
Data Mining

Homework 3

Due: 23/4/2013, 23:59.

You must hand in the homeworks electronically and before the due date and time. Check the web
page for instructions about collaboration, about being late, and about handing in the homework.

Remember to hand in for each exercise:

• The .py files with the source code.

• Instruction to execute them.

• The output files generated, and output at the screen.

Problem 1. For this exercise we will implement some versions of the A-priori algorithm.

1. Implement the simple A-priori algorithm in Python. For every round you have to read the
file and you can keep in memory the frequent elements that you find.

• You can store the itemsets during the computation in standard Python data structures
(lists, sets, dictionaries) without doing the fancy stuff that we have seen.

• The input format is one line per basket, and each line contains the IDs of the items in
the basket separated by space.

• You can assume that the IDs are 0, 1, 2, . . . .

• At the end save the itemsets that you compute in a file, one line per itemset, each line
containing the items in the itemset separated by space.

• Report the total running time, and the number of itemsets found.

• You will probably find very useful the itertools package.

2. Implement the simple, randomized algorithm of Section 6.4.1 of the book.

• Read the file once, sample baskets into memory, and then compute the itemsets just by
reading the memory.

• Implement the two techniques of Section 6.4.2 to remove false positives and reduce false
negatives.

• At the end save the itemsets that you compute in a file, one line per itemset, each line
containing the items in the itemset separated by space.

• Report the total running time, and the number of itemsets found, both before and after
eliminating the false positives.

After making sure that your implementations are correct (by running them on some toy examples
that you create) run them on two datasets:

1. First, on the file http://fimi.ua.ac.be/data/retail.dat.gz, which contains the (anonymized)
retail market basket data from an anonymous Belgian retail store. Use as threshold t = 500,
and as sampling probability p = 0.1.

http://fimi.ua.ac.be/data/retail.dat.gz


2. Then try them on the bigger dataset http://fimi.ua.ac.be/data/webdocs.dat.gz, which
was built from a spidered collection of web html documents. Use as threshold t = 500,000 and
as sampling probability p = 0.0001. This example shows why we often prefer approximate re-
sults: here the standard algorithm may be very slow (hours), whereas a good implementation
(but without any smart techniques) of the randomized algorithm should be able to produce
results in a few minutes.

For each of the datasets compare the results of the two algorithms. First write a small program to
check that the randomized algorithm does not return itemsets that are not produced by the simple
algorithm. Also compare the full results with the results that you obtain with the randomized
algorithm if you set that threshold in the sampled set to (i) tp, and (ii) 0.9tp. More specifically,
report how many frequent itemsets does the randomized algorithm return for each of the two
thresholds and how much time it needs.

Problem 2. In this problem we will try to understand a bit better the concept of frequent itemsets,
and how sometimes we can be tricked by the data.

Assume that we have n items, m baskets, and for every basket each item appears with probability
p, independently of all the other items.

1. Consider an itemset of k items {i1,i2, . . . ,ik}. Calculate what is the expected number of times
that we will find the itemset in the m baskets.

2. Let’s fix n = 2000, m = 105, and p = 0.005. How many times do we expect to see a particular
pair of items?

3. Now perform some simulations using the values above and compute the frequency of the most
frequent pair. Repeat them 10 times. How many times did you find a pair that appears at
least 5 times its expectation?

4. How do you explain the difference between 2 and 3?

Even though the data were generated completely at random, some pairs appear to be much more
frequent than others. This example shows us that we should be careful not to draw fast conclusions.
Generally, often we may think that there is some signal in our data, when in reality there is none.

Optional (extra credit): Propose and implement a way to deal with the problem above.

Problem 3. We will compute the edit distance of two strings in three ways.

1. Write a Python function that implements the dynamic programming to compute the longest
common subsequence (LCS) of two strings. (Note: It may be slightly easier when manipulat-
ing the string indices to compare the last letter of the strings, as described in the Wikipedia
page, instead of the first as we did in class.) Using this function write a function that computes
the edit distance between two strings.

2. Design a dynamic program that computes the edit distance directly (and not through the
computation of LCS). The approach is similar to the LCS, but the reduction to the sub-
problems and the initial values are slightly different. Implement this function in Python.
Experiment with several strings and verrify that the two functions give the same results.

3. Here we will see why it is necessary to use dynamic programming to compute the edit distance.
Implement the algorithm in 2 using recursion, instead of filling in the dynamic-programming
table. After you check that the results are the same in small strings, run it on longer strings
(say 15–16 characters). How do you explain the difference in speed?

http://fimi.ua.ac.be/data/webdocs.dat.gz

