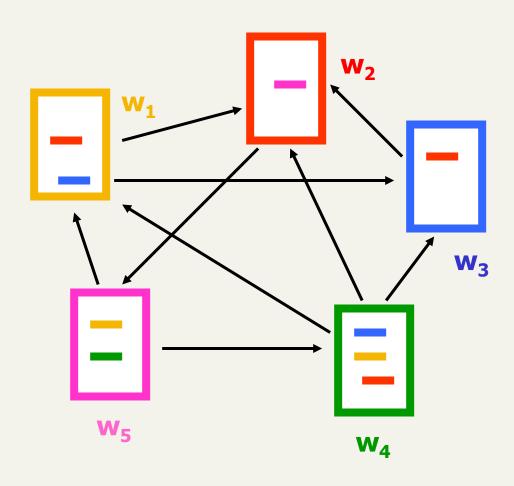
PageRank

The Web Graph



Why is it interesting to study the Web Graph?

- It is the largest artifact ever conceived by the human
- Exploit its structure of the Web for
 - Crawl strategies
 - Search
 - Spam detection
 - Discovering communities on the web
 - Classification/organization
- Predict the evolution of the Web
 - Mathematical models
 - Sociological understanding

Why Link Analysis?

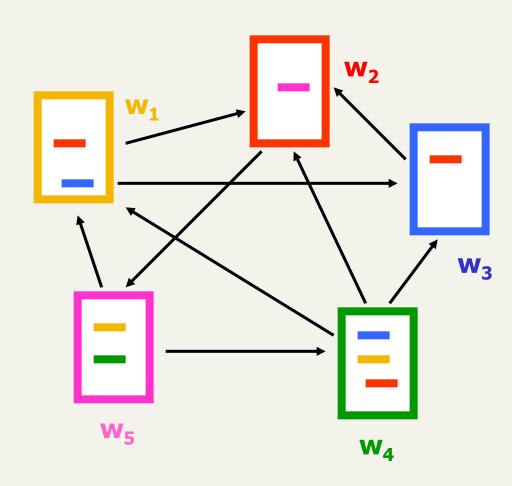
- First generation search engines
 - view documents as flat text files
 - could not cope with size, spamming, user needs
- Second generation search engines
 - Ranking becomes critical
 - use of Web specific data: Link Analysis
 - shift from relevance to authoritativeness
 - a success story for the network analysis

Link Analysis for ranking: Intuition

- A link from page p to page q denotes endorsement
 - page p considers page q an authority on a subject
 - mine the web graph of recommendations
 - assign an authority value to every page

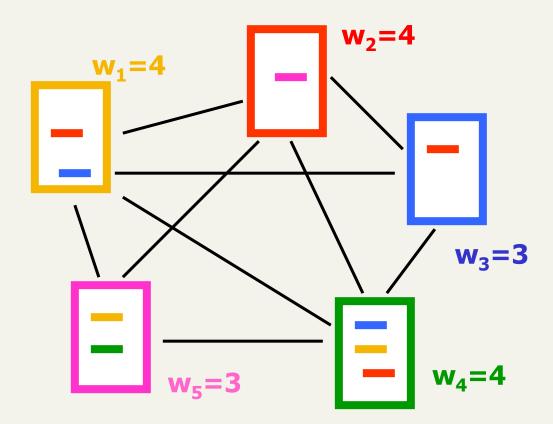
Link Analysis Ranking Algorithms

- Start with a collection of web pages
- Extract the underlying hyperlink graph
- Run a LAR algorithm on the graph
- Output: an authority weight for each node
- What is a good LAR algorithm?



Undirected popularity

- Rank pages according to degree
 - $w_i = | degree(i) |$



- 1. Red Page
- 2. Yellow Page
- 3. Blue Page
- 4. Purple Page
- 5. Green Page

Spamming undirected popularity

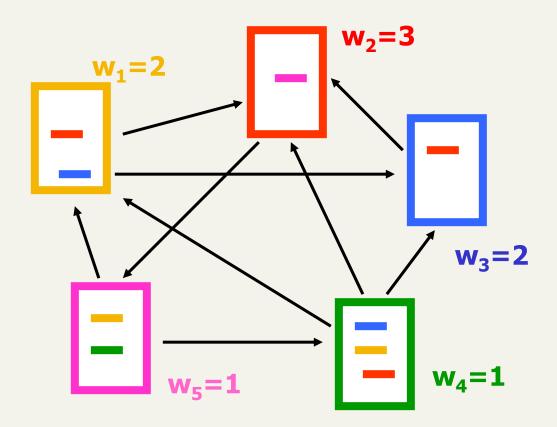
Exercise: How do you spam the undirected popularity heurestic

