PageRank



The Web Graph




Why Is it interesting to study the Web
Graph?

|
= It Is the largest artifact ever conceived by the human
= EXploit its structure of the Web for

= Crawl strategies

= Search

= Spam detection

= Discovering communities on the web

= Classification/organization

= Predict the evolution of the Web

= Mathematical models

= Sociological understanding



Why Link Analysis?

= First generation search engines
= view documents as flat text files
= could not cope with size, spamming, user needs

= Second generation search engines
= Ranking becomes critical
= use of Web specific data: Link Analysis
= shift from to
= a success story for the network analysis



Link Analysis for ranking:
Intuition

= A link from page p to page ¢ denotes
endorsement

= page p considers page g an authority on a subject
= mine the web graph of recommendations
= assign an authority value to every page



Link Analysis Ranking
Algorithms

= Start with a collection of

web pages w,
= Extract the underlying
hyperlink graph _ __—

= Run a LAR algorithm on

the graph :
= Output: an authority
weight for each node / W3

= What is a good LAR
algorithm?




Undirected popularity

= Rank pages according to degree
= W, = | degree(i) |

. Blue Page
. Purple Page
5. Green Page
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Spamming undirected
popularity

s Fxercise: How do you spam the undirected
popularity heurestic



Spamming undirected
popularity

s Fxercise: How do you spam the undirected
popularity heurestic

= Add a lot of outlinks



Directed popularity

= Rank pages according to in-degree
= W, = | indegree(i) |

. Blue Page
. Purple Page
5. Green Page

w,=3
- /,E\E 1. Red Page
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Spamming directed popularity

s Fxercise: How do you spam the directed
popularity heurestic



Spamming directed popularity

s Fxercise: How do you spam the directed
popularity heurestic

= Create a lot of web pages
= Add links to the page of interest



PageRank algorithm

High-level idea:

[ | /
= A good page has a lot of = > E
endorsements by important \
(authoritative) pages /

= Good authorities should be pointed E

by good authorities

= Count number of votes, but votes
have different weights that depends 1. Red Page
on who votes for them, and so on 2. Purple Page
= Motivated also by the random-
surfer model 4. Blue Page
5. Green Page



Pagerank scoring

= Imagine a browser doing a random walk on web
pages: 1/3

= Start at a random page ©<1/3

1/3

= At each step, go out of the current page along
one of the links on that page, equiprobably

= ‘In the steady state” each page has a long-term
visit rate — use this as the page’s score.



Not quite enough

= The web is full of dead-ends.
= Random walk can get stuck in dead-ends.

= Makes no sense to talk about long-term visit
rates.




Teleporting

= At a dead end, jump to a random web page.
= At any non-dead end, with probability o« = 10%,
jump to a random web page.

= With remaining probability (90%), go out on a
random link.

= & = 10% - a parameter



Result of teleporting
- 0000000000000 ——

= Now cannot get stuck locally.
= There is a long-term rate at which any page is
visited (not obvious, will show this).

= How do we compute this visit rate?



PageRank process

= Good authorities should be pointed

by good authorities - —
= Random walk on the web graph — LA, E
= pick a page at random \ \
= Repeat /
= If dead end jump to a random E \ E
page
= with probability a jump to a
random page
= with probability 1-« follow a 1. Red Page
random outgoing link 2. Purple Page
= Pagerank weight of page p =
Probability to be at page p 4. Blue Page
5. Green Page



Markov chains

= A Markov chain describes a discrete time stochastic
process over a set of states

S={S; Sy --- Sy}

according to a transition probability matrix
j

P={P;}

= P; = probability of moving to state s; when at P.>0

state s, s OK

= Z,P; = 1 (stochastic matrix)

= Memorylessness property: The next state of the
chain depends only at the current state and not on

the past of the process

= Markov chains are abstractions and generalizations
of random walks.



Markov chain graph

= Often we represent a Markov chain as a graph
= Nodes = states
= Edge weights = transition probabilities

0 1/3 2/3
P=109 0 01
02 0 0.8

2/3




Random walks

= Random walks on graphs are examples of Markov

chains
= The set of states is the set of nodes of the graph G
= The is the probability

that we follow an edge from one node to another

= Pagerank is NOT a random walk (but similar)



Adjacency matrix

= Adjacency matrix
= symmetric matrix for undirected graphs

01100
10100
A=|1 101 0
00101
00010




Adjacency matrix

= Adjacency matrix
= unsymmetric matrix for undirected graphs

01100
1 000 O /\
A={0 1 0 1 0 1.\*03
0000 1 /
0000 O




An example

01100

0 12 12
0 0 0
0 1 0
Y3 13 13
172 0 0 1P

o O O

0
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Markov chains

n

« Clearly, foralli, 2 P=L

j=1

= Markov chains are abstractions and
generalizations of random walks.

e o ¢



The PageRank Markov chain

= Previous graph:
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The PageRank Markov chain

= Let’s consider a different example (assume that
page 2 has no outlinks)
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The PageRank Markov chain

= What about sink nodes?
= what happens when the random walk moves to a

node without any outgoing inks? O
0 Y2 y2 0 0] |- /D\\
0 1 0 0 0 T\ \
P.w=/0 1 0 0 O
/3 13 Y3 0 O \ 4
/2 0 0 1/2 0] B :E



The PageRank Markov chain

= Replace these row vectors with a vector v
= typically, the uniform vector O
0 Y2 12 0 0O

5 15 15 1/5 15 /\\

po-l0 1 0 0 o0
3 13 13 0 0 \ /
2 0 0 Y2 0




The PageRank Markov chain

= How do we guarantee irreducibility?

