative Filtering
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Xavier Amatriain – July 2014 – Recommender Systems

Item-Item Collaborative 
Filtering
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Xavier Amatriain – July 2014 – Recommender Systems

Item Based CF Algorithm
● Look into the items the target user has rated 
● Compute how similar they are to the target item 

○ Similarity only using past ratings from other 
users!

● Select k most similar items.
● Compute Prediction by taking weighted average 

on the target user’s ratings on the most similar 
items.
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Xavier Amatriain – July 2014 – Recommender Systems

Item Similarity Computation

● Similarity between items i & j computed by finding 
users who have rated them and then applying a 
similarity function to their ratings.

● Cosine-based Similarity – items are vectors in the m 
dimensional user space (difference in rating scale 
between users is not taken into account).
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Xavier Amatriain – July 2014 – Recommender Systems

Prediction Computation

●  Generating the prediction – look into the target 
users ratings and use techniques to obtain 
predictions.

●  Weighted Sum – how the active user rates the 
similar items.
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Xavier Amatriain – July 2014 – Recommender Systems

Item-based CF Example
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Xavier Amatriain – July 2014 – Recommender Systems

Item-based CF Example
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Xavier Amatriain – July 2014 – Recommender Systems

Item-based CF Example
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Xavier Amatriain – July 2014 – Recommender Systems

Item-based CF Example
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Xavier Amatriain – July 2014 – Recommender Systems

Item-based CF Example
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Xavier Amatriain – July 2014 – Recommender Systems

Item-based CF Example
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Xavier Amatriain – July 2014 – Recommender Systems

Performance Implications
● Bottleneck - Similarity computation.
● Time complexity, highly time consuming with 

millions of users and items in the database.
○ Isolate the neighborhood generation and 

predication steps.
○ “off-line component” / “model” – similarity 

computation, done earlier & stored in memory.
○ “on-line component” – prediction generation 

process.
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Xavier Amatriain – July 2014 – Recommender Systems

Challenges Of User-based CF 
Algorithms

● Sparsity – evaluation of large item sets, users purchases 
are under 1%.

● Difficult to make predictions based on nearest neighbor 
algorithms =>Accuracy of recommendation may be poor.

● Scalability - Nearest neighbor require computation that 
grows with both the number of users and the number of 
items.

● Poor relationship among like minded but sparse-rating 
users. 

● Solution : usage of latent models to capture similarity 
between users & items in a reduced dimensional space. 
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Model based

dimensionality reduction

41 of 65



Xavier Amatriain – July 2014 – Recommender Systems

What we were interested in:
■ High quality recommendations

Proxy question:
■ Accuracy in predicted rating 
■ Improve by 10% = $1million!
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Xavier Amatriain – July 2014 – Recommender Systems

SVD/MF 

   X[n x m] = U[n x r] S [ r x r] (V[m x r])T

 

● X: m x n matrix (e.g., m users, n videos)
● U: m x r matrix (m users, r factors)
● S: r x r diagonal matrix (strength of each ‘factor’) (r: rank of the 

matrix)
● V: r x n matrix (n videos, r factor)
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Recap: Singular Value Decomposition

• SVD is useful in data analysis
� Noise removal, visualization, dimensionality reduction, . . .

• Provides a mean to understand the hidden structure in the data

We may think of Ak and its factor matrices as a low-rank model
of the data:

• Used to capture the important aspects of the data
(cf. principal components)

• Ignores the rest

• Truncated SVD is best low-rank factorization of the data in
terms of Frobenius norm

• Truncated SVD Ak = Uk�kV T
k of A thus satisfies

�A � Ak�F = min
rank(B)=k

�A � B�F

2 / 4545 of 65



SVD problems

I complete input matrix: all entries available and considered

I large portion of missing values

I heuristics to pre-fill missing values

B
item’s average rating

B
missing values as zeros
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Matrix completion

I
Matrix completion techniques avoid the necessity of
pre-filling missing entries by reasoning only on the observed
ratings.

I They can be seen as an estimate or an approximation of the
SVD, computed using application specific optimization
criteria.

I Such solutions are currently considered as the best
single-model approach to collaborative filtering, as
demonstrated, for instance, by the Netflix prize.
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Matrix completion for collaborative filtering

I the completion is driven by a factorization

R P Q

I associate a latent factor vector with each user and each item

I missing entries are estimated through the dot product

rij ⇡ piqj
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Latent factor models (Koren et al., 2009)
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Latent factor models

� Discover latent factors (r = 1)

Avatar The Matrix Up

(2.24) (1.92) (1.18)

Anni

?

4 2

(1.98) (4.4) (3.8) (2.3)

Bob 3 2

?
(1.21) (2.7) (2.3) (1.4)

Charlie 5

?

3

(2.30) (5.2) (4.4) (2.7)

� Minimum loss
� Bias

, regularization, time, . . .
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Latent factor models

� Discover latent factors (r = 1)

Avatar The Matrix Up
(2.24) (1.92) (1.18)
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?

4 2
(1.98)

(4.4) (3.8) (2.3)

Bob 3 2

?

(1.21)
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3
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Latent factor models

� Discover latent factors (r = 1)
Avatar The Matrix Up
(2.24) (1.92) (1.18)

Anni

?

4 2
(1.98)

(4.4)

(3.8) (2.3)

Bob 3 2

?

(1.21) (2.7) (2.3)

(1.4)

Charlie 5

?