Spamming undirected popularity

- Exercise: How do you spam the undirected popularity heurestic
- Add a lot of outlinks

Directed popularity

- Rank pages according to in-degree
 - $w_i = | indegree(i) |$



- 1. Red Page
- 2. Yellow Page
- 3. Blue Page
- 4. Purple Page
- 5. Green Page

Spamming directed popularity

Exercise: How do you spam the directed popularity heurestic

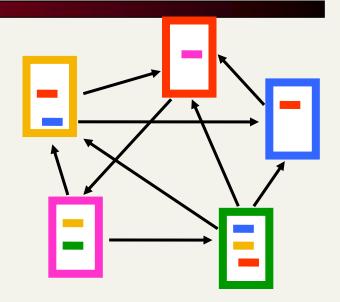
Spamming directed popularity

- Exercise: How do you spam the directed popularity heurestic
- Create a lot of web pages
- Add links to the page of interest

PageRank algorithm

High-level idea:

- A good page has a lot of endorsements by important (authoritative) pages
- Good authorities should be pointed by good authorities
- Count number of votes, but votes have different weights that depends on who votes for them, and so on
- Motivated also by the randomsurfer model



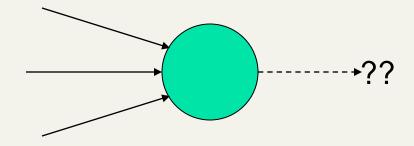
- 1. Red Page
- 2. Purple Page
- 3. Yellow Page
- 4. Blue Page
- 5. Green Page

Pagerank scoring

- Imagine a browser doing a random walk on web pages:
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
- "In the steady state" each page has a long-term visit rate – use this as the page's score.

Not quite enough

- The web is full of dead-ends.
 - Random walk can get stuck in dead-ends.
 - Makes no sense to talk about long-term visit rates.



Teleporting

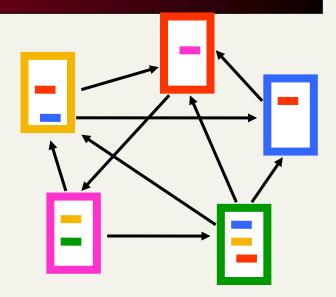
- At a dead end, jump to a random web page.
- At any non-dead end, with probability $\alpha = 10\%$, jump to a random web page.
 - With remaining probability (90%), go out on a random link.
 - $\alpha = 10\%$ a parameter

Result of teleporting

- Now cannot get stuck locally.
- There is a long-term rate at which any page is visited (not obvious, will show this).
- How do we compute this visit rate?

PageRank process

- Good authorities should be pointed by good authorities
- Random walk on the web graph
 - pick a page at random
 - Repeat
 - If dead end jump to a random page
 - with probability α jump to a random page
 - with probability 1-α follow a random outgoing link
- Pagerank weight of page p =
 Probability to be at page p



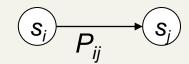
- 1. Red Page
- 2. Purple Page
- 3. Yellow Page
- 4. Blue Page
- 5. Green Page

Markov chains

 A Markov chain describes a discrete time stochastic process over a set of states

$$S = \{s_1, s_2, ... s_n\}$$

according to a transition probability matrix



$$P = \{P_{ij}\}$$

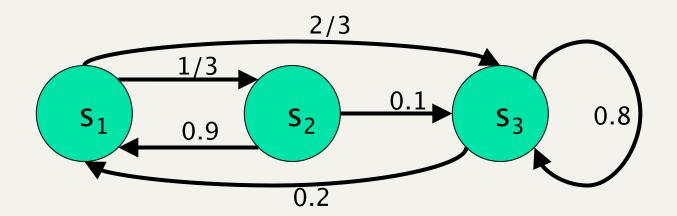
P_{ij} = probability of moving to state s_j when at state s_i

- $\Sigma_j P_{ij} = 1$ (stochastic matrix)
- Memorylessness property: The next state of the chain depends only at the current state and not on the past of the process
- Markov chains are abstractions and generalizations of random walks.