» add a random jump to vector v with prob «
= typically, to a uniform vector

Por = (1-a)
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Transition matrix for pagerank

= Take the adjacency matrix A
= Ifalineihas no 1s setP; = 1/N

s For the rest of the rows:

A
« Set: Py = (1—a)PRW-|-% — (1-q) i o

(# 1s in line z')+N

0 1 1 0 1/2 1/2
A=1]1 01 Ppw = |1/2 0 1/2
0 00 0 0 1
o l1_a 1_«a
3 26 276
P=|1_« Q 1l _ «a
2 6 3 2 6
1 1 1
3 3 3




Probability vectors

= A probability (row) vector q = (g, ... g,) tells us
where the walk is at any point.

= E.g., (000...1...000) means we’re in state /.
1 i n

More generally, the vector g = (q,, ... g,,) means the
walk Is In state | with probabillity g;.

> g, =1
i=1



Change in probability vector

= If the probability vectoris q =(g; ... g,) at this
step, what is it at the next step?

= Recall that row /7 of the transition prob. Matrix P
tells us where we go next from state 7.

= So from q, our next state is distributed as gP.
= After t steps: gPt



An example

_ _ Vo
0 12 12 0 !
0 0 0 O _ /’H\
P=[0 1 0 O
1/3 1/3 1/3 0

12 0 0 1,2

=1/3 9%+ 1/2 g’ B ' E

q*t, =120 + 93+ 1/3 a4 Ve

o O O = O
[
AN
7

q*i; =1/2 ¢ +1/3 0,
q*t, =12 g

41 — ot
q s=0d>



Questions:

= What page should we start at?

= How does the probability depend on the starting
page’

= How can we compute the probabilities?



Stationary distribution

= A stationary distribution or steady-state distribution
for a MC with transition matrix P, is a probability
distribution 11, such that T = 1P

= If we start or arrive at the stationary distribution then we
remain there



Stationary distribution

= A MC has a unique stationary distribution if
= itis irreducible
= From each state we can arrive to every other state
= the underlying graph is strongly connected
= itis aperiodic
= After a number of steps, you can be in any state at

every time step, with non-zero probability. Not

ergodic
C:C) <'i (even/odd)
= Such a MC is called ergodic -

= Over a long time-period, we visit each state in proportion
to this rate.

= It doesn’t matter where we start.

= The probability 1, is the fraction of times that we visited
stateias t » o



Steady state example

= The steady state looks like a vector of
probabilities

= (174 ... TT,):
» 77;is the probability that we are in state /.

34
1/4 1) (2 3/4
1/4

For this example, m,=1/4 and m,=3/4.




How do we compute this

vector?
-

s Let = (77, ... 7,) denote the row vector of
steady-state probabilities.

= |f we our current position is described by T,
then the next step is distributed as 1tP.

= But 1T is the steady state, so 1r = mP.
= Solving this matrix equation gives us 1t
= (So 1ris a (left) eigenvector for P)



One way of computing 1t

= Recall, regardless of where we start, we
eventually reach the steady state Tt

= Start with any distribution (say q=(10...0))
= After one step, we're at qP

= after two steps at qP<, then gP? and so on
= “Eventually” means for “large” ¢, qP= 1t

= Algorithm: multiply q by increasing powers of P
until the product looks stable



Pagerank summary

= Preprocessing:
= Given graph of links, build matrix P.
= From it compute TI.
« The entry 77;is a number between 0 and 1: the
pagerank of page .
= Query processing:
= Retrieve pages meeting query.
= Rank them by their pagerank.
= Order is query-independent.

= Combine pagerank with other scores (e.g., IR
based)



Effects of random jump

= Guarantees irreducibility
= Motivated by the concept of random surfer
= Offers additional flexibility
= personalization
= anti-spam
= Controls the rate of convergence
« the second eigenvalue of matrix P is «



Pagerank: Issues and Variants

= How realistic is the random surfer model?
= What if we modeled the back button? [FagiOO0]

= Surfer behavior sharply skewed towards short
paths

= Search engines, bookmarks & directories make
jumps non-random.

= Biased Surfer Models

= Weight edge traversal probabilities based on
match with topic/query (non-uniform edge
selection)

= Bias jumps to pages on topic (e.g., based on
personal bookmarks & categories of interest)



Research on PageRank

= Specialized PageRank

= personalization [BP9S§]

= instead of picking a node uniformly at random favor
specific nodes that are related to the user

= topic sensitive PageRank [HO2]

= compute many PageRank vectors, one for each
topic

= estimate relevance of query with each topic

= produce final PageRank as a weighted combination

= Updating PageRank [Chien et al 2002]
= Fast computation of PageRank

= humerical analysis tricks

= hode aggregation techniques

» dealing with the “Web frontier”