3
(2.30) (5.2)

(4.4)

(2.7)

� Minimum loss

min
Q,P

�

(i ,j)��

(vij � [QTP]ij)
2

� Bias

, regularization, time, . . .
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Latent factor models

� Discover latent factors (r = 1)
Avatar The Matrix Up
(2.24) (1.92) (1.18)

Anni ? 4 2
(1.98) (4.4) (3.8) (2.3)

Bob 3 2 ?
(1.21) (2.7) (2.3) (1.4)

Charlie 5 ? 3
(2.30) (5.2) (4.4) (2.7)

� Minimum loss

min
Q,P

�

(i ,j)��

(vij � [QTP]ij)
2

� Bias

, regularization, time, . . .
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Latent factor models

� Discover latent factors (r = 1)
Avatar The Matrix Up
(2.24) (1.92) (1.18)

Anni ? 4 2
(1.98) (4.4) (3.8) (2.3)

Bob 3 2 ?
(1.21) (2.7) (2.3) (1.4)

Charlie 5 ? 3
(2.30) (5.2) (4.4) (2.7)

� Minimum loss

min
Q,P,u,m

�

(i ,j)��

(vij � µ � ui � mj � [QTP]ij)
2

� Bias

, regularization, time, . . .
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Latent factor models

� Discover latent factors (r = 1)
Avatar The Matrix Up
(2.24) (1.92) (1.18)

Anni ? 4 2
(1.98) (4.4) (3.8) (2.3)

Bob 3 2 ?
(1.21) (2.7) (2.3) (1.4)

Charlie 5 ? 3
(2.30) (5.2) (4.4) (2.7)

� Minimum loss

min
Q,P,u,m

�

(i ,j)��

(vij � µ � ui � mj � [QTP]ij)
2

+ � (�Q� + �P� + �u� + �m�)

� Bias, regularization

, time, . . .
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Latent factor models

� Discover latent factors (r = 1)
Avatar The Matrix Up
(2.24) (1.92) (1.18)

Anni ? 4 2
(1.98) (4.4) (3.8) (2.3)

Bob 3 2 ?
(1.21) (2.7) (2.3) (1.4)

Charlie 5 ? 3
(2.30) (5.2) (4.4) (2.7)

� Minimum loss

min
Q,P,u,m

�

(i ,j ,t)��t

(vij � µ � ui (t) � mj(t) � [QT (t)P]ij)
2

+ � (�Q(t)� + �P� + �u(t)� + �m(t)�)

� Bias, regularization, time, . . .
6 / 4256 of 65



Example: Netflix prize data

Root mean square error of predictions
COVER FE ATURE

COMPUTER 48

M atrix factoriza-
tion techniques 
have become a 
dominant meth-
odology within 

collaborative filtering recom-
menders. Experience with 
datasets such as the Netflix Prize 
data has shown that they deliver 
accuracy superior to classical 
nearest-neighbor techniques. At 
the same time, they offer a com-
pact memory-efficient model 
that systems can learn relatively 
easily. What makes these tech-
niques even more convenient is 
that models can integrate natu-
rally many crucial aspects of the 
data, such as multiple forms of 
feedback, temporal dynamics, 
and confidence levels. 
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the mainstream crowd-pleasers, is The Sound of Music. 
And smack in the middle, appealing to all types, is The 
Wizard of Oz. 

In this plot, some movies neighboring one another typi-
cally would not be put together. For example, Annie Hall 
and Citizen Kane are next to each other. Although they 
are stylistically very different, they have a lot in common 
as highly regarded classic movies by famous directors. 
Indeed, the third dimension in the factorization does end 
up separating these two. 

We tried many different implementations and pa-
rameterizations for factorization. Figure 4 shows how 
different models and numbers of parameters affect the 
RMSE as well as the performance of the factorization’s 
evolving implementations—plain factorization, adding 
biases, enhancing user profile with implicit feedback, and 
two variants adding temporal components. The accuracy 
of each of the factor models improves by increasing the 
number of involved parameters, which is equivalent to 
increasing the factor model’s dimensionality, denoted by 
numbers on the charts. 

The more complex factor models, whose descriptions 
involve more distinct sets of parameters, are more accu-
rate. In fact, the temporal components are particularly 
important to model as there are significant temporal ef-
fects in the data. 
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Figure 4. Matrix factorization models’ accuracy. The plots show the root-mean-square 
error of each of four individual factor models (lower is better). Accuracy improves when 
the factor model’s dimensionality (denoted by numbers on the charts) increases. In 
addition, the more refined factor models, whose descriptions involve more distinct  
sets of parameters, are more accurate. For comparison, the Netflix system achieves 
RMSE = 0.9514 on the same dataset, while the grand prize’s required accuracy is  
RMSE = 0.8563.
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Another matrix
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Matrix reconstruction (unregularized)
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Matrix reconstruction (unregularized)
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Matrix reconstruction (unregularized)
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Matrix reconstruction (unregularized)
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Stochastic gradient descent

I parameters ⇥ = {P ,Q}
I find minimum ⇥⇤ of loss

function L

I pick a starting point ⇥0

I iteratively update current
estimations for ⇥

6

7

 0  5  10  15  20  25  30

lo
ss

 (
×
 1

0
7
)

iterations

⇥n+1  ⇥n � ⌘
@L

@⇥
I learning rate ⌘

I an update for each given training point
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Stochastic updates

Lij(P ,Q) = (rij � piqj)
2

I SGD to minimize the squared loss iteratively computes:

pi  pi � ⌘
@Lij(P ,Q)

@pi
= pi + ⌘("ij · qj)

qj  qj � ⌘
@Lij(P ,Q)

@qj
= qj + ⌘("ij · pi)

I where "ij = rij � piqj
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