Markov chain graph

- Often we represent a Markov chain as a graph
- Nodes = states
- Edge weights = transition probabilities

$$P = \begin{bmatrix} 0 & 1/3 & 2/3 \\ 0.9 & 0 & 0.1 \\ 0.2 & 0 & 0.8 \end{bmatrix}$$



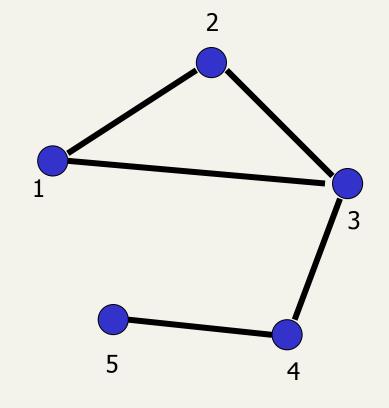
Random walks

- Random walks on graphs are examples of Markov chains
 - The set of states is the set of nodes of the graph G
 - The transition probability matrix is the probability that we follow an edge from one node to another
- Pagerank is NOT a random walk (but similar)
 - Why?

Adjacency matrix

- Adjacency matrix
 - symmetric matrix for undirected graphs

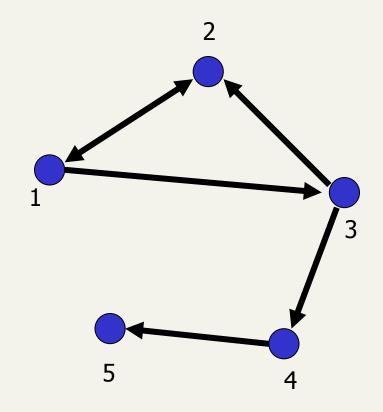
$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$



Adjacency matrix

- Adjacency matrix
 - unsymmetric matrix for undirected graphs

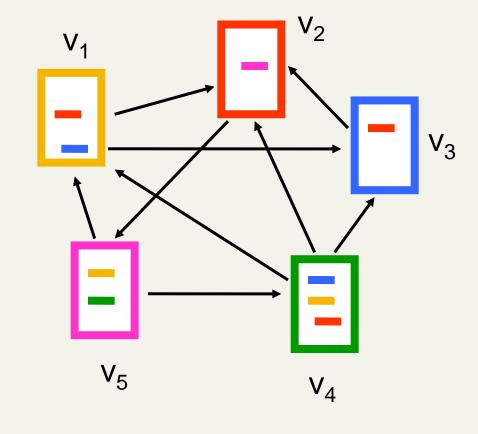
$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$



An example

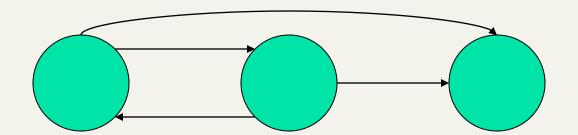
$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P_{RW} = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$



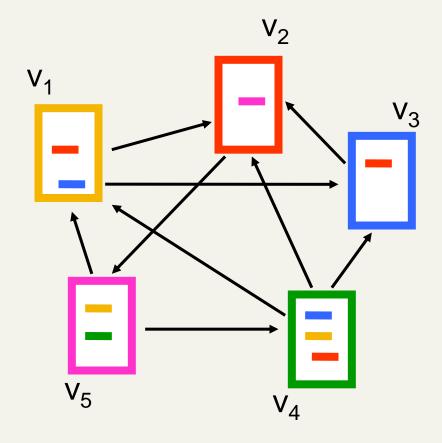
Markov chains

- Clearly, for all i, $\sum_{j=1}^{n} P_{ij} = 1$.
- Markov chains are abstractions and generalizations of random walks.



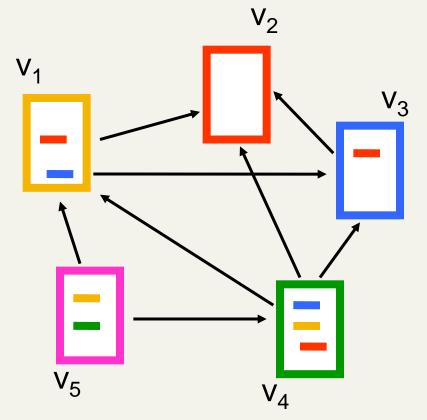
Previous graph:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$



 Let's consider a different example (assume that page 2 has no outlinks)

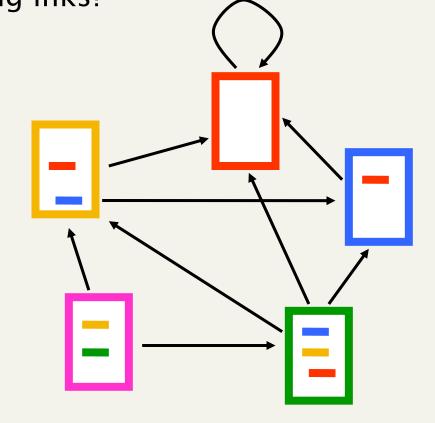
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$



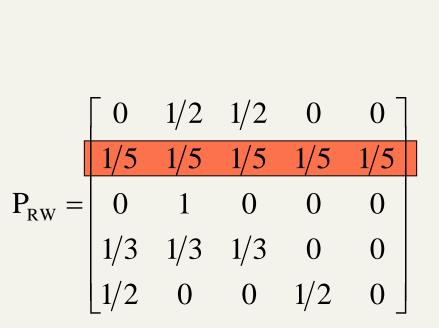
What about sink nodes?

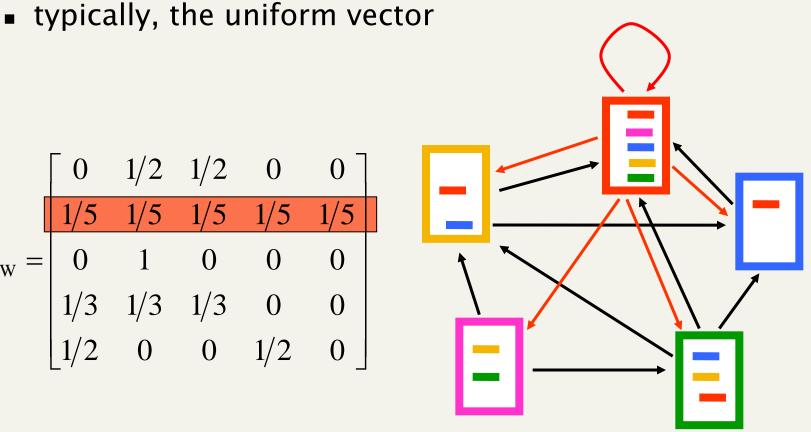
what happens when the random walk moves to a node without any outgoing inks?

	0	1/2	1/2	0	0
$P_{RW} =$	0	1	0	0	0
	0	1	0	0	0
	1/3	1/3	0 1/3 0	0	0
	1/2	0	0	1/2	0



Replace these row vectors with a vector v





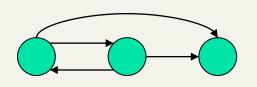
- How do we guarantee irreducibility?
 - add a random jump to vector v with prob α
 - typically, to a uniform vector

$$P_{PR} = (1-\alpha) \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix} + \alpha \begin{bmatrix} 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \end{bmatrix}$$

Transition matrix for pagerank

- Take the adjacency matrix A
- If a line i has no 1s set $P_{ij} = 1/N$
- For the rest of the rows:

■ Set:
$$P_{ij} = (1-\alpha)P_{RW} + \frac{\alpha}{N} = (1-\alpha)\frac{A_{ij}}{(\# \text{ 1s in line } i)} + \frac{\alpha}{N}$$



$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad P_{RW} = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} \frac{\alpha}{3} & \frac{1}{2} - \frac{\alpha}{6} & \frac{1}{2} - \frac{\alpha}{6} \\ \frac{1}{2} - \frac{\alpha}{6} & \frac{\alpha}{3} & \frac{1}{2} - \frac{\alpha}{6} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Probability vectors

- A probability (row) vector $\mathbf{q} = (q_1, \dots q_n)$ tells us where the walk is at any point.
- E.g., (000...1...000) means we're in state *i*.

More generally, the vector $\mathbf{q} = (q_1, \dots q_n)$ means the walk is in state i with probability q_i .

$$\sum_{i=1}^{n} q_i = 1.$$

Change in probability vector

- If the probability vector is $\mathbf{q} = (q_1, \dots q_n)$ at this step, what is it at the next step?
- Recall that row i of the transition prob. Matrix P tells us where we go next from state i.
- So from q, our next state is distributed as qP.
- After t steps: qPt

An example

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$

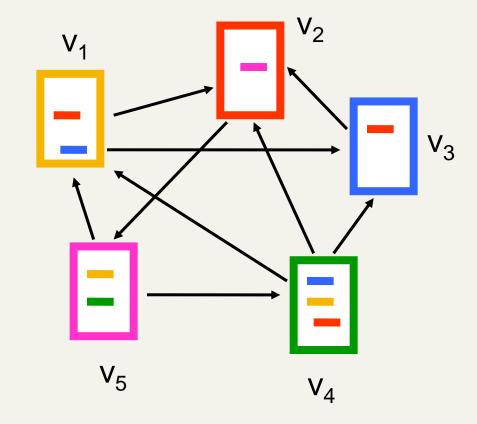
$$q^{t+1}_1 = 1/3 \ q^t_4 + 1/2 \ q^t_5$$

$$q^{t+1}_2 = 1/2 \ q^t_1 + q^t_3 + 1/3 \ q^t_4$$

$$q^{t+1}_3 = 1/2 \ q^t_1 + 1/3 \ q^t_4$$

$$q^{t+1}_4 = 1/2 \ q^t_5$$

$$q^{t+1}_5 = q^t_2$$



Questions:

- What page should we start at?
- How does the probability depend on the starting page?
- How can we compute the probabilities?

Stationary distribution

- A stationary distribution or steady-state distribution for a MC with transition matrix P, is a probability distribution π , such that $\pi = \pi P$
- If we start or arrive at the stationary distribution then we remain there

Stationary distribution

- A MC has a unique stationary distribution if
 - it is irreducible
 - From each state we can arrive to every other state
 - the underlying graph is strongly connected
 - it is aperiodic
 - After a number of steps, you can be in any state at every time step, with non-zero probability.



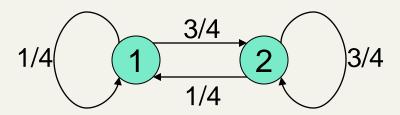
- Such a MC is called ergodic
- Over a long time-period, we visit each state in proportion to this rate.
- It doesn't matter where we start.
- The probability $π_i$ is the fraction of times that we visited state i as t → ∞

Steady state example

 The steady state looks like a vector of probabilities

$$\mathbf{\pi} = (\pi_1, \dots \pi_n)$$
:

• π_i is the probability that we are in state *i*.



For this example, π_1 =1/4 and π_2 =3/4.

How do we compute this vector?

- Let $\mathbf{\pi} = (\pi_1, \dots \pi_n)$ denote the row vector of steady-state probabilities.
- If we our current position is described by π , then the next step is distributed as πP .
- But π is the steady state, so $\pi = \pi P$.
- Solving this matrix equation gives us π
- (So π is a (left) eigenvector for **P**)

One way of computing π

- Recall, regardless of where we start, we eventually reach the steady state π
- Start with any distribution (say $\mathbf{q} = (10...0)$)
- After one step, we're at qP
- after two steps at qP^2 , then qP^3 and so on
- "Eventually" means for "large" t, $qP^t = \pi$
- Algorithm: multiply q by increasing powers of P until the product looks stable

Pagerank summary

- Preprocessing:
 - Given graph of links, build matrix P.
 - From it compute π .
 - The entry π_i is a number between 0 and 1: the pagerank of page i.
- Query processing:
 - Retrieve pages meeting query.
 - Rank them by their pagerank.
 - Order is query-independent.
 - Combine pagerank with other scores (e.g., IR based)

Effects of random jump

- Guarantees irreducibility
- Motivated by the concept of random surfer
- Offers additional flexibility
 - personalization
 - anti-spam
- Controls the rate of convergence
 - the second eigenvalue of matrix P is α

Pagerank: Issues and Variants

- How realistic is the random surfer model?
 - What if we modeled the back button? [Fagi00]
 - Surfer behavior sharply skewed towards short paths
 - Search engines, bookmarks & directories make jumps non-random.
- Biased Surfer Models
 - Weight edge traversal probabilities based on match with topic/query (non-uniform edge selection)
 - Bias jumps to pages on topic (e.g., based on personal bookmarks & categories of interest)

Research on PageRank

- Specialized PageRank
 - personalization [BP98]
 - instead of picking a node uniformly at random favor specific nodes that are related to the user
 - topic sensitive PageRank [H02]
 - compute many PageRank vectors, one for each topic
 - estimate relevance of query with each topic
 - produce final PageRank as a weighted combination
- Updating PageRank [Chien et al 2002]
- Fast computation of PageRank
 - numerical analysis tricks
 - node aggregation techniques
 - dealing with the "Web frontier